MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expsne0 Structured version   Visualization version   GIF version

Theorem expsne0 28432
Description: A non-negative surreal integer power is non-zero if its base is non-zero. (Contributed by Scott Fenton, 7-Aug-2025.)
Assertion
Ref Expression
expsne0 ((𝐴 No 𝐴 ≠ 0s𝑁 ∈ ℕ0s) → (𝐴s𝑁) ≠ 0s )

Proof of Theorem expsne0
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7456 . . . . . . . . 9 (𝑚 = 0s → (𝐴s𝑚) = (𝐴s 0s ))
21eqeq1d 2742 . . . . . . . 8 (𝑚 = 0s → ((𝐴s𝑚) = 0s ↔ (𝐴s 0s ) = 0s ))
32imbi1d 341 . . . . . . 7 (𝑚 = 0s → (((𝐴s𝑚) = 0s𝐴 = 0s ) ↔ ((𝐴s 0s ) = 0s𝐴 = 0s )))
43imbi2d 340 . . . . . 6 (𝑚 = 0s → ((𝐴 No → ((𝐴s𝑚) = 0s𝐴 = 0s )) ↔ (𝐴 No → ((𝐴s 0s ) = 0s𝐴 = 0s ))))
5 oveq2 7456 . . . . . . . . 9 (𝑚 = 𝑛 → (𝐴s𝑚) = (𝐴s𝑛))
65eqeq1d 2742 . . . . . . . 8 (𝑚 = 𝑛 → ((𝐴s𝑚) = 0s ↔ (𝐴s𝑛) = 0s ))
76imbi1d 341 . . . . . . 7 (𝑚 = 𝑛 → (((𝐴s𝑚) = 0s𝐴 = 0s ) ↔ ((𝐴s𝑛) = 0s𝐴 = 0s )))
87imbi2d 340 . . . . . 6 (𝑚 = 𝑛 → ((𝐴 No → ((𝐴s𝑚) = 0s𝐴 = 0s )) ↔ (𝐴 No → ((𝐴s𝑛) = 0s𝐴 = 0s ))))
9 oveq2 7456 . . . . . . . . 9 (𝑚 = (𝑛 +s 1s ) → (𝐴s𝑚) = (𝐴s(𝑛 +s 1s )))
109eqeq1d 2742 . . . . . . . 8 (𝑚 = (𝑛 +s 1s ) → ((𝐴s𝑚) = 0s ↔ (𝐴s(𝑛 +s 1s )) = 0s ))
1110imbi1d 341 . . . . . . 7 (𝑚 = (𝑛 +s 1s ) → (((𝐴s𝑚) = 0s𝐴 = 0s ) ↔ ((𝐴s(𝑛 +s 1s )) = 0s𝐴 = 0s )))
1211imbi2d 340 . . . . . 6 (𝑚 = (𝑛 +s 1s ) → ((𝐴 No → ((𝐴s𝑚) = 0s𝐴 = 0s )) ↔ (𝐴 No → ((𝐴s(𝑛 +s 1s )) = 0s𝐴 = 0s ))))
13 oveq2 7456 . . . . . . . . 9 (𝑚 = 𝑁 → (𝐴s𝑚) = (𝐴s𝑁))
1413eqeq1d 2742 . . . . . . . 8 (𝑚 = 𝑁 → ((𝐴s𝑚) = 0s ↔ (𝐴s𝑁) = 0s ))
1514imbi1d 341 . . . . . . 7 (𝑚 = 𝑁 → (((𝐴s𝑚) = 0s𝐴 = 0s ) ↔ ((𝐴s𝑁) = 0s𝐴 = 0s )))
1615imbi2d 340 . . . . . 6 (𝑚 = 𝑁 → ((𝐴 No → ((𝐴s𝑚) = 0s𝐴 = 0s )) ↔ (𝐴 No → ((𝐴s𝑁) = 0s𝐴 = 0s ))))
17 0slt1s 27892 . . . . . . . . . 10 0s <s 1s
18 sgt0ne0 27897 . . . . . . . . . 10 ( 0s <s 1s → 1s ≠ 0s )
1917, 18ax-mp 5 . . . . . . . . 9 1s ≠ 0s
20 exps0 28428 . . . . . . . . . 10 (𝐴 No → (𝐴s 0s ) = 1s )
2120neeq1d 3006 . . . . . . . . 9 (𝐴 No → ((𝐴s 0s ) ≠ 0s ↔ 1s ≠ 0s ))
2219, 21mpbiri 258 . . . . . . . 8 (𝐴 No → (𝐴s 0s ) ≠ 0s )
2322neneqd 2951 . . . . . . 7 (𝐴 No → ¬ (𝐴s 0s ) = 0s )
2423pm2.21d 121 . . . . . 6 (𝐴 No → ((𝐴s 0s ) = 0s𝐴 = 0s ))
25 expsp1 28430 . . . . . . . . . . . . 13 ((𝐴 No 𝑛 ∈ ℕ0s) → (𝐴s(𝑛 +s 1s )) = ((𝐴s𝑛) ·s 𝐴))
2625eqeq1d 2742 . . . . . . . . . . . 12 ((𝐴 No 𝑛 ∈ ℕ0s) → ((𝐴s(𝑛 +s 1s )) = 0s ↔ ((𝐴s𝑛) ·s 𝐴) = 0s ))
