Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esplylem Structured version   Visualization version   GIF version

Theorem esplylem 33555
Description: Lemma for esplyfv 33559 and others. (Contributed by Thierry Arnoux, 18-Jan-2026.)
Hypotheses
Ref Expression
esplympl.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ finSupp 0}
esplympl.i (𝜑𝐼 ∈ Fin)
esplympl.r (𝜑𝑅 ∈ Ring)
esplympl.k (𝜑𝐾 ∈ ℕ0)
Assertion
Ref Expression
esplylem (𝜑 → ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ⊆ 𝐷)
Distinct variable groups:   𝐼,𝑐,   𝐾,𝑐
Allowed substitution hints:   𝜑(,𝑐)   𝐷(,𝑐)   𝑅(,𝑐)   𝐾()

Proof of Theorem esplylem
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . 2 𝑑𝜑
2 esplympl.i . . . 4 (𝜑𝐼 ∈ Fin)
3 indf1o 32800 . . . 4 (𝐼 ∈ Fin → (𝟭‘𝐼):𝒫 𝐼1-1-onto→({0, 1} ↑m 𝐼))
4 f1of 6758 . . . 4 ((𝟭‘𝐼):𝒫 𝐼1-1-onto→({0, 1} ↑m 𝐼) → (𝟭‘𝐼):𝒫 𝐼⟶({0, 1} ↑m 𝐼))
52, 3, 43syl 18 . . 3 (𝜑 → (𝟭‘𝐼):𝒫 𝐼⟶({0, 1} ↑m 𝐼))
65ffund 6650 . 2 (𝜑 → Fun (𝟭‘𝐼))
7 breq1 5091 . . . 4 ( = ((𝟭‘𝐼)‘𝑑) → ( finSupp 0 ↔ ((𝟭‘𝐼)‘𝑑) finSupp 0))
8 nn0ex 12378 . . . . . 6 0 ∈ V
98a1i 11 . . . . 5 ((𝜑𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → ℕ0 ∈ V)
102adantr 480 . . . . 5 ((𝜑𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → 𝐼 ∈ Fin)
11 ssrab2 4027 . . . . . . . . . 10 {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾} ⊆ 𝒫 𝐼
1211a1i 11 . . . . . . . . 9 (𝜑 → {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾} ⊆ 𝒫 𝐼)
1312sselda 3931 . . . . . . . 8 ((𝜑𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → 𝑑 ∈ 𝒫 𝐼)
1413elpwid 4556 . . . . . . 7 ((𝜑𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → 𝑑𝐼)
15 indf 32791 . . . . . . 7 ((𝐼 ∈ Fin ∧ 𝑑𝐼) → ((𝟭‘𝐼)‘𝑑):𝐼⟶{0, 1})
1610, 14, 15syl2anc 584 . . . . . 6 ((𝜑𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → ((𝟭‘𝐼)‘𝑑):𝐼⟶{0, 1})
17 0nn0 12387 . . . . . . . 8 0 ∈ ℕ0
1817a1i 11 . . . . . . 7 ((𝜑𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → 0 ∈ ℕ0)
19 1nn0 12388 . . . . . . . 8 1 ∈ ℕ0
2019a1i 11 . . . . . . 7 ((𝜑𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → 1 ∈ ℕ0)
2118, 20prssd 4771 . . . . . 6 ((𝜑𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → {0, 1} ⊆ ℕ0)
2216, 21fssd 6663 . . . . 5 ((𝜑𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → ((𝟭‘𝐼)‘𝑑):𝐼⟶ℕ0)
239, 10, 22elmapdd 8759 . . . 4 ((𝜑𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → ((𝟭‘𝐼)‘𝑑) ∈ (ℕ0m 𝐼))
2416, 10, 18fidmfisupp 9250 . . . 4 ((𝜑𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → ((𝟭‘𝐼)‘𝑑) finSupp 0)
257, 23, 24elrabd 3646 . . 3 ((𝜑𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → ((𝟭‘𝐼)‘𝑑) ∈ { ∈ (ℕ0m 𝐼) ∣ finSupp 0})
26 esplympl.d . . 3 𝐷 = { ∈ (ℕ0m 𝐼) ∣ finSupp 0}
2725, 26eleqtrrdi 2839 . 2 ((𝜑𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → ((𝟭‘𝐼)‘𝑑) ∈ 𝐷)
281, 6, 27funimassd 6882 1 (𝜑 → ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ⊆ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3392  Vcvv 3433  wss 3899  𝒫 cpw 4547  {cpr 4575   class class class wbr 5088  cima 5616  wf 6472  1-1-ontowf1o 6475  cfv 6476  (class class class)co 7340  m cmap 8744  Fincfn 8863   finSupp cfsupp 9239  0cc0 10997  1c1 10998  0cn0 12372  chash 14225  Ringcrg 20105  𝟭cind 32786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5214  ax-sep 5231  ax-nul 5241  ax-pow 5300  ax-pr 5367  ax-un 7662  ax-cnex 11053  ax-1cn 11055  ax-icn 11056  ax-addcl 11057  ax-addrcl 11058  ax-mulcl 11059  ax-mulrcl 11060  ax-i2m1 11065  ax-1ne0 11066  ax-rnegex 11068  ax-rrecex 11069  ax-cnre 11070
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3393  df-v 3435  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4940  df-br 5089  df-opab 5151  df-mpt 5170  df-tr 5196  df-id 5508  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5566  df-we 5568  df-xp 5619  df-rel 5620  df-cnv 5621  df-co 5622  df-dm 5623  df-rn 5624  df-res 5625  df-ima 5626  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7343  df-oprab 7344  df-mpo 7345  df-om 7791  df-2nd 7916  df-supp 8085  df-frecs 8205  df-wrecs 8236  df-recs 8285  df-rdg 8323  df-1o 8379  df-map 8746  df-en 8864  df-fin 8867  df-fsupp 9240  df-nn 12117  df-n0 12373  df-ind 32787
This theorem is referenced by:  esplympl  33556  esplymhp  33557  esplyfv  33559
  Copyright terms: Public domain W3C validator