| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > expscllem | Structured version Visualization version GIF version | ||
| Description: Lemma for proving non-negative surreal integer exponentiation closure. (Contributed by Scott Fenton, 7-Nov-2025.) |
| Ref | Expression |
|---|---|
| expscllem.1 | ⊢ 𝐹 ⊆ No |
| expscllem.2 | ⊢ ((𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹) → (𝑥 ·s 𝑦) ∈ 𝐹) |
| expscllem.3 | ⊢ 1s ∈ 𝐹 |
| Ref | Expression |
|---|---|
| expscllem | ⊢ ((𝐴 ∈ 𝐹 ∧ 𝑁 ∈ ℕ0s) → (𝐴↑s𝑁) ∈ 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7413 | . . . . 5 ⊢ (𝑚 = 0s → (𝐴↑s𝑚) = (𝐴↑s 0s )) | |
| 2 | 1 | eleq1d 2819 | . . . 4 ⊢ (𝑚 = 0s → ((𝐴↑s𝑚) ∈ 𝐹 ↔ (𝐴↑s 0s ) ∈ 𝐹)) |
| 3 | 2 | imbi2d 340 | . . 3 ⊢ (𝑚 = 0s → ((𝐴 ∈ 𝐹 → (𝐴↑s𝑚) ∈ 𝐹) ↔ (𝐴 ∈ 𝐹 → (𝐴↑s 0s ) ∈ 𝐹))) |
| 4 | oveq2 7413 | . . . . 5 ⊢ (𝑚 = 𝑛 → (𝐴↑s𝑚) = (𝐴↑s𝑛)) | |
| 5 | 4 | eleq1d 2819 | . . . 4 ⊢ (𝑚 = 𝑛 → ((𝐴↑s𝑚) ∈ 𝐹 ↔ (𝐴↑s𝑛) ∈ 𝐹)) |
| 6 | 5 | imbi2d 340 | . . 3 ⊢ (𝑚 = 𝑛 → ((𝐴 ∈ 𝐹 → (𝐴↑s𝑚) ∈ 𝐹) ↔ (𝐴 ∈ 𝐹 → (𝐴↑s𝑛) ∈ 𝐹))) |
| 7 | oveq2 7413 | . . . . 5 ⊢ (𝑚 = (𝑛 +s 1s ) → (𝐴↑s𝑚) = (𝐴↑s(𝑛 +s 1s ))) | |
| 8 | 7 | eleq1d 2819 | . . . 4 ⊢ (𝑚 = (𝑛 +s 1s ) → ((𝐴↑s𝑚) ∈ 𝐹 ↔ (𝐴↑s(𝑛 +s 1s )) ∈ 𝐹)) |
| 9 | 8 | imbi2d 340 | . . 3 ⊢ (𝑚 = (𝑛 +s 1s ) → ((𝐴 ∈ 𝐹 → (𝐴↑s𝑚) ∈ 𝐹) ↔ (𝐴 ∈ 𝐹 → (𝐴↑s(𝑛 +s 1s )) ∈ 𝐹))) |
| 10 | oveq2 7413 | . . . . 5 ⊢ (𝑚 = 𝑁 → (𝐴↑s𝑚) = (𝐴↑s𝑁)) | |
| 11 | 10 | eleq1d 2819 | . . . 4 ⊢ (𝑚 = 𝑁 → ((𝐴↑s𝑚) ∈ 𝐹 ↔ (𝐴↑s𝑁) ∈ 𝐹)) |
| 12 | 11 | imbi2d 340 | . . 3 ⊢ (𝑚 = 𝑁 → ((𝐴 ∈ 𝐹 → (𝐴↑s𝑚) ∈ 𝐹) ↔ (𝐴 ∈ 𝐹 → (𝐴↑s𝑁) ∈ 𝐹))) |
| 13 | expscllem.1 | . . . . . 6 ⊢ 𝐹 ⊆ No | |
| 14 | 13 | sseli 3954 | . . . . 5 ⊢ (𝐴 ∈ 𝐹 → 𝐴 ∈ No ) |
| 15 | exps0 28365 | . . . . 5 ⊢ (𝐴 ∈ No → (𝐴↑s 0s ) = 1s ) | |
| 16 | 14, 15 | syl 17 | . . . 4 ⊢ (𝐴 ∈ 𝐹 → (𝐴↑s 0s ) = 1s ) |
| 17 | expscllem.3 | . . . 4 ⊢ 1s ∈ 𝐹 | |
| 18 | 16, 17 | eqeltrdi 2842 | . . 3 ⊢ (𝐴 ∈ 𝐹 → (𝐴↑s 0s ) ∈ 𝐹) |
| 19 | 14 | 3ad2ant2 1134 | . . . . . . 7 ⊢ ((𝑛 ∈ ℕ0s ∧ 𝐴 ∈ 𝐹 ∧ (𝐴↑s𝑛) ∈ 𝐹) → 𝐴 ∈ No ) |
