| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > esplylem | Structured version Visualization version GIF version | ||
| Description: Lemma for esplyfv 33559 and others. (Contributed by Thierry Arnoux, 18-Jan-2026.) |
| Ref | Expression |
|---|---|
| esplympl.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ ℎ finSupp 0} |
| esplympl.i | ⊢ (𝜑 → 𝐼 ∈ Fin) |
| esplympl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| esplympl.k | ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| esplylem | ⊢ (𝜑 → ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ⊆ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . 2 ⊢ Ⅎ𝑑𝜑 | |
| 2 | esplympl.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ Fin) | |
| 3 | indf1o 32800 | . . . 4 ⊢ (𝐼 ∈ Fin → (𝟭‘𝐼):𝒫 𝐼–1-1-onto→({0, 1} ↑m 𝐼)) | |
| 4 | f1of 6758 | . . . 4 ⊢ ((𝟭‘𝐼):𝒫 𝐼–1-1-onto→({0, 1} ↑m 𝐼) → (𝟭‘𝐼):𝒫 𝐼⟶({0, 1} ↑m 𝐼)) | |
| 5 | 2, 3, 4 | 3syl 18 | . . 3 ⊢ (𝜑 → (𝟭‘𝐼):𝒫 𝐼⟶({0, 1} ↑m 𝐼)) |
| 6 | 5 | ffund 6650 | . 2 ⊢ (𝜑 → Fun (𝟭‘𝐼)) |
| 7 | breq1 5091 | . . . 4 ⊢ (ℎ = ((𝟭‘𝐼)‘𝑑) → (ℎ finSupp 0 ↔ ((𝟭‘𝐼)‘𝑑) finSupp 0)) | |
| 8 | nn0ex 12378 | . . . . . 6 ⊢ ℕ0 ∈ V | |
| 9 | 8 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → ℕ0 ∈ V) |
| 10 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → 𝐼 ∈ Fin) |
| 11 | ssrab2 4027 | . . . . . . . . . 10 ⊢ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾} ⊆ 𝒫 𝐼 | |
| 12 | 11 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾} ⊆ 𝒫 𝐼) |
| 13 | 12 | sselda 3931 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → 𝑑 ∈ 𝒫 𝐼) |
| 14 | 13 | elpwid 4556 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → 𝑑 ⊆ 𝐼) |
| 15 | indf 32791 | . . . . . . 7 ⊢ ((𝐼 ∈ Fin ∧ 𝑑 ⊆ 𝐼) → ((𝟭‘𝐼)‘𝑑):𝐼⟶{0, 1}) | |
| 16 | 10, 14, 15 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → ((𝟭‘𝐼)‘𝑑):𝐼⟶{0, 1}) |
| 17 | 0nn0 12387 | . . . . . . . 8 ⊢ 0 ∈ ℕ0 | |
| 18 | 17 | a1i 11 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → 0 ∈ ℕ0) |
| 19 | 1nn0 12388 | . . . . . . . 8 ⊢ 1 ∈ ℕ0 | |
| 20 | 19 | a1i 11 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → 1 ∈ ℕ0) |
| 21 | 18, 20 | prssd 4771 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → {0, 1} ⊆ ℕ0) |
| 22 | 16, 21 | fssd 6663 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → ((𝟭‘𝐼)‘𝑑):𝐼⟶ℕ0) |
| 23 | 9, 10, 22 | elmapdd 8759 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → ((𝟭‘𝐼)‘𝑑) ∈ (ℕ0 ↑m 𝐼)) |
| 24 | 16, 10, 18 | fidmfisupp 9250 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → ((𝟭‘𝐼)‘𝑑) finSupp 0) |
| 25 | 7, 23, 24 | elrabd 3646 | . . 3 ⊢ ((𝜑 ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → ((𝟭‘𝐼)‘𝑑) ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ ℎ finSupp 0}) |
| 26 | esplympl.d | . . 3 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ ℎ finSupp 0} | |
| 27 | 25, 26 | eleqtrrdi 2839 | . 2 ⊢ ((𝜑 ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → ((𝟭‘𝐼)‘𝑑) ∈ 𝐷) |
| 28 | 1, 6, 27 | funimassd 6882 | 1 ⊢ (𝜑 → ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ⊆ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3392 Vcvv 3433 ⊆ wss 3899 𝒫 cpw 4547 {cpr 4575 class class class wbr 5088 “ cima 5616 ⟶wf 6472 –1-1-onto→wf1o 6475 ‘cfv 6476 (class class class)co 7340 ↑m cmap 8744 Fincfn 8863 finSupp cfsupp 9239 0cc0 10997 1c1 10998 ℕ0cn0 12372 ♯chash 14225 Ringcrg 20105 𝟭cind 32786 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5214 ax-sep 5231 ax-nul 5241 ax-pow 5300 ax-pr 5367 ax-un 7662 ax-cnex 11053 ax-1cn 11055 ax-icn 11056 ax-addcl 11057 ax-addrcl 11058 ax-mulcl 11059 ax-mulrcl 11060 ax-i2m1 11065 ax-1ne0 11066 ax-rnegex 11068 ax-rrecex 11069 ax-cnre 11070 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3393 df-v 3435 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4940 df-br 5089 df-opab 5151 df-mpt 5170 df-tr 5196 df-id 5508 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5566 df-we 5568 df-xp 5619 df-rel 5620 df-cnv 5621 df-co 5622 df-dm 5623 df-rn 5624 df-res 5625 df-ima 5626 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7343 df-oprab 7344 df-mpo 7345 df-om 7791 df-2nd 7916 df-supp 8085 df-frecs 8205 df-wrecs 8236 df-recs 8285 df-rdg 8323 df-1o 8379 df-map 8746 df-en 8864 df-fin 8867 df-fsupp 9240 df-nn 12117 df-n0 12373 df-ind 32787 |
| This theorem is referenced by: esplympl 33556 esplymhp 33557 esplyfv 33559 |
| Copyright terms: Public domain | W3C validator |