| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp0d | Structured version Visualization version GIF version | ||
| Description: Value of a complex number raised to the zeroth power. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| expcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| exp0d | ⊢ (𝜑 → (𝐴↑0) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | exp0 14106 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴↑0) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 (class class class)co 7431 ℂcc 11153 0cc0 11155 1c1 11156 ↑cexp 14102 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-1cn 11213 ax-addrcl 11216 ax-rnegex 11226 ax-cnre 11228 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-iota 6514 df-fun 6563 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-neg 11495 df-z 12614 df-seq 14043 df-exp 14103 |
| This theorem is referenced by: faclbnd4lem3 14334 faclbnd4lem4 14335 faclbnd6 14338 hashmap 14474 absexp 15343 binom 15866 geoser 15903 pwdif 15904 cvgrat 15919 efexp 16137 pwp1fsum 16428 nn0rppwr 16598 nn0expgcd 16601 prmdvdsexpr 16754 rpexp1i 16760 phiprm 16814 odzdvds 16833 pclem 16876 pcpre1 16880 pcexp 16897 dvdsprmpweqnn 16923 prmpwdvds 16942 pgp0 19614 sylow2alem2 19636 ablfac1eu 20093 pgpfac1lem3a 20096 plyeq0lem 26249 plyco 26280 vieta1 26354 abelthlem9 26484 advlogexp 26697 cxpmul2 26731 nnlogbexp 26824 ftalem5 27120 0sgm 27187 1sgmprm 27243 dchrptlem2 27309 bposlem5 27332 lgsval2lem 27351 lgsmod 27367 lgsdilem2 27377 lgsne0 27379 chebbnd1lem1 27513 dchrisum0flblem1 27552 qabvexp 27670 ostth2lem2 27678 ostth3 27682 rusgrnumwwlk 29995 nexple 32833 faclim 35746 faclim2 35748 knoppndvlem14 36526 lcmineqlem12 42041 aks4d1p8 42088 aks6d1c1p8 42116 aks6d1c4 42125 aks6d1c7lem1 42181 aks5lem8 42202 abvexp 42542 flt0 42647 fltnltalem 42672 mzpexpmpt 42756 pell14qrexpclnn0 42877 pellfund14 42909 rmxy0 42935 jm2.17a 42972 jm2.17b 42973 jm2.18 43000 jm2.23 43008 expdioph 43035 cnsrexpcl 43177 binomcxplemnotnn0 44375 dvnxpaek 45957 wallispilem2 46081 etransclem24 46273 etransclem25 46274 etransclem35 46284 lighneallem3 47594 lighneallem4 47597 altgsumbcALT 48269 expnegico01 48435 digexp 48528 dig1 48529 |
| Copyright terms: Public domain | W3C validator |