| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elnnne0 | Structured version Visualization version GIF version | ||
| Description: The positive integer property expressed in terms of difference from zero. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
| Ref | Expression |
|---|---|
| elnnne0 | ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfn2 12431 | . . 3 ⊢ ℕ = (ℕ0 ∖ {0}) | |
| 2 | 1 | eleq2i 2820 | . 2 ⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℕ0 ∖ {0})) |
| 3 | eldifsn 4746 | . 2 ⊢ (𝑁 ∈ (ℕ0 ∖ {0}) ↔ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0)) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3908 {csn 4585 0cc0 11044 ℕcn 12162 ℕ0cn0 12418 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-nn 12163 df-n0 12419 |
| This theorem is referenced by: nn0n0n1ge2 12486 nn0nndivcl 12490 fzo1fzo0n0 13652 elfznelfzo 13709 hashnn0n0nn 14332 swrdccatin1 14666 cshwsublen 14737 cshwidxmod 14744 cshwidx0 14747 repswcshw 14753 cshw1 14763 nn0onn 16326 hashfinmndnn 18660 odhash3 19490 prmgrpsimpgd 20030 0ringnnzr 20445 psdmul 22086 cply1mul 22216 fvmptnn04if 22769 chfacfisf 22774 chfacfisfcpmat 22775 tayl0 26302 dvtaylp 26311 2sqmod 27380 wlkonl1iedg 29644 dfpth2 29709 pthdlem2 29748 crctcsh 29804 clwwlkneq0 30008 hashecclwwlkn1 30056 umgrhashecclwwlk 30057 clwwlknon0 30072 frgrreg 30373 frgrregord013 30374 xnn0gt0 32742 subne0nn 32796 chnind 32983 chnub 32984 plymulx0 34531 plymulx 34532 signstfvn 34553 signstfveq0a 34560 poimirlem13 37620 poimirlem20 37627 aks6d1c4 42105 aks6d1c7lem1 42161 flt0 42618 dvnmul 45934 dvnprodlem3 45939 wallispilem3 46058 fourierdlem103 46200 fourierdlem104 46201 etransclem28 46253 etransclem35 46260 etransclem38 46263 etransclem44 46269 2ffzoeq 47321 lswn0 47438 ztprmneprm 48328 |
| Copyright terms: Public domain | W3C validator |