MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expscllem Structured version   Visualization version   GIF version

Theorem expscllem 28323
Description: Lemma for proving non-negative surreal integer exponentiation closure. (Contributed by Scott Fenton, 7-Nov-2025.)
Hypotheses
Ref Expression
expscllem.1 𝐹 No
expscllem.2 ((𝑥𝐹𝑦𝐹) → (𝑥 ·s 𝑦) ∈ 𝐹)
expscllem.3 1s𝐹
Assertion
Ref Expression
expscllem ((𝐴𝐹𝑁 ∈ ℕ0s) → (𝐴s𝑁) ∈ 𝐹)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑁,𝑦   𝑥,𝐹,𝑦

Proof of Theorem expscllem
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7398 . . . . 5 (𝑚 = 0s → (𝐴s𝑚) = (𝐴s 0s ))
21eleq1d 2814 . . . 4 (𝑚 = 0s → ((𝐴s𝑚) ∈ 𝐹 ↔ (𝐴s 0s ) ∈ 𝐹))
32imbi2d 340 . . 3 (𝑚 = 0s → ((𝐴𝐹 → (𝐴s𝑚) ∈ 𝐹) ↔ (𝐴𝐹 → (𝐴s 0s ) ∈ 𝐹)))
4 oveq2 7398 . . . . 5 (𝑚 = 𝑛 → (𝐴s𝑚) = (𝐴s𝑛))
54eleq1d 2814 . . . 4 (𝑚 = 𝑛 → ((𝐴s𝑚) ∈ 𝐹 ↔ (𝐴s𝑛) ∈ 𝐹))
65imbi2d 340 . . 3 (𝑚 = 𝑛 → ((𝐴𝐹 → (𝐴s𝑚) ∈ 𝐹) ↔ (𝐴𝐹 → (𝐴s𝑛) ∈ 𝐹)))
7 oveq2 7398 . . . . 5 (𝑚 = (𝑛 +s 1s ) → (𝐴s𝑚) = (𝐴s(𝑛 +s 1s )))
87eleq1d 2814 . . . 4 (𝑚 = (𝑛 +s 1s ) → ((𝐴s𝑚) ∈ 𝐹 ↔ (𝐴s(𝑛 +s 1s )) ∈ 𝐹))
98imbi2d 340 . . 3 (𝑚 = (𝑛 +s 1s ) → ((𝐴𝐹 → (𝐴s𝑚) ∈ 𝐹) ↔ (𝐴𝐹 → (𝐴s(𝑛 +s 1s )) ∈ 𝐹)))
10 oveq2 7398 . . . . 5 (𝑚 = 𝑁 → (𝐴s𝑚) = (𝐴s𝑁))
1110eleq1d 2814 . . . 4 (𝑚 = 𝑁 → ((𝐴s𝑚) ∈ 𝐹 ↔ (𝐴s𝑁) ∈ 𝐹))
1211imbi2d 340 . . 3 (𝑚 = 𝑁 → ((𝐴𝐹 → (𝐴s𝑚) ∈ 𝐹) ↔ (𝐴𝐹 → (𝐴s𝑁) ∈ 𝐹)))
13 expscllem.1 . . . . . 6 𝐹 No
1413sseli 3945 . . . . 5 (𝐴𝐹𝐴 No )
15 exps0 28320 . . . . 5 (𝐴 No → (𝐴s 0s ) = 1s )
1614, 15syl 17 . . . 4 (𝐴𝐹 → (𝐴s 0s ) = 1s )
17 expscllem.3 . . . 4 1s𝐹
1816, 17eqeltrdi 2837 . . 3 (𝐴𝐹 → (𝐴s 0s ) ∈ 𝐹)
19143ad2ant2 1134 . . . . . . 7 ((𝑛 ∈ ℕ0s𝐴𝐹 ∧ (𝐴s𝑛) ∈ 𝐹) → 𝐴 No )
20 simp1 1136 . . . . . . 7 ((𝑛 ∈ ℕ0s𝐴𝐹 ∧ (𝐴s𝑛) ∈ 𝐹) → 𝑛 ∈ ℕ0s)
21 expsp1 28322 . . . . . . 7 ((𝐴 No 𝑛 ∈ ℕ0s) → (𝐴s(𝑛 +s 1s )) = ((𝐴s𝑛) ·s 𝐴))
2219, 20, 21syl2anc 584 . . . . . 6 ((𝑛 ∈ ℕ0s𝐴𝐹 ∧ (𝐴s𝑛) ∈ 𝐹) → (𝐴s(𝑛 +s 1s )) = ((𝐴s𝑛) ·s 𝐴))
23 expscllem.2 . . . . . . . . 9 ((𝑥𝐹𝑦𝐹) → (𝑥 ·s 𝑦) ∈ 𝐹)
2423caovcl 7586 . . . . . . . 8 (((𝐴s𝑛) ∈ 𝐹𝐴𝐹) → ((𝐴s𝑛) ·s 𝐴) ∈ 𝐹)
2524ancoms 458 . . . . . . 7 ((𝐴𝐹 ∧ (𝐴s𝑛) ∈ 𝐹) → ((𝐴s𝑛) ·s 𝐴) ∈ 𝐹)
26253adant1 1130 . . . . . 6 ((𝑛 ∈ ℕ0s𝐴𝐹 ∧ (𝐴s𝑛) ∈ 𝐹) → ((𝐴s𝑛) ·s 𝐴) ∈ 𝐹)
2722, 26eqeltrd 2829 . . . . 5 ((𝑛 ∈ ℕ0s𝐴𝐹 ∧ (𝐴s𝑛) ∈ 𝐹) → (𝐴s(𝑛 +s 1s )) ∈ 𝐹)
28273exp 1119 . . . 4 (𝑛 ∈ ℕ0s → (𝐴𝐹 → ((𝐴s𝑛) ∈ 𝐹 → (𝐴s(𝑛 +s 1s )) ∈ 𝐹)))
2928a2d 29 . . 3 (𝑛 ∈ ℕ0s → ((𝐴𝐹 → (𝐴s𝑛) ∈ 𝐹) → (𝐴𝐹 → (𝐴s(𝑛 +s 1s )) ∈ 𝐹)))
303, 6, 9, 12, 18, 29n0sind 28232 . 2 (𝑁 ∈ ℕ0s → (𝐴𝐹 → (𝐴s𝑁) ∈ 𝐹))
3130impcom 407 1 ((𝐴𝐹𝑁 ∈ ℕ0s) → (𝐴s𝑁) ∈ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3917  (class class class)co 7390   No csur 27558   0s c0s 27741   1s c1s 27742   +s cadds 27873   ·s cmuls 28016  0scnn0s 28213  scexps 28305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-nadd 8633  df-no 27561  df-slt 27562  df-bday 27563  df-sle 27664  df-sslt 27700  df-scut 27702  df-0s 27743  df-1s 27744  df-made 27762  df-old 27763  df-left 27765  df-right 27766  df-norec 27852  df-norec2 27863  df-adds 27874  df-negs 27934  df-subs 27935  df-muls 28017  df-seqs 28185  df-n0s 28215  df-nns 28216  df-zs 28274  df-exps 28306
This theorem is referenced by:  expscl  28324  n0expscl  28325  nnexpscl  28326
  Copyright terms: Public domain W3C validator