MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expsne0 Structured version   Visualization version   GIF version

Theorem expsne0 28378
Description: A non-negative surreal integer power is non-zero if its base is non-zero. (Contributed by Scott Fenton, 7-Aug-2025.)
Assertion
Ref Expression
expsne0 ((𝐴 No 𝐴 ≠ 0s𝑁 ∈ ℕ0s) → (𝐴s𝑁) ≠ 0s )

Proof of Theorem expsne0
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7418 . . . . . . . . 9 (𝑚 = 0s → (𝐴s𝑚) = (𝐴s 0s ))
21eqeq1d 2738 . . . . . . . 8 (𝑚 = 0s → ((𝐴s𝑚) = 0s ↔ (𝐴s 0s ) = 0s ))
32imbi1d 341 . . . . . . 7 (𝑚 = 0s → (((𝐴s𝑚) = 0s𝐴 = 0s ) ↔ ((𝐴s 0s ) = 0s𝐴 = 0s )))
43imbi2d 340 . . . . . 6 (𝑚 = 0s → ((𝐴 No → ((𝐴s𝑚) = 0s𝐴 = 0s )) ↔ (𝐴 No → ((𝐴s 0s ) = 0s𝐴 = 0s ))))
5 oveq2 7418 . . . . . . . . 9 (𝑚 = 𝑛 → (𝐴s𝑚) = (𝐴s𝑛))
65eqeq1d 2738 . . . . . . . 8 (𝑚 = 𝑛 → ((𝐴s𝑚) = 0s ↔ (𝐴s𝑛) = 0s ))
76imbi1d 341 . . . . . . 7 (𝑚 = 𝑛 → (((𝐴s𝑚) = 0s𝐴 = 0s ) ↔ ((𝐴s𝑛) = 0s𝐴 = 0s )))
87imbi2d 340 . . . . . 6 (𝑚 = 𝑛 → ((𝐴 No → ((𝐴s𝑚) = 0s𝐴 = 0s )) ↔ (𝐴 No → ((𝐴s𝑛) = 0s𝐴 = 0s ))))
9 oveq2 7418 . . . . . . . . 9 (𝑚 = (𝑛 +s 1s ) → (𝐴s𝑚) = (𝐴s(𝑛 +s 1s )))
109eqeq1d 2738 . . . . . . . 8 (𝑚 = (𝑛 +s 1s ) → ((𝐴s𝑚) = 0s ↔ (𝐴s(𝑛 +s 1s )) = 0s ))
1110imbi1d 341 . . . . . . 7 (𝑚 = (𝑛 +s 1s ) → (((𝐴s𝑚) = 0s𝐴 = 0s ) ↔ ((𝐴s(𝑛 +s 1s )) = 0s𝐴 = 0s )))
1211imbi2d 340 . . . . . 6 (𝑚 = (𝑛 +s 1s ) → ((𝐴 No → ((𝐴s𝑚) = 0s𝐴 = 0s )) ↔ (𝐴 No → ((𝐴s(𝑛 +s 1s )) = 0s𝐴 = 0s ))))
13 oveq2 7418 . . . . . . . . 9 (𝑚 = 𝑁 → (𝐴s𝑚) = (𝐴s𝑁))
1413eqeq1d 2738 . . . . . . . 8 (𝑚 = 𝑁 → ((𝐴s𝑚) = 0s ↔ (𝐴s𝑁) = 0s ))
1514imbi1d 341 . . . . . . 7 (𝑚 = 𝑁 → (((𝐴s𝑚) = 0s𝐴 = 0s ) ↔ ((𝐴s𝑁) = 0s𝐴 = 0s )))
1615imbi2d 340 . . . . . 6 (𝑚 = 𝑁 → ((𝐴 No → ((𝐴s𝑚) = 0s𝐴 = 0s )) ↔ (𝐴 No → ((𝐴s𝑁) = 0s𝐴 = 0s ))))
17 1sne0s 27806 . . . . . . . . 9 1s ≠ 0s
18 exps0 28370 . . . . . . . . . 10 (𝐴 No → (𝐴s 0s ) = 1s )
1918neeq1d 2992 . . . . . . . . 9 (𝐴 No → ((𝐴s 0s ) ≠ 0s ↔ 1s ≠ 0s ))
2017, 19mpbiri 258 . . . . . . . 8 (𝐴 No → (𝐴s 0s ) ≠ 0s )
2120neneqd 2938 . . . . . . 7 (𝐴 No → ¬ (𝐴s 0s ) = 0s )
2221pm2.21d 121 . . . . . 6 (𝐴 No → ((𝐴s 0s ) = 0s𝐴 = 0s ))
23 expsp1 28372 . . . . . . . . . . . . 13 ((𝐴 No 𝑛 ∈ ℕ0s) → (𝐴s(𝑛 +s 1s )) = ((𝐴s𝑛) ·s 𝐴))
2423eqeq1d 2738 . . . . . . . . . . . 12 ((𝐴 No 𝑛 ∈ ℕ0s) → ((𝐴s(𝑛 +s 1s )) = 0s ↔ ((𝐴s𝑛) ·s 𝐴) = 0s ))
25 expscl 28374 . . . . . . . . . . . . 13 ((𝐴 No 𝑛 ∈ ℕ0s) → (𝐴s𝑛) ∈ No )
