Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elnnne0 | Structured version Visualization version GIF version |
Description: The positive integer property expressed in terms of difference from zero. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
Ref | Expression |
---|---|
elnnne0 | ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfn2 12246 | . . 3 ⊢ ℕ = (ℕ0 ∖ {0}) | |
2 | 1 | eleq2i 2830 | . 2 ⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℕ0 ∖ {0})) |
3 | eldifsn 4720 | . 2 ⊢ (𝑁 ∈ (ℕ0 ∖ {0}) ↔ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0)) | |
4 | 2, 3 | bitri 274 | 1 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ≠ wne 2943 ∖ cdif 3884 {csn 4561 0cc0 10871 ℕcn 11973 ℕ0cn0 12233 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-nn 11974 df-n0 12234 |
This theorem is referenced by: nn0n0n1ge2 12300 nn0nndivcl 12304 fzo1fzo0n0 13438 elfznelfzo 13492 hashnn0n0nn 14106 swrdccatin1 14438 cshwsublen 14509 cshwidxmod 14516 cshwidx0 14519 repswcshw 14525 cshw1 14535 nn0onn 16089 hashfinmndnn 18402 odhash3 19181 prmgrpsimpgd 19717 0ringnnzr 20540 cply1mul 21465 fvmptnn04if 21998 chfacfisf 22003 chfacfisfcpmat 22004 tayl0 25521 dvtaylp 25529 2sqmod 26584 wlkonl1iedg 28033 pthdlem2 28136 crctcsh 28189 clwwlkneq0 28393 hashecclwwlkn1 28441 umgrhashecclwwlk 28442 clwwlknon0 28457 frgrreg 28758 frgrregord013 28759 xnn0gt0 31092 subne0nn 31135 plymulx0 32526 plymulx 32527 signstfvn 32548 signstfveq0a 32555 poimirlem13 35790 poimirlem20 35797 flt0 40474 dvnmul 43484 dvnprodlem3 43489 wallispilem3 43608 fourierdlem103 43750 fourierdlem104 43751 etransclem28 43803 etransclem35 43810 etransclem38 43813 etransclem44 43819 2ffzoeq 44820 lswn0 44896 ztprmneprm 45683 |
Copyright terms: Public domain | W3C validator |