Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elnnne0 | Structured version Visualization version GIF version |
Description: The positive integer property expressed in terms of difference from zero. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
Ref | Expression |
---|---|
elnnne0 | ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfn2 12339 | . . 3 ⊢ ℕ = (ℕ0 ∖ {0}) | |
2 | 1 | eleq2i 2828 | . 2 ⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℕ0 ∖ {0})) |
3 | eldifsn 4733 | . 2 ⊢ (𝑁 ∈ (ℕ0 ∖ {0}) ↔ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0)) | |
4 | 2, 3 | bitri 274 | 1 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∈ wcel 2105 ≠ wne 2940 ∖ cdif 3894 {csn 4572 0cc0 10964 ℕcn 12066 ℕ0cn0 12326 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-ov 7332 df-om 7773 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-er 8561 df-en 8797 df-dom 8798 df-sdom 8799 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-nn 12067 df-n0 12327 |
This theorem is referenced by: nn0n0n1ge2 12393 nn0nndivcl 12397 fzo1fzo0n0 13531 elfznelfzo 13585 hashnn0n0nn 14198 swrdccatin1 14528 cshwsublen 14599 cshwidxmod 14606 cshwidx0 14609 repswcshw 14615 cshw1 14625 nn0onn 16180 hashfinmndnn 18491 odhash3 19269 prmgrpsimpgd 19804 0ringnnzr 20638 cply1mul 21563 fvmptnn04if 22096 chfacfisf 22101 chfacfisfcpmat 22102 tayl0 25619 dvtaylp 25627 2sqmod 26682 wlkonl1iedg 28262 pthdlem2 28365 crctcsh 28418 clwwlkneq0 28622 hashecclwwlkn1 28670 umgrhashecclwwlk 28671 clwwlknon0 28686 frgrreg 28987 frgrregord013 28988 xnn0gt0 31320 subne0nn 31363 plymulx0 32767 plymulx 32768 signstfvn 32789 signstfveq0a 32796 poimirlem13 35888 poimirlem20 35895 flt0 40724 dvnmul 43809 dvnprodlem3 43814 wallispilem3 43933 fourierdlem103 44075 fourierdlem104 44076 etransclem28 44128 etransclem35 44135 etransclem38 44138 etransclem44 44144 2ffzoeq 45160 lswn0 45236 ztprmneprm 46023 |
Copyright terms: Public domain | W3C validator |