| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elnnne0 | Structured version Visualization version GIF version | ||
| Description: The positive integer property expressed in terms of difference from zero. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
| Ref | Expression |
|---|---|
| elnnne0 | ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfn2 12519 | . . 3 ⊢ ℕ = (ℕ0 ∖ {0}) | |
| 2 | 1 | eleq2i 2827 | . 2 ⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℕ0 ∖ {0})) |
| 3 | eldifsn 4767 | . 2 ⊢ (𝑁 ∈ (ℕ0 ∖ {0}) ↔ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0)) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ≠ wne 2933 ∖ cdif 3928 {csn 4606 0cc0 11134 ℕcn 12245 ℕ0cn0 12506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-nn 12246 df-n0 12507 |
| This theorem is referenced by: nn0n0n1ge2 12574 nn0nndivcl 12578 fzo1fzo0n0 13736 elfznelfzo 13793 hashnn0n0nn 14414 swrdccatin1 14748 cshwsublen 14819 cshwidxmod 14826 cshwidx0 14829 repswcshw 14835 cshw1 14845 nn0onn 16404 hashfinmndnn 18734 odhash3 19562 prmgrpsimpgd 20102 0ringnnzr 20490 psdmul 22109 cply1mul 22239 fvmptnn04if 22792 chfacfisf 22797 chfacfisfcpmat 22798 tayl0 26326 dvtaylp 26335 2sqmod 27404 wlkonl1iedg 29650 dfpth2 29716 pthdlem2 29755 crctcsh 29811 clwwlkneq0 30015 hashecclwwlkn1 30063 umgrhashecclwwlk 30064 clwwlknon0 30079 frgrreg 30380 frgrregord013 30381 xnn0gt0 32751 subne0nn 32805 chnind 32996 chnub 32997 plymulx0 34584 plymulx 34585 signstfvn 34606 signstfveq0a 34613 poimirlem13 37662 poimirlem20 37669 aks6d1c4 42142 aks6d1c7lem1 42198 flt0 42635 dvnmul 45952 dvnprodlem3 45957 wallispilem3 46076 fourierdlem103 46218 fourierdlem104 46219 etransclem28 46271 etransclem35 46278 etransclem38 46281 etransclem44 46287 2ffzoeq 47336 lswn0 47438 ztprmneprm 48302 |
| Copyright terms: Public domain | W3C validator |