Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esplylem Structured version   Visualization version   GIF version

Theorem esplylem 33594
Description: Lemma for esplyfv 33598 and others. (Contributed by Thierry Arnoux, 18-Jan-2026.)
Hypotheses
Ref Expression
esplympl.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ finSupp 0}
esplympl.i (𝜑𝐼 ∈ Fin)
esplympl.r (𝜑𝑅 ∈ Ring)
esplympl.k (𝜑𝐾 ∈ ℕ0)
Assertion
Ref Expression
esplylem (𝜑 → ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ⊆ 𝐷)
Distinct variable groups:   𝐼,𝑐,   𝐾,𝑐
Allowed substitution hints:   𝜑(,𝑐)   𝐷(,𝑐)   𝑅(,𝑐)   𝐾()

Proof of Theorem esplylem
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 nfv 1915 . 2 𝑑𝜑
2 esplympl.i . . . 4 (𝜑𝐼 ∈ Fin)
3 indf1o 32852 . . . 4 (𝐼 ∈ Fin → (𝟭‘𝐼):𝒫 𝐼1-1-onto→({0, 1} ↑m 𝐼))
4 f1of 6769 . . . 4 ((𝟭‘𝐼):𝒫 𝐼1-1-onto→({0, 1} ↑m 𝐼) → (𝟭‘𝐼):𝒫 𝐼⟶({0, 1} ↑m 𝐼))
52, 3, 43syl 18 . . 3 (𝜑 → (𝟭‘𝐼):𝒫 𝐼⟶({0, 1} ↑m 𝐼))
65ffund 6661 . 2 (𝜑 → Fun (𝟭‘𝐼))
7 breq1 5096 . . . 4 ( = ((𝟭‘𝐼)‘𝑑) → ( finSupp 0 ↔ ((𝟭‘𝐼)‘𝑑) finSupp 0))
8 nn0ex 12393 . . . . . 6 0 ∈ V
98a1i 11 . . . . 5 ((𝜑𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → ℕ0 ∈ V)
102adantr 480 . . . . 5 ((𝜑𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → 𝐼 ∈ Fin)
11 ssrab2 4029 . . . . . . . . . 10 {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾} ⊆ 𝒫 𝐼
1211a1i 11 . . . . . . . . 9 (𝜑 → {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾} ⊆ 𝒫 𝐼)
1312sselda 3929 . . . . . . . 8 ((𝜑𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → 𝑑 ∈ 𝒫 𝐼)
1413elpwid 4558 . . . . . . 7 ((𝜑𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → 𝑑𝐼)
15 indf 32843 . . . . . . 7 ((𝐼 ∈ Fin ∧ 𝑑𝐼) → ((𝟭‘𝐼)‘𝑑):𝐼⟶{0, 1})
1610, 14, 15syl2anc 584 . . . . . 6 ((𝜑𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → ((𝟭‘𝐼)‘𝑑):𝐼⟶{0, 1})
17 0nn0 12402 . . . . . . . 8 0 ∈ ℕ0
1817a1i 11 . . . . . . 7 ((𝜑𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → 0 ∈ ℕ0)
19 1nn0 12403 . . . . . . . 8 1 ∈ ℕ0
2019a1i 11 . . . . . . 7 ((𝜑𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → 1 ∈ ℕ0)
2118, 20prssd 4773 . . . . . 6 ((𝜑𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → {0, 1} ⊆ ℕ0)
2216, 21fssd 6674 . . . . 5 ((𝜑𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → ((𝟭‘𝐼)‘𝑑):𝐼⟶ℕ0)
239, 10, 22elmapdd 8771 . . . 4 ((𝜑𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → ((𝟭‘𝐼)‘𝑑) ∈ (ℕ0m 𝐼))
2416, 10, 18fidmfisupp 9262 . . . 4 ((𝜑𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → ((𝟭‘𝐼)‘𝑑) finSupp 0)
257, 23, 24elrabd 3644 . . 3 ((𝜑𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → ((𝟭‘𝐼)‘𝑑) ∈ { ∈ (ℕ0m 𝐼) ∣ finSupp 0})
26 esplympl.d . . 3 𝐷 = { ∈ (ℕ0m 𝐼) ∣ finSupp 0}
2725, 26eleqtrrdi 2842 . 2 ((𝜑𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → ((𝟭‘𝐼)‘𝑑) ∈ 𝐷)
281, 6, 27funimassd 6894 1 (𝜑 → ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ⊆ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436  wss 3897  𝒫 cpw 4549  {cpr 4577   class class class wbr 5093  cima 5622  wf 6483  1-1-ontowf1o 6486  cfv 6487  (class class class)co 7352  m cmap 8756  Fincfn 8875   finSupp cfsupp 9251  0cc0 11012  1c1 11013  0cn0 12387  chash 14243  Ringcrg 20157  𝟭cind 32838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-i2m1 11080  ax-1ne0 11081  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-map 8758  df-en 8876  df-fin 8879  df-fsupp 9252  df-nn 12132  df-n0 12388  df-ind 32839
This theorem is referenced by:  esplympl  33595  esplymhp  33596  esplyfv  33598
  Copyright terms: Public domain W3C validator