| 20 | simp1 1136 | . . . . . . 7 ⊢ ((𝑛 ∈ ℕ0s ∧ 𝐴 ∈ 𝐹 ∧ (𝐴↑s𝑛) ∈ 𝐹) → 𝑛 ∈ ℕ0s) | |
| 21 | expsp1 28367 | . . . . . . 7 ⊢ ((𝐴 ∈ No ∧ 𝑛 ∈ ℕ0s) → (𝐴↑s(𝑛 +s 1s )) = ((𝐴↑s𝑛) ·s 𝐴)) | |
| 22 | 19, 20, 21 | syl2anc 584 | . . . . . 6 ⊢ ((𝑛 ∈ ℕ0s ∧ 𝐴 ∈ 𝐹 ∧ (𝐴↑s𝑛) ∈ 𝐹) → (𝐴↑s(𝑛 +s 1s )) = ((𝐴↑s𝑛) ·s 𝐴)) |
| 23 | expscllem.2 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹) → (𝑥 ·s 𝑦) ∈ 𝐹) | |
| 24 | 23 | caovcl 7601 | . . . . . . . 8 ⊢ (((𝐴↑s𝑛) ∈ 𝐹 ∧ 𝐴 ∈ 𝐹) → ((𝐴↑s𝑛) ·s 𝐴) ∈ 𝐹) |
| 25 | 24 | ancoms 458 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝐹 ∧ (𝐴↑s𝑛) ∈ 𝐹) → ((𝐴↑s𝑛) ·s 𝐴) ∈ 𝐹) |
| 26 | 25 | 3adant1 1130 | . . . . . 6 ⊢ ((𝑛 ∈ ℕ0s ∧ 𝐴 ∈ 𝐹 ∧ (𝐴↑s𝑛) ∈ 𝐹) → ((𝐴↑s𝑛) ·s 𝐴) ∈ 𝐹) |
| 27 | 22, 26 | eqeltrd 2834 | . . . . 5 ⊢ ((𝑛 ∈ ℕ0s ∧ 𝐴 ∈ 𝐹 ∧ (𝐴↑s𝑛) ∈ 𝐹) → (𝐴↑s(𝑛 +s 1s )) ∈ 𝐹) |
| 28 | 27 | 3exp 1119 | . . . 4 ⊢ (𝑛 ∈ ℕ0s → (𝐴 ∈ 𝐹 → ((𝐴↑s𝑛) ∈ 𝐹 → (𝐴↑s(𝑛 +s 1s )) ∈ 𝐹))) |
| 29 | 28 | a2d 29 | . . 3 ⊢ (𝑛 ∈ ℕ0s → ((𝐴 ∈ 𝐹 → (𝐴↑s𝑛) ∈ 𝐹) → (𝐴 ∈ 𝐹 → (𝐴↑s(𝑛 +s 1s )) ∈ 𝐹))) |
| 30 | 3, 6, 9, 12, 18, 29 | n0sind 28277 | . 2 ⊢ (𝑁 ∈ ℕ0s → (𝐴 ∈ 𝐹 → (𝐴↑s𝑁) ∈ 𝐹)) |
| 31 | 30 | impcom 407 | 1 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝑁 ∈ ℕ0s) → (𝐴↑s𝑁) ∈ 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 (class class class)co 7405 No csur 27603 0s c0s 27786 1s c1s 27787 +s cadds 27918 ·s cmuls 28061 ℕ0scnn0s 28258 ↑scexps 28350 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-ot 4610 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-nadd 8678 df-no 27606 df-slt 27607 df-bday 27608 df-sle 27709 df-sslt 27745 df-scut 27747 df-0s 27788 df-1s 27789 df-made 27807 df-old 27808 df-left 27810 df-right 27811 df-norec 27897 df-norec2 27908 df-adds 27919 df-negs 27979 df-subs 27980 df-muls 28062 df-seqs 28230 df-n0s 28260 df-nns 28261 df-zs 28319 df-exps 28351 |
| This theorem is referenced by: expscl 28369 n0expscl 28370 nnexpscl 28371 |
| Copyright terms: Public domain | W3C validator |