| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > expscllem | Structured version Visualization version GIF version | ||
| Description: Lemma for proving non-negative surreal integer exponentiation closure. (Contributed by Scott Fenton, 7-Nov-2025.) |
| Ref | Expression |
|---|---|
| expscllem.1 | ⊢ 𝐹 ⊆ No |
| expscllem.2 | ⊢ ((𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹) → (𝑥 ·s 𝑦) ∈ 𝐹) |
| expscllem.3 | ⊢ 1s ∈ 𝐹 |
| Ref | Expression |
|---|---|
| expscllem | ⊢ ((𝐴 ∈ 𝐹 ∧ 𝑁 ∈ ℕ0s) → (𝐴↑s𝑁) ∈ 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7398 | . . . . 5 ⊢ (𝑚 = 0s → (𝐴↑s𝑚) = (𝐴↑s 0s )) | |
| 2 | 1 | eleq1d 2814 | . . . 4 ⊢ (𝑚 = 0s → ((𝐴↑s𝑚) ∈ 𝐹 ↔ (𝐴↑s 0s ) ∈ 𝐹)) |
| 3 | 2 | imbi2d 340 | . . 3 ⊢ (𝑚 = 0s → ((𝐴 ∈ 𝐹 → (𝐴↑s𝑚) ∈ 𝐹) ↔ (𝐴 ∈ 𝐹 → (𝐴↑s 0s ) ∈ 𝐹))) |
| 4 | oveq2 7398 | . . . . 5 ⊢ (𝑚 = 𝑛 → (𝐴↑s𝑚) = (𝐴↑s𝑛)) | |
| 5 | 4 | eleq1d 2814 | . . . 4 ⊢ (𝑚 = 𝑛 → ((𝐴↑s𝑚) ∈ 𝐹 ↔ (𝐴↑s𝑛) ∈ 𝐹)) |
| 6 | 5 | imbi2d 340 | . . 3 ⊢ (𝑚 = 𝑛 → ((𝐴 ∈ 𝐹 → (𝐴↑s𝑚) ∈ 𝐹) ↔ (𝐴 ∈ 𝐹 → (𝐴↑s𝑛) ∈ 𝐹))) |
| 7 | oveq2 7398 | . . . . 5 ⊢ (𝑚 = (𝑛 +s 1s ) → (𝐴↑s𝑚) = (𝐴↑s(𝑛 +s 1s ))) | |
| 8 | 7 | eleq1d 2814 | . . . 4 ⊢ (𝑚 = (𝑛 +s 1s ) → ((𝐴↑s𝑚) ∈ 𝐹 ↔ (𝐴↑s(𝑛 +s 1s )) ∈ 𝐹)) |
| 9 | 8 | imbi2d 340 | . . 3 ⊢ (𝑚 = (𝑛 +s 1s ) → ((𝐴 ∈ 𝐹 → (𝐴↑s𝑚) ∈ 𝐹) ↔ (𝐴 ∈ 𝐹 → (𝐴↑s(𝑛 +s 1s )) ∈ 𝐹))) |
| 10 | oveq2 7398 | . . . . 5 ⊢ (𝑚 = 𝑁 → (𝐴↑s𝑚) = (𝐴↑s𝑁)) | |
| 11 | 10 | eleq1d 2814 | . . . 4 ⊢ (𝑚 = 𝑁 → ((𝐴↑s𝑚) ∈ 𝐹 ↔ (𝐴↑s𝑁) ∈ 𝐹)) |
| 12 | 11 | imbi2d 340 | . . 3 ⊢ (𝑚 = 𝑁 → ((𝐴 ∈ 𝐹 → (𝐴↑s𝑚) ∈ 𝐹) ↔ (𝐴 ∈ 𝐹 → (𝐴↑s𝑁) ∈ 𝐹))) |
| 13 | expscllem.1 | . . . . . 6 ⊢ 𝐹 ⊆ No | |
| 14 | 13 | sseli 3945 | . . . . 5 ⊢ (𝐴 ∈ 𝐹 → 𝐴 ∈ No ) |
| 15 | exps0 28320 | . . . . 5 ⊢ (𝐴 ∈ No → (𝐴↑s 0s ) = 1s ) | |
| 16 | 14, 15 | syl 17 | . . . 4 ⊢ (𝐴 ∈ 𝐹 → (𝐴↑s 0s ) = 1s ) |
| 17 | expscllem.3 | . . . 4 ⊢ 1s ∈ 𝐹 | |
| 18 | 16, 17 | eqeltrdi 2837 | . . 3 ⊢ (𝐴 ∈ 𝐹 → (𝐴↑s 0s ) ∈ 𝐹) |
| 19 | 14 | 3ad2ant2 1134 | . . . . . . 7 ⊢ ((𝑛 ∈ ℕ0s ∧ 𝐴 ∈ 𝐹 ∧ (𝐴↑s𝑛) ∈ 𝐹) → 𝐴 ∈ No ) |
