| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > expscllem | Structured version Visualization version GIF version | ||
| Description: Lemma for proving non-negative surreal integer exponentiation closure. (Contributed by Scott Fenton, 7-Nov-2025.) |
| Ref | Expression |
|---|---|
| expscllem.1 | ⊢ 𝐹 ⊆ No |
| expscllem.2 | ⊢ ((𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹) → (𝑥 ·s 𝑦) ∈ 𝐹) |
| expscllem.3 | ⊢ 1s ∈ 𝐹 |
| Ref | Expression |
|---|---|
| expscllem | ⊢ ((𝐴 ∈ 𝐹 ∧ 𝑁 ∈ ℕ0s) → (𝐴↑s𝑁) ∈ 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7357 | . . . . 5 ⊢ (𝑚 = 0s → (𝐴↑s𝑚) = (𝐴↑s 0s )) | |
| 2 | 1 | eleq1d 2813 | . . . 4 ⊢ (𝑚 = 0s → ((𝐴↑s𝑚) ∈ 𝐹 ↔ (𝐴↑s 0s ) ∈ 𝐹)) |
| 3 | 2 | imbi2d 340 | . . 3 ⊢ (𝑚 = 0s → ((𝐴 ∈ 𝐹 → (𝐴↑s𝑚) ∈ 𝐹) ↔ (𝐴 ∈ 𝐹 → (𝐴↑s 0s ) ∈ 𝐹))) |
| 4 | oveq2 7357 | . . . . 5 ⊢ (𝑚 = 𝑛 → (𝐴↑s𝑚) = (𝐴↑s𝑛)) | |
| 5 | 4 | eleq1d 2813 | . . . 4 ⊢ (𝑚 = 𝑛 → ((𝐴↑s𝑚) ∈ 𝐹 ↔ (𝐴↑s𝑛) ∈ 𝐹)) |
| 6 | 5 | imbi2d 340 | . . 3 ⊢ (𝑚 = 𝑛 → ((𝐴 ∈ 𝐹 → (𝐴↑s𝑚) ∈ 𝐹) ↔ (𝐴 ∈ 𝐹 → (𝐴↑s𝑛) ∈ 𝐹))) |
| 7 | oveq2 7357 | . . . . 5 ⊢ (𝑚 = (𝑛 +s 1s ) → (𝐴↑s𝑚) = (𝐴↑s(𝑛 +s 1s ))) | |
| 8 | 7 | eleq1d 2813 | . . . 4 ⊢ (𝑚 = (𝑛 +s 1s ) → ((𝐴↑s𝑚) ∈ 𝐹 ↔ (𝐴↑s(𝑛 +s 1s )) ∈ 𝐹)) |
| 9 | 8 | imbi2d 340 | . . 3 ⊢ (𝑚 = (𝑛 +s 1s ) → ((𝐴 ∈ 𝐹 → (𝐴↑s𝑚) ∈ 𝐹) ↔ (𝐴 ∈ 𝐹 → (𝐴↑s(𝑛 +s 1s )) ∈ 𝐹))) |
| 10 | oveq2 7357 | . . . . 5 ⊢ (𝑚 = 𝑁 → (𝐴↑s𝑚) = (𝐴↑s𝑁)) | |
| 11 | 10 | eleq1d 2813 | . . . 4 ⊢ (𝑚 = 𝑁 → ((𝐴↑s𝑚) ∈ 𝐹 ↔ (𝐴↑s𝑁) ∈ 𝐹)) |
| 12 | 11 | imbi2d 340 | . . 3 ⊢ (𝑚 = 𝑁 → ((𝐴 ∈ 𝐹 → (𝐴↑s𝑚) ∈ 𝐹) ↔ (𝐴 ∈ 𝐹 → (𝐴↑s𝑁) ∈ 𝐹))) |
| 13 | expscllem.1 | . . . . . 6 ⊢ 𝐹 ⊆ No | |
| 14 | 13 | sseli 3931 | . . . . 5 ⊢ (𝐴 ∈ 𝐹 → 𝐴 ∈ No ) |
| 15 | exps0 28321 | . . . . 5 ⊢ (𝐴 ∈ No → (𝐴↑s 0s ) = 1s ) | |
| 16 | 14, 15 | syl 17 | . . . 4 ⊢ (𝐴 ∈ 𝐹 → (𝐴↑s 0s ) = 1s ) |
| 17 | expscllem.3 | . . . 4 ⊢ 1s ∈ 𝐹 | |
| 18 | 16, 17 | eqeltrdi 2836 | . . 3 ⊢ (𝐴 ∈ 𝐹 → (𝐴↑s 0s ) ∈ 𝐹) |
| 19 | 14 | 3ad2ant2 1134 | . . . . . . 7 ⊢ ((𝑛 ∈ ℕ0s ∧ 𝐴 ∈ 𝐹 ∧ (𝐴↑s𝑛) ∈ 𝐹) → 𝐴 ∈ No ) |