27 expscl 28431 . . . . . . . . . . . . 13 ((𝐴 No 𝑛 ∈ ℕ0s) → (𝐴s𝑛) ∈ No )
28 simpl 482 . . . . . . . . . . . . 13 ((𝐴 No 𝑛 ∈ ℕ0s) → 𝐴 No )
2927, 28muls0ord 28229 . . . . . . . . . . . 12 ((𝐴 No 𝑛 ∈ ℕ0s) → (((𝐴s𝑛) ·s 𝐴) = 0s ↔ ((𝐴s𝑛) = 0s𝐴 = 0s )))
3026, 29bitrd 279 . . . . . . . . . . 11 ((𝐴 No 𝑛 ∈ ℕ0s) → ((𝐴s(𝑛 +s 1s )) = 0s ↔ ((𝐴s𝑛) = 0s𝐴 = 0s )))
3130adantr 480 . . . . . . . . . 10 (((𝐴 No 𝑛 ∈ ℕ0s) ∧ ((𝐴s𝑛) = 0s𝐴 = 0s )) → ((𝐴s(𝑛 +s 1s )) = 0s ↔ ((𝐴s𝑛) = 0s𝐴 = 0s )))
32 simpr 484 . . . . . . . . . . 11 (((𝐴 No 𝑛 ∈ ℕ0s) ∧ ((𝐴s𝑛) = 0s𝐴 = 0s )) → ((𝐴s𝑛) = 0s𝐴 = 0s ))
33 idd 24 . . . . . . . . . . 11 (((𝐴 No 𝑛 ∈ ℕ0s) ∧ ((𝐴s𝑛) = 0s𝐴 = 0s )) → (𝐴 = 0s𝐴 = 0s ))
3432, 33jaod 858 . . . . . . . . . 10 (((𝐴 No 𝑛 ∈ ℕ0s) ∧ ((𝐴s𝑛) = 0s𝐴 = 0s )) → (((𝐴s𝑛) = 0s𝐴 = 0s ) → 𝐴 = 0s ))
3531, 34sylbid 240 . . . . . . . . 9 (((𝐴 No 𝑛 ∈ ℕ0s) ∧ ((𝐴s𝑛) = 0s𝐴 = 0s )) → ((𝐴s(𝑛 +s 1s )) = 0s𝐴 = 0s ))
3635ex 412 . . . . . . . 8 ((𝐴 No 𝑛 ∈ ℕ0s) → (((𝐴s𝑛) = 0s𝐴 = 0s ) → ((𝐴s(𝑛 +s 1s )) = 0s𝐴 = 0s )))
3736expcom 413 . . . . . . 7 (𝑛 ∈ ℕ0s → (𝐴 No → (((𝐴s𝑛) = 0s𝐴 = 0s ) → ((𝐴s(𝑛 +s 1s )) = 0s𝐴 = 0s ))))
3837a2d 29 . . . . . 6 (𝑛 ∈ ℕ0s → ((𝐴 No → ((𝐴s𝑛) = 0s𝐴 = 0s )) → (𝐴 No → ((𝐴s(𝑛 +s 1s )) = 0s𝐴 = 0s ))))
394, 8, 12, 16, 24, 38n0sind 28355 . . . . 5 (𝑁 ∈ ℕ0s → (𝐴 No → ((𝐴s𝑁) = 0s𝐴 = 0s )))
4039imp 406 . . . 4 ((𝑁 ∈ ℕ0s𝐴 No ) → ((𝐴s𝑁) = 0s𝐴 = 0s ))
4140necon3d 2967 . . 3 ((𝑁 ∈ ℕ0s𝐴 No ) → (𝐴 ≠ 0s → (𝐴s𝑁) ≠ 0s ))
4241ex 412 . 2 (𝑁 ∈ ℕ0s → (𝐴 No → (𝐴 ≠ 0s → (𝐴s𝑁) ≠ 0s )))
43423imp231 1113 1 ((𝐴 No 𝐴 ≠ 0s𝑁 ∈ ℕ0s) → (𝐴s𝑁) ≠ 0s )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  (class class class)co 7448   No csur 27702   <s cslt 27703   0s c0s 27885   1s c1s 27886   +s cadds 28010   ·s cmuls 28150  0scnn0s 28336  scexps 28414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-nadd 8722  df-no 27705  df-slt 27706  df-bday 27707  df-sle 27808  df-sslt 27844  df-scut 27846  df-0s 27887  df-1s 27888  df-made 27904  df-old 27905  df-left 27907  df-right 27908  df-norec 27989  df-norec2 28000  df-adds 28011  df-negs 28071  df-subs 28072  df-muls 28151  df-seqs 28308  df-n0s 28338  df-nns 28339  df-zs 28383  df-exps 28415
This theorem is referenced by:  cutpw2  28435  pw2bday  28436  pw2cut  28438  zs12bday  28442
  Copyright terms: Public domain W3C validator