MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expscllem Structured version   Visualization version   GIF version

Theorem expscllem 28324
Description: Lemma for proving non-negative surreal integer exponentiation closure. (Contributed by Scott Fenton, 7-Nov-2025.)
Hypotheses
Ref Expression
expscllem.1 𝐹 No
expscllem.2 ((𝑥𝐹𝑦𝐹) → (𝑥 ·s 𝑦) ∈ 𝐹)
expscllem.3 1s𝐹
Assertion
Ref Expression
expscllem ((𝐴𝐹𝑁 ∈ ℕ0s) → (𝐴s𝑁) ∈ 𝐹)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑁,𝑦   𝑥,𝐹,𝑦

Proof of Theorem expscllem
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7357 . . . . 5 (𝑚 = 0s → (𝐴s𝑚) = (𝐴s 0s ))
21eleq1d 2813 . . . 4 (𝑚 = 0s → ((𝐴s𝑚) ∈ 𝐹 ↔ (𝐴s 0s ) ∈ 𝐹))
32imbi2d 340 . . 3 (𝑚 = 0s → ((𝐴𝐹 → (𝐴s𝑚) ∈ 𝐹) ↔ (𝐴𝐹 → (𝐴s 0s ) ∈ 𝐹)))
4 oveq2 7357 . . . . 5 (𝑚 = 𝑛 → (𝐴s𝑚) = (𝐴s𝑛))
54eleq1d 2813 . . . 4 (𝑚 = 𝑛 → ((𝐴s𝑚) ∈ 𝐹 ↔ (𝐴s𝑛) ∈ 𝐹))
65imbi2d 340 . . 3 (𝑚 = 𝑛 → ((𝐴𝐹 → (𝐴s𝑚) ∈ 𝐹) ↔ (𝐴𝐹 → (𝐴s𝑛) ∈ 𝐹)))
7 oveq2 7357 . . . . 5 (𝑚 = (𝑛 +s 1s ) → (𝐴s𝑚) = (𝐴s(𝑛 +s 1s )))
87eleq1d 2813 . . . 4 (𝑚 = (𝑛 +s 1s ) → ((𝐴s𝑚) ∈ 𝐹 ↔ (𝐴s(𝑛 +s 1s )) ∈ 𝐹))
98imbi2d 340 . . 3 (𝑚 = (𝑛 +s 1s ) → ((𝐴𝐹 → (𝐴s𝑚) ∈ 𝐹) ↔ (𝐴𝐹 → (𝐴s(𝑛 +s 1s )) ∈ 𝐹)))
10 oveq2 7357 . . . . 5 (𝑚 = 𝑁 → (𝐴s𝑚) = (𝐴s𝑁))
1110eleq1d 2813 . . . 4 (𝑚 = 𝑁 → ((𝐴s𝑚) ∈ 𝐹 ↔ (𝐴s𝑁) ∈ 𝐹))
1211imbi2d 340 . . 3 (𝑚 = 𝑁 → ((𝐴𝐹 → (𝐴s𝑚) ∈ 𝐹) ↔ (𝐴𝐹 → (𝐴s𝑁) ∈ 𝐹)))
13 expscllem.1 . . . . . 6 𝐹 No
1413sseli 3931 . . . . 5 (𝐴𝐹𝐴 No )
15 exps0 28321 . . . . 5 (𝐴 No → (𝐴s 0s ) = 1s )
1614, 15syl 17 . . . 4 (𝐴𝐹 → (𝐴s 0s ) = 1s )
17 expscllem.3 . . . 4 1s𝐹
1816, 17eqeltrdi 2836 . . 3 (𝐴𝐹 → (𝐴s 0s ) ∈ 𝐹)
19143ad2ant2 1134 . . . . . . 7 ((𝑛 ∈ ℕ0s𝐴𝐹 ∧ (𝐴s𝑛) ∈ 𝐹) → 𝐴 No )
20 simp1 1136 . . . . . . 7 ((𝑛 ∈ ℕ0s𝐴𝐹 ∧ (𝐴s𝑛) ∈ 𝐹) → 𝑛 ∈ ℕ0s)
21 expsp1 28323 . . . . . . 7 ((𝐴 No 𝑛 ∈ ℕ0s) → (𝐴s(𝑛 +s 1s )) = ((𝐴s𝑛) ·s 𝐴))
2219, 20, 21syl2anc 584 . . . . . 6 ((𝑛 ∈ ℕ0s𝐴𝐹 ∧ (𝐴s𝑛) ∈ 𝐹) → (𝐴s(𝑛 +s 1s )) = ((𝐴s𝑛) ·s 𝐴))
23 expscllem.2 . . . . . . . . 9 ((𝑥𝐹𝑦𝐹) → (𝑥 ·s 𝑦) ∈ 𝐹)
2423caovcl 7543 . . . . . . . 8 (((𝐴s𝑛) ∈ 𝐹𝐴𝐹) → ((𝐴s𝑛) ·s 𝐴) ∈ 𝐹)
2524ancoms 458 . . . . . . 7 ((𝐴𝐹 ∧ (𝐴s𝑛) ∈ 𝐹) → ((𝐴s𝑛) ·s 𝐴) ∈ 𝐹)
26253adant1 1130 . . . . . 6 ((𝑛 ∈ ℕ0s𝐴𝐹 ∧ (𝐴s𝑛) ∈ 𝐹) → ((𝐴s𝑛) ·s 𝐴) ∈ 𝐹)
2722, 26eqeltrd 2828 . . . . 5 ((𝑛 ∈ ℕ0s𝐴𝐹 ∧ (𝐴s𝑛) ∈ 𝐹) → (𝐴s(𝑛 +s 1s )) ∈ 𝐹)
28273exp 1119 . . . 4 (𝑛 ∈ ℕ0s → (𝐴𝐹 → ((𝐴s𝑛) ∈ 𝐹 → (𝐴s(𝑛 +s 1s )) ∈ 𝐹)))
2928a2d 29 . . 3 (𝑛 ∈ ℕ0s → ((𝐴𝐹 → (𝐴s𝑛) ∈ 𝐹) → (𝐴𝐹 → (𝐴s(𝑛 +s 1s )) ∈ 𝐹)))
303, 6, 9, 12, 18, 29n0sind 28232 . 2 (𝑁 ∈ ℕ0s → (𝐴𝐹 → (𝐴s𝑁) ∈ 𝐹))
3130impcom 407 1 ((𝐴𝐹𝑁 ∈ ℕ0s) → (𝐴s𝑁) ∈ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3903  (class class class)co 7349   No csur 27549   0s c0s 27737   1s c1s 27738   +s cadds 27873   ·s cmuls 28016  0scnn0s 28213  scexps 28306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-nadd 8584  df-no 27552  df-slt 27553  df-bday 27554  df-sle 27655  df-sslt 27692  df-scut 27694  df-0s 27739  df-1s 27740  df-made 27759  df-old 27760  df-left 27762  df-right 27763  df-norec 27852  df-norec2 27863  df-adds 27874  df-negs 27934  df-subs 27935  df-muls 28017  df-seqs 28185  df-n0s 28215  df-nns 28216  df-zs 28274  df-exps 28307
This theorem is referenced by:  expscl  28325  n0expscl  28326  nnexpscl  28327  zexpscl  28328
  Copyright terms: Public domain W3C validator