| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > esplylem | Structured version Visualization version GIF version | ||
| Description: Lemma for esplyfv 33598 and others. (Contributed by Thierry Arnoux, 18-Jan-2026.) |
| Ref | Expression |
|---|---|
| esplympl.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ ℎ finSupp 0} |
| esplympl.i | ⊢ (𝜑 → 𝐼 ∈ Fin) |
| esplympl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| esplympl.k | ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| esplylem | ⊢ (𝜑 → ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ⊆ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1915 | . 2 ⊢ Ⅎ𝑑𝜑 | |
| 2 | esplympl.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ Fin) | |
| 3 | indf1o 32852 | . . . 4 ⊢ (𝐼 ∈ Fin → (𝟭‘𝐼):𝒫 𝐼–1-1-onto→({0, 1} ↑m 𝐼)) | |
| 4 | f1of 6769 | . . . 4 ⊢ ((𝟭‘𝐼):𝒫 𝐼–1-1-onto→({0, 1} ↑m 𝐼) → (𝟭‘𝐼):𝒫 𝐼⟶({0, 1} ↑m 𝐼)) | |
| 5 | 2, 3, 4 | 3syl 18 | . . 3 ⊢ (𝜑 → (𝟭‘𝐼):𝒫 𝐼⟶({0, 1} ↑m 𝐼)) |
| 6 | 5 | ffund 6661 | . 2 ⊢ (𝜑 → Fun (𝟭‘𝐼)) |
| 7 | breq1 5096 | . . . 4 ⊢ (ℎ = ((𝟭‘𝐼)‘𝑑) → (ℎ finSupp 0 ↔ ((𝟭‘𝐼)‘𝑑) finSupp 0)) | |
| 8 | nn0ex 12393 | . . . . . 6 ⊢ ℕ0 ∈ V | |
| 9 | 8 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → ℕ0 ∈ V) |
| 10 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → 𝐼 ∈ Fin) |
| 11 | ssrab2 4029 | . . . . . . . . . 10 ⊢ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾} ⊆ 𝒫 𝐼 | |
| 12 | 11 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾} ⊆ 𝒫 𝐼) |
| 13 | 12 | sselda 3929 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → 𝑑 ∈ 𝒫 𝐼) |
| 14 | 13 | elpwid 4558 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → 𝑑 ⊆ 𝐼) |
| 15 | indf 32843 | . . . . . . 7 ⊢ ((𝐼 ∈ Fin ∧ 𝑑 ⊆ 𝐼) → ((𝟭‘𝐼)‘𝑑):𝐼⟶{0, 1}) | |
| 16 | 10, 14, 15 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → ((𝟭‘𝐼)‘𝑑):𝐼⟶{0, 1}) |
| 17 | 0nn0 12402 | . . . . . . . 8 ⊢ 0 ∈ ℕ0 | |
| 18 | 17 | a1i 11 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → 0 ∈ ℕ0) |
| 19 | 1nn0 12403 | . . . . . . . 8 ⊢ 1 ∈ ℕ0 | |
| 20 | 19 | a1i 11 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → 1 ∈ ℕ0) |
| 21 | 18, 20 | prssd 4773 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → {0, 1} ⊆ ℕ0) |
| 22 | 16, 21 | fssd 6674 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → ((𝟭‘𝐼)‘𝑑):𝐼⟶ℕ0) |
| 23 | 9, 10, 22 | elmapdd 8771 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → ((𝟭‘𝐼)‘𝑑) ∈ (ℕ0 ↑m 𝐼)) |
| 24 | 16, 10, 18 | fidmfisupp 9262 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → ((𝟭‘𝐼)‘𝑑) finSupp 0) |
| 25 | 7, 23, 24 | elrabd 3644 | . . 3 ⊢ ((𝜑 ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → ((𝟭‘𝐼)‘𝑑) ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ ℎ finSupp 0}) |
| 26 | esplympl.d | . . 3 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ ℎ finSupp 0} | |
| 27 | 25, 26 | eleqtrrdi 2842 | . 2 ⊢ ((𝜑 ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → ((𝟭‘𝐼)‘𝑑) ∈ 𝐷) |
| 28 | 1, 6, 27 | funimassd 6894 | 1 ⊢ (𝜑 → ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ⊆ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 ⊆ wss 3897 𝒫 cpw 4549 {cpr 4577 class class class wbr 5093 “ cima 5622 ⟶wf 6483 –1-1-onto→wf1o 6486 ‘cfv 6487 (class class class)co 7352 ↑m cmap 8756 Fincfn 8875 finSupp cfsupp 9251 0cc0 11012 1c1 11013 ℕ0cn0 12387 ♯chash 14243 Ringcrg 20157 𝟭cind 32838 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-i2m1 11080 ax-1ne0 11081 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-supp 8097 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-map 8758 df-en 8876 df-fin 8879 df-fsupp 9252 df-nn 12132 df-n0 12388 df-ind 32839 |
| This theorem is referenced by: esplympl 33595 esplymhp 33596 esplyfv 33598 |
| Copyright terms: Public domain | W3C validator |