MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expscllem Structured version   Visualization version   GIF version

Theorem expscllem 28368
Description: Lemma for proving non-negative surreal integer exponentiation closure. (Contributed by Scott Fenton, 7-Nov-2025.)
Hypotheses
Ref Expression
expscllem.1 𝐹 No
expscllem.2 ((𝑥𝐹𝑦𝐹) → (𝑥 ·s 𝑦) ∈ 𝐹)
expscllem.3 1s𝐹
Assertion
Ref Expression
expscllem ((𝐴𝐹𝑁 ∈ ℕ0s) → (𝐴s𝑁) ∈ 𝐹)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑁,𝑦   𝑥,𝐹,𝑦

Proof of Theorem expscllem
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7413 . . . . 5 (𝑚 = 0s → (𝐴s𝑚) = (𝐴s 0s ))
21eleq1d 2819 . . . 4 (𝑚 = 0s → ((𝐴s𝑚) ∈ 𝐹 ↔ (𝐴s 0s ) ∈ 𝐹))
32imbi2d 340 . . 3 (𝑚 = 0s → ((𝐴𝐹 → (𝐴s𝑚) ∈ 𝐹) ↔ (𝐴𝐹 → (𝐴s 0s ) ∈ 𝐹)))
4 oveq2 7413 . . . . 5 (𝑚 = 𝑛 → (𝐴s𝑚) = (𝐴s𝑛))
54eleq1d 2819 . . . 4 (𝑚 = 𝑛 → ((𝐴s𝑚) ∈ 𝐹 ↔ (𝐴s𝑛) ∈ 𝐹))
65imbi2d 340 . . 3 (𝑚 = 𝑛 → ((𝐴𝐹 → (𝐴s𝑚) ∈ 𝐹) ↔ (𝐴𝐹 → (𝐴s𝑛) ∈ 𝐹)))
7 oveq2 7413 . . . . 5 (𝑚 = (𝑛 +s 1s ) → (𝐴s𝑚) = (𝐴s(𝑛 +s 1s )))
87eleq1d 2819 . . . 4 (𝑚 = (𝑛 +s 1s ) → ((𝐴s𝑚) ∈ 𝐹 ↔ (𝐴s(𝑛 +s 1s )) ∈ 𝐹))
98imbi2d 340 . . 3 (𝑚 = (𝑛 +s 1s ) → ((𝐴𝐹 → (𝐴s𝑚) ∈ 𝐹) ↔ (𝐴𝐹 → (𝐴s(𝑛 +s 1s )) ∈ 𝐹)))
10 oveq2 7413 . . . . 5 (𝑚 = 𝑁 → (𝐴s𝑚) = (𝐴s𝑁))
1110eleq1d 2819 . . . 4 (𝑚 = 𝑁 → ((𝐴s𝑚) ∈ 𝐹 ↔ (𝐴s𝑁) ∈ 𝐹))
1211imbi2d 340 . . 3 (𝑚 = 𝑁 → ((𝐴𝐹 → (𝐴s𝑚) ∈ 𝐹) ↔ (𝐴𝐹 → (𝐴s𝑁) ∈ 𝐹)))
13 expscllem.1 . . . . . 6 𝐹 No
1413sseli 3954 . . . . 5 (𝐴𝐹𝐴 No )
15 exps0 28365 . . . . 5 (𝐴 No → (𝐴s 0s ) = 1s )
1614, 15syl 17 . . . 4 (𝐴𝐹 → (𝐴s 0s ) = 1s )
17 expscllem.3 . . . 4 1s𝐹
1816, 17eqeltrdi 2842 . . 3 (𝐴𝐹 → (𝐴s 0s ) ∈ 𝐹)
19143ad2ant2 1134 . . . . . . 7 ((𝑛 ∈ ℕ0s𝐴𝐹 ∧ (𝐴s𝑛) ∈ 𝐹) → 𝐴 No )
20 simp1 1136 . . . . . . 7 ((𝑛 ∈ ℕ0s𝐴𝐹 ∧ (𝐴s𝑛) ∈ 𝐹) → 𝑛 ∈ ℕ0s)
21 expsp1 28367 . . . . . . 7 ((𝐴 No 𝑛 ∈ ℕ0s) → (𝐴s(𝑛 +s 1s )) = ((𝐴s𝑛) ·s 𝐴))
2219, 20, 21syl2anc 584 . . . . . 6 ((𝑛 ∈ ℕ0s𝐴𝐹 ∧ (𝐴s𝑛) ∈ 𝐹) → (𝐴s(𝑛 +s 1s )) = ((𝐴s𝑛) ·s 𝐴))
23 expscllem.2 . . . . . . . . 9 ((𝑥𝐹𝑦𝐹) → (𝑥 ·s 𝑦) ∈ 𝐹)
2423caovcl 7601 . . . . . . . 8 (((𝐴s𝑛) ∈ 𝐹𝐴𝐹) → ((𝐴s𝑛) ·s 𝐴) ∈ 𝐹)
2524ancoms 458 . . . . . . 7 ((𝐴𝐹 ∧ (𝐴s𝑛) ∈ 𝐹) → ((𝐴s𝑛) ·s 𝐴) ∈ 𝐹)
26253adant1 1130 . . . . . 6 ((𝑛 ∈ ℕ0s𝐴𝐹 ∧ (𝐴s𝑛) ∈ 𝐹) → ((𝐴s𝑛) ·s 𝐴) ∈ 𝐹)
2722, 26eqeltrd 2834 . . . . 5 ((𝑛 ∈ ℕ0s𝐴𝐹 ∧ (𝐴s𝑛) ∈ 𝐹) → (𝐴s(𝑛 +s 1s )) ∈ 𝐹)
28273exp 1119 . . . 4 (𝑛 ∈ ℕ0s → (𝐴𝐹 → ((𝐴s𝑛) ∈ 𝐹 → (𝐴s(𝑛 +s 1s )) ∈ 𝐹)))
2928a2d 29 . . 3 (𝑛 ∈ ℕ0s → ((𝐴𝐹 → (𝐴s𝑛) ∈ 𝐹) → (𝐴𝐹 → (𝐴s(𝑛 +s 1s )) ∈ 𝐹)))
303, 6, 9, 12, 18, 29n0sind 28277 . 2 (𝑁 ∈ ℕ0s → (𝐴𝐹 → (𝐴s𝑁) ∈ 𝐹))
3130impcom 407 1 ((𝐴𝐹𝑁 ∈ ℕ0s) → (𝐴s𝑁) ∈ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wss 3926  (class class class)co 7405   No csur 27603   0s c0s 27786   1s c1s 27787   +s cadds 27918   ·s cmuls 28061  0scnn0s 28258  scexps 28350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-ot 4610  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-nadd 8678  df-no 27606  df-slt 27607  df-bday 27608  df-sle 27709  df-sslt 27745  df-scut 27747  df-0s 27788  df-1s 27789  df-made 27807  df-old 27808  df-left 27810  df-right 27811  df-norec 27897  df-norec2 27908  df-adds 27919  df-negs 27979  df-subs 27980  df-muls 28062  df-seqs 28230  df-n0s 28260  df-nns 28261  df-zs 28319  df-exps 28351
This theorem is referenced by:  expscl  28369  n0expscl  28370  nnexpscl  28371
  Copyright terms: Public domain W3C validator