| 20 | simp1 1136 | . . . . . . 7 ⊢ ((𝑛 ∈ ℕ0s ∧ 𝐴 ∈ 𝐹 ∧ (𝐴↑s𝑛) ∈ 𝐹) → 𝑛 ∈ ℕ0s) | |
| 21 | expsp1 28323 | . . . . . . 7 ⊢ ((𝐴 ∈ No ∧ 𝑛 ∈ ℕ0s) → (𝐴↑s(𝑛 +s 1s )) = ((𝐴↑s𝑛) ·s 𝐴)) | |
| 22 | 19, 20, 21 | syl2anc 584 | . . . . . 6 ⊢ ((𝑛 ∈ ℕ0s ∧ 𝐴 ∈ 𝐹 ∧ (𝐴↑s𝑛) ∈ 𝐹) → (𝐴↑s(𝑛 +s 1s )) = ((𝐴↑s𝑛) ·s 𝐴)) |
| 23 | expscllem.2 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹) → (𝑥 ·s 𝑦) ∈ 𝐹) | |
| 24 | 23 | caovcl 7543 | . . . . . . . 8 ⊢ (((𝐴↑s𝑛) ∈ 𝐹 ∧ 𝐴 ∈ 𝐹) → ((𝐴↑s𝑛) ·s 𝐴) ∈ 𝐹) |
| 25 | 24 | ancoms 458 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝐹 ∧ (𝐴↑s𝑛) ∈ 𝐹) → ((𝐴↑s𝑛) ·s 𝐴) ∈ 𝐹) |
| 26 | 25 | 3adant1 1130 | . . . . . 6 ⊢ ((𝑛 ∈ ℕ0s ∧ 𝐴 ∈ 𝐹 ∧ (𝐴↑s𝑛) ∈ 𝐹) → ((𝐴↑s𝑛) ·s 𝐴) ∈ 𝐹) |
| 27 | 22, 26 | eqeltrd 2828 | . . . . 5 ⊢ ((𝑛 ∈ ℕ0s ∧ 𝐴 ∈ 𝐹 ∧ (𝐴↑s𝑛) ∈ 𝐹) → (𝐴↑s(𝑛 +s 1s )) ∈ 𝐹) |
| 28 | 27 | 3exp 1119 | . . . 4 ⊢ (𝑛 ∈ ℕ0s → (𝐴 ∈ 𝐹 → ((𝐴↑s𝑛) ∈ 𝐹 → (𝐴↑s(𝑛 +s 1s )) ∈ 𝐹))) |
| 29 | 28 | a2d 29 | . . 3 ⊢ (𝑛 ∈ ℕ0s → ((𝐴 ∈ 𝐹 → (𝐴↑s𝑛) ∈ 𝐹) → (𝐴 ∈ 𝐹 → (𝐴↑s(𝑛 +s 1s )) ∈ 𝐹))) |
| 30 | 3, 6, 9, 12, 18, 29 | n0sind 28232 | . 2 ⊢ (𝑁 ∈ ℕ0s → (𝐴 ∈ 𝐹 → (𝐴↑s𝑁) ∈ 𝐹)) |
| 31 | 30 | impcom 407 | 1 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝑁 ∈ ℕ0s) → (𝐴↑s𝑁) ∈ 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3903 (class class class)co 7349 No csur 27549 0s c0s 27737 1s c1s 27738 +s cadds 27873 ·s cmuls 28016 ℕ0scnn0s 28213 ↑scexps 28306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-ot 4586 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-oadd 8392 df-nadd 8584 df-no 27552 df-slt 27553 df-bday 27554 df-sle 27655 df-sslt 27692 df-scut 27694 df-0s 27739 df-1s 27740 df-made 27759 df-old 27760 df-left 27762 df-right 27763 df-norec 27852 df-norec2 27863 df-adds 27874 df-negs 27934 df-subs 27935 df-muls 28017 df-seqs 28185 df-n0s 28215 df-nns 28216 df-zs 28274 df-exps 28307 |
| This theorem is referenced by: expscl 28325 n0expscl 28326 nnexpscl 28327 zexpscl 28328 |
| Copyright terms: Public domain | W3C validator |