26 simpl 482 . . . . . . . . . . . . 13 ((𝐴 No 𝑛 ∈ ℕ0s) → 𝐴 No )
2725, 26muls0ord 28145 . . . . . . . . . . . 12 ((𝐴 No 𝑛 ∈ ℕ0s) → (((𝐴s𝑛) ·s 𝐴) = 0s ↔ ((𝐴s𝑛) = 0s𝐴 = 0s )))
2824, 27bitrd 279 . . . . . . . . . . 11 ((𝐴 No 𝑛 ∈ ℕ0s) → ((𝐴s(𝑛 +s 1s )) = 0s ↔ ((𝐴s𝑛) = 0s𝐴 = 0s )))
2928adantr 480 . . . . . . . . . 10 (((𝐴 No 𝑛 ∈ ℕ0s) ∧ ((𝐴s𝑛) = 0s𝐴 = 0s )) → ((𝐴s(𝑛 +s 1s )) = 0s ↔ ((𝐴s𝑛) = 0s𝐴 = 0s )))
30 simpr 484 . . . . . . . . . . 11 (((𝐴 No 𝑛 ∈ ℕ0s) ∧ ((𝐴s𝑛) = 0s𝐴 = 0s )) → ((𝐴s𝑛) = 0s𝐴 = 0s ))
31 idd 24 . . . . . . . . . . 11 (((𝐴 No 𝑛 ∈ ℕ0s) ∧ ((𝐴s𝑛) = 0s𝐴 = 0s )) → (𝐴 = 0s𝐴 = 0s ))
3230, 31jaod 859 . . . . . . . . . 10 (((𝐴 No 𝑛 ∈ ℕ0s) ∧ ((𝐴s𝑛) = 0s𝐴 = 0s )) → (((𝐴s𝑛) = 0s𝐴 = 0s ) → 𝐴 = 0s ))
3329, 32sylbid 240 . . . . . . . . 9 (((𝐴 No 𝑛 ∈ ℕ0s) ∧ ((𝐴s𝑛) = 0s𝐴 = 0s )) → ((𝐴s(𝑛 +s 1s )) = 0s𝐴 = 0s ))
3433ex 412 . . . . . . . 8 ((𝐴 No 𝑛 ∈ ℕ0s) → (((𝐴s𝑛) = 0s𝐴 = 0s ) → ((𝐴s(𝑛 +s 1s )) = 0s𝐴 = 0s )))
3534expcom 413 . . . . . . 7 (𝑛 ∈ ℕ0s → (𝐴 No → (((𝐴s𝑛) = 0s𝐴 = 0s ) → ((𝐴s(𝑛 +s 1s )) = 0s𝐴 = 0s ))))
3635a2d 29 . . . . . 6 (𝑛 ∈ ℕ0s → ((𝐴 No → ((𝐴s𝑛) = 0s𝐴 = 0s )) → (𝐴 No → ((𝐴s(𝑛 +s 1s )) = 0s𝐴 = 0s ))))
374, 8, 12, 16, 22, 36n0sind 28282 . . . . 5 (𝑁 ∈ ℕ0s → (𝐴 No → ((𝐴s𝑁) = 0s𝐴 = 0s )))
3837imp 406 . . . 4 ((𝑁 ∈ ℕ0s𝐴 No ) → ((𝐴s𝑁) = 0s𝐴 = 0s ))
3938necon3d 2954 . . 3 ((𝑁 ∈ ℕ0s𝐴 No ) → (𝐴 ≠ 0s → (𝐴s𝑁) ≠ 0s ))
4039ex 412 . 2 (𝑁 ∈ ℕ0s → (𝐴 No → (𝐴 ≠ 0s → (𝐴s𝑁) ≠ 0s )))
41403imp231 1112 1 ((𝐴 No 𝐴 ≠ 0s𝑁 ∈ ℕ0s) → (𝐴s𝑁) ≠ 0s )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2933  (class class class)co 7410   No csur 27608   0s c0s 27791   1s c1s 27792   +s cadds 27923   ·s cmuls 28066  0scnn0s 28263  scexps 28355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-ot 4615  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-nadd 8683  df-no 27611  df-slt 27612  df-bday 27613  df-sle 27714  df-sslt 27750  df-scut 27752  df-0s 27793  df-1s 27794  df-made 27812  df-old 27813  df-left 27815  df-right 27816  df-norec 27902  df-norec2 27913  df-adds 27924  df-negs 27984  df-subs 27985  df-muls 28067  df-seqs 28235  df-n0s 28265  df-nns 28266  df-zs 28324  df-exps 28356
This theorem is referenced by:  pw2divscld  28381  pw2divsmuld  28382  pw2divscan2d  28384  pw2divsrecd  28387  pw2cut  28392  zs12bday  28400
  Copyright terms: Public domain W3C validator