| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elnnne0 | Structured version Visualization version GIF version | ||
| Description: The positive integer property expressed in terms of difference from zero. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
| Ref | Expression |
|---|---|
| elnnne0 | ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfn2 12522 | . . 3 ⊢ ℕ = (ℕ0 ∖ {0}) | |
| 2 | 1 | eleq2i 2825 | . 2 ⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℕ0 ∖ {0})) |
| 3 | eldifsn 4766 | . 2 ⊢ (𝑁 ∈ (ℕ0 ∖ {0}) ↔ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0)) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2107 ≠ wne 2931 ∖ cdif 3928 {csn 4606 0cc0 11137 ℕcn 12248 ℕ0cn0 12509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-nn 12249 df-n0 12510 |
| This theorem is referenced by: nn0n0n1ge2 12577 nn0nndivcl 12581 fzo1fzo0n0 13736 elfznelfzo 13793 hashnn0n0nn 14413 swrdccatin1 14746 cshwsublen 14817 cshwidxmod 14824 cshwidx0 14827 repswcshw 14833 cshw1 14843 nn0onn 16400 hashfinmndnn 18734 odhash3 19563 prmgrpsimpgd 20103 0ringnnzr 20494 psdmul 22119 cply1mul 22249 fvmptnn04if 22804 chfacfisf 22809 chfacfisfcpmat 22810 tayl0 26340 dvtaylp 26349 2sqmod 27417 wlkonl1iedg 29612 dfpth2 29678 pthdlem2 29717 crctcsh 29773 clwwlkneq0 29977 hashecclwwlkn1 30025 umgrhashecclwwlk 30026 clwwlknon0 30041 frgrreg 30342 frgrregord013 30343 xnn0gt0 32715 subne0nn 32768 chnind 32945 chnub 32946 plymulx0 34537 plymulx 34538 signstfvn 34559 signstfveq0a 34566 poimirlem13 37615 poimirlem20 37622 aks6d1c4 42100 aks6d1c7lem1 42156 flt0 42626 dvnmul 45930 dvnprodlem3 45935 wallispilem3 46054 fourierdlem103 46196 fourierdlem104 46197 etransclem28 46249 etransclem35 46256 etransclem38 46259 etransclem44 46265 2ffzoeq 47312 lswn0 47404 ztprmneprm 48236 |
| Copyright terms: Public domain | W3C validator |