| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elnnne0 | Structured version Visualization version GIF version | ||
| Description: The positive integer property expressed in terms of difference from zero. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
| Ref | Expression |
|---|---|
| elnnne0 | ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfn2 12397 | . . 3 ⊢ ℕ = (ℕ0 ∖ {0}) | |
| 2 | 1 | eleq2i 2820 | . 2 ⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℕ0 ∖ {0})) |
| 3 | eldifsn 4737 | . 2 ⊢ (𝑁 ∈ (ℕ0 ∖ {0}) ↔ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0)) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3900 {csn 4577 0cc0 11009 ℕcn 12128 ℕ0cn0 12384 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-nn 12129 df-n0 12385 |
| This theorem is referenced by: nn0n0n1ge2 12452 nn0nndivcl 12456 fzo1fzo0n0 13618 elfznelfzo 13675 hashnn0n0nn 14298 swrdccatin1 14631 cshwsublen 14702 cshwidxmod 14709 cshwidx0 14712 repswcshw 14718 cshw1 14728 nn0onn 16291 hashfinmndnn 18625 odhash3 19455 prmgrpsimpgd 19995 0ringnnzr 20410 psdmul 22051 cply1mul 22181 fvmptnn04if 22734 chfacfisf 22739 chfacfisfcpmat 22740 tayl0 26267 dvtaylp 26276 2sqmod 27345 wlkonl1iedg 29609 dfpth2 29674 pthdlem2 29713 crctcsh 29769 clwwlkneq0 29973 hashecclwwlkn1 30021 umgrhashecclwwlk 30022 clwwlknon0 30037 frgrreg 30338 frgrregord013 30339 xnn0gt0 32712 subne0nn 32766 chnind 32953 chnub 32954 plymulx0 34515 plymulx 34516 signstfvn 34537 signstfveq0a 34544 poimirlem13 37617 poimirlem20 37624 aks6d1c4 42101 aks6d1c7lem1 42157 flt0 42614 dvnmul 45928 dvnprodlem3 45933 wallispilem3 46052 fourierdlem103 46194 fourierdlem104 46195 etransclem28 46247 etransclem35 46254 etransclem38 46257 etransclem44 46263 2ffzoeq 47315 lswn0 47432 ztprmneprm 48335 |
| Copyright terms: Public domain | W3C validator |