| 20 | simp1 1136 | . . . . . . 7 ⊢ ((𝑛 ∈ ℕ0s ∧ 𝐴 ∈ 𝐹 ∧ (𝐴↑s𝑛) ∈ 𝐹) → 𝑛 ∈ ℕ0s) | |
| 21 | expsp1 28322 | . . . . . . 7 ⊢ ((𝐴 ∈ No ∧ 𝑛 ∈ ℕ0s) → (𝐴↑s(𝑛 +s 1s )) = ((𝐴↑s𝑛) ·s 𝐴)) | |
| 22 | 19, 20, 21 | syl2anc 584 | . . . . . 6 ⊢ ((𝑛 ∈ ℕ0s ∧ 𝐴 ∈ 𝐹 ∧ (𝐴↑s𝑛) ∈ 𝐹) → (𝐴↑s(𝑛 +s 1s )) = ((𝐴↑s𝑛) ·s 𝐴)) |
| 23 | expscllem.2 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹) → (𝑥 ·s 𝑦) ∈ 𝐹) | |
| 24 | 23 | caovcl 7586 | . . . . . . . 8 ⊢ (((𝐴↑s𝑛) ∈ 𝐹 ∧ 𝐴 ∈ 𝐹) → ((𝐴↑s𝑛) ·s 𝐴) ∈ 𝐹) |
| 25 | 24 | ancoms 458 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝐹 ∧ (𝐴↑s𝑛) ∈ 𝐹) → ((𝐴↑s𝑛) ·s 𝐴) ∈ 𝐹) |
| 26 | 25 | 3adant1 1130 | . . . . . 6 ⊢ ((𝑛 ∈ ℕ0s ∧ 𝐴 ∈ 𝐹 ∧ (𝐴↑s𝑛) ∈ 𝐹) → ((𝐴↑s𝑛) ·s 𝐴) ∈ 𝐹) |
| 27 | 22, 26 | eqeltrd 2829 | . . . . 5 ⊢ ((𝑛 ∈ ℕ0s ∧ 𝐴 ∈ 𝐹 ∧ (𝐴↑s𝑛) ∈ 𝐹) → (𝐴↑s(𝑛 +s 1s )) ∈ 𝐹) |
| 28 | 27 | 3exp 1119 | . . . 4 ⊢ (𝑛 ∈ ℕ0s → (𝐴 ∈ 𝐹 → ((𝐴↑s𝑛) ∈ 𝐹 → (𝐴↑s(𝑛 +s 1s )) ∈ 𝐹))) |
| 29 | 28 | a2d 29 | . . 3 ⊢ (𝑛 ∈ ℕ0s → ((𝐴 ∈ 𝐹 → (𝐴↑s𝑛) ∈ 𝐹) → (𝐴 ∈ 𝐹 → (𝐴↑s(𝑛 +s 1s )) ∈ 𝐹))) |
| 30 | 3, 6, 9, 12, 18, 29 | n0sind 28232 | . 2 ⊢ (𝑁 ∈ ℕ0s → (𝐴 ∈ 𝐹 → (𝐴↑s𝑁) ∈ 𝐹)) |
| 31 | 30 | impcom 407 | 1 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝑁 ∈ ℕ0s) → (𝐴↑s𝑁) ∈ 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 (class class class)co 7390 No csur 27558 0s c0s 27741 1s c1s 27742 +s cadds 27873 ·s cmuls 28016 ℕ0scnn0s 28213 ↑scexps 28305 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-ot 4601 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-oadd 8441 df-nadd 8633 df-no 27561 df-slt 27562 df-bday 27563 df-sle 27664 df-sslt 27700 df-scut 27702 df-0s 27743 df-1s 27744 df-made 27762 df-old 27763 df-left 27765 df-right 27766 df-norec 27852 df-norec2 27863 df-adds 27874 df-negs 27934 df-subs 27935 df-muls 28017 df-seqs 28185 df-n0s 28215 df-nns 28216 df-zs 28274 df-exps 28306 |
| This theorem is referenced by: expscl 28324 n0expscl 28325 nnexpscl 28326 |
| Copyright terms: Public domain | W3C validator |