![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elnnne0 | Structured version Visualization version GIF version |
Description: The positive integer property expressed in terms of difference from zero. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
Ref | Expression |
---|---|
elnnne0 | ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfn2 12537 | . . 3 ⊢ ℕ = (ℕ0 ∖ {0}) | |
2 | 1 | eleq2i 2831 | . 2 ⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℕ0 ∖ {0})) |
3 | eldifsn 4791 | . 2 ⊢ (𝑁 ∈ (ℕ0 ∖ {0}) ↔ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0)) | |
4 | 2, 3 | bitri 275 | 1 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2106 ≠ wne 2938 ∖ cdif 3960 {csn 4631 0cc0 11153 ℕcn 12264 ℕ0cn0 12524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-nn 12265 df-n0 12525 |
This theorem is referenced by: nn0n0n1ge2 12592 nn0nndivcl 12596 fzo1fzo0n0 13751 elfznelfzo 13808 hashnn0n0nn 14427 swrdccatin1 14760 cshwsublen 14831 cshwidxmod 14838 cshwidx0 14841 repswcshw 14847 cshw1 14857 nn0onn 16414 hashfinmndnn 18777 odhash3 19609 prmgrpsimpgd 20149 0ringnnzr 20542 psdmul 22188 cply1mul 22316 fvmptnn04if 22871 chfacfisf 22876 chfacfisfcpmat 22877 tayl0 26418 dvtaylp 26427 2sqmod 27495 wlkonl1iedg 29698 pthdlem2 29801 crctcsh 29854 clwwlkneq0 30058 hashecclwwlkn1 30106 umgrhashecclwwlk 30107 clwwlknon0 30122 frgrreg 30423 frgrregord013 30424 xnn0gt0 32780 subne0nn 32828 chnind 32985 chnub 32986 plymulx0 34541 plymulx 34542 signstfvn 34563 signstfveq0a 34570 poimirlem13 37620 poimirlem20 37627 aks6d1c4 42106 aks6d1c7lem1 42162 flt0 42624 dvnmul 45899 dvnprodlem3 45904 wallispilem3 46023 fourierdlem103 46165 fourierdlem104 46166 etransclem28 46218 etransclem35 46225 etransclem38 46228 etransclem44 46234 2ffzoeq 47277 lswn0 47369 ztprmneprm 48192 |
Copyright terms: Public domain | W3C validator |