MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expscllem Structured version   Visualization version   GIF version

Theorem expscllem 28358
Description: Lemma for proving non-negative surreal integer exponentiation closure. (Contributed by Scott Fenton, 7-Nov-2025.)
Hypotheses
Ref Expression
expscllem.1 𝐹 No
expscllem.2 ((𝑥𝐹𝑦𝐹) → (𝑥 ·s 𝑦) ∈ 𝐹)
expscllem.3 1s𝐹
Assertion
Ref Expression
expscllem ((𝐴𝐹𝑁 ∈ ℕ0s) → (𝐴s𝑁) ∈ 𝐹)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑁,𝑦   𝑥,𝐹,𝑦

Proof of Theorem expscllem
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7377 . . . . 5 (𝑚 = 0s → (𝐴s𝑚) = (𝐴s 0s ))
21eleq1d 2813 . . . 4 (𝑚 = 0s → ((𝐴s𝑚) ∈ 𝐹 ↔ (𝐴s 0s ) ∈ 𝐹))
32imbi2d 340 . . 3 (𝑚 = 0s → ((𝐴𝐹 → (𝐴s𝑚) ∈ 𝐹) ↔ (𝐴𝐹 → (𝐴s 0s ) ∈ 𝐹)))
4 oveq2 7377 . . . . 5 (𝑚 = 𝑛 → (𝐴s𝑚) = (𝐴s𝑛))
54eleq1d 2813 . . . 4 (𝑚 = 𝑛 → ((𝐴s𝑚) ∈ 𝐹 ↔ (𝐴s𝑛) ∈ 𝐹))
65imbi2d 340 . . 3 (𝑚 = 𝑛 → ((𝐴𝐹 → (𝐴s𝑚) ∈ 𝐹) ↔ (𝐴𝐹 → (𝐴s𝑛) ∈ 𝐹)))
7 oveq2 7377 . . . . 5 (𝑚 = (𝑛 +s 1s ) → (𝐴s𝑚) = (𝐴s(𝑛 +s 1s )))
87eleq1d 2813 . . . 4 (𝑚 = (𝑛 +s 1s ) → ((𝐴s𝑚) ∈ 𝐹 ↔ (𝐴s(𝑛 +s 1s )) ∈ 𝐹))
98imbi2d 340 . . 3 (𝑚 = (𝑛 +s 1s ) → ((𝐴𝐹 → (𝐴s𝑚) ∈ 𝐹) ↔ (𝐴𝐹 → (𝐴s(𝑛 +s 1s )) ∈ 𝐹)))
10 oveq2 7377 . . . . 5 (𝑚 = 𝑁 → (𝐴s𝑚) = (𝐴s𝑁))
1110eleq1d 2813 . . . 4 (𝑚 = 𝑁 → ((𝐴s𝑚) ∈ 𝐹 ↔ (𝐴s𝑁) ∈ 𝐹))
1211imbi2d 340 . . 3 (𝑚 = 𝑁 → ((𝐴𝐹 → (𝐴s𝑚) ∈ 𝐹) ↔ (𝐴𝐹 → (𝐴s𝑁) ∈ 𝐹)))
13 expscllem.1 . . . . . 6 𝐹 No
1413sseli 3939 . . . . 5 (𝐴𝐹𝐴 No )
15 exps0 28355 . . . . 5 (𝐴 No → (𝐴s 0s ) = 1s )
1614, 15syl 17 . . . 4 (𝐴𝐹 → (𝐴s 0s ) = 1s )
17 expscllem.3 . . . 4 1s𝐹
1816, 17eqeltrdi 2836 . . 3 (𝐴𝐹 → (𝐴s 0s ) ∈ 𝐹)
19143ad2ant2 1134 . . . . . . 7 ((𝑛 ∈ ℕ0s𝐴𝐹 ∧ (𝐴s𝑛) ∈ 𝐹) → 𝐴 No )
20 simp1 1136 . . . . . . 7 ((𝑛 ∈ ℕ0s𝐴𝐹 ∧ (𝐴s𝑛) ∈ 𝐹) → 𝑛 ∈ ℕ0s)
21 expsp1 28357 . . . . . . 7 ((𝐴 No 𝑛 ∈ ℕ0s) → (𝐴s(𝑛 +s 1s )) = ((𝐴s𝑛) ·s 𝐴))
2219, 20, 21syl2anc 584 . . . . . 6 ((𝑛 ∈ ℕ0s𝐴𝐹 ∧ (𝐴s𝑛) ∈ 𝐹) → (𝐴s(𝑛 +s 1s )) = ((𝐴s𝑛) ·s 𝐴))
23 expscllem.2 . . . . . . . . 9 ((𝑥𝐹𝑦𝐹) → (𝑥 ·s 𝑦) ∈ 𝐹)
2423caovcl 7563 . . . . . . . 8 (((𝐴s𝑛) ∈ 𝐹𝐴𝐹) → ((𝐴s𝑛) ·s 𝐴) ∈ 𝐹)
2524ancoms 458 . . . . . . 7 ((𝐴𝐹 ∧ (𝐴s𝑛) ∈ 𝐹) → ((𝐴s𝑛) ·s 𝐴) ∈ 𝐹)
26253adant1 1130 . . . . . 6 ((𝑛 ∈ ℕ0s𝐴𝐹 ∧ (𝐴s𝑛) ∈ 𝐹) → ((𝐴s𝑛) ·s 𝐴) ∈ 𝐹)
2722, 26eqeltrd 2828 . . . . 5 ((𝑛 ∈ ℕ0s𝐴𝐹 ∧ (𝐴s𝑛) ∈ 𝐹) → (𝐴s(𝑛 +s 1s )) ∈ 𝐹)
28273exp 1119 . . . 4 (𝑛 ∈ ℕ0s → (𝐴𝐹 → ((𝐴s𝑛) ∈ 𝐹 → (𝐴s(𝑛 +s 1s )) ∈ 𝐹)))
2928a2d 29 . . 3 (𝑛 ∈ ℕ0s → ((𝐴𝐹 → (𝐴s𝑛) ∈ 𝐹) → (𝐴𝐹 → (𝐴s(𝑛 +s 1s )) ∈ 𝐹)))
303, 6, 9, 12, 18, 29n0sind 28266 . 2 (𝑁 ∈ ℕ0s → (𝐴𝐹 → (𝐴s𝑁) ∈ 𝐹))
3130impcom 407 1 ((𝐴𝐹𝑁 ∈ ℕ0s) → (𝐴s𝑁) ∈ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3911  (class class class)co 7369   No csur 27585   0s c0s 27772   1s c1s 27773   +s cadds 27907   ·s cmuls 28050  0scnn0s 28247  scexps 28340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-ot 4594  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-nadd 8607  df-no 27588  df-slt 27589  df-bday 27590  df-sle 27691  df-sslt 27728  df-scut 27730  df-0s 27774  df-1s 27775  df-made 27793  df-old 27794  df-left 27796  df-right 27797  df-norec 27886  df-norec2 27897  df-adds 27908  df-negs 27968  df-subs 27969  df-muls 28051  df-seqs 28219  df-n0s 28249  df-nns 28250  df-zs 28308  df-exps 28341
This theorem is referenced by:  expscl  28359  n0expscl  28360  nnexpscl  28361  zexpscl  28362
  Copyright terms: Public domain W3C validator