Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exp0d | Structured version Visualization version GIF version |
Description: Value of a complex number raised to the 0th power. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
expcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
exp0d | ⊢ (𝜑 → (𝐴↑0) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | exp0 13786 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴↑0) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 (class class class)co 7275 ℂcc 10869 0cc0 10871 1c1 10872 ↑cexp 13782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-1cn 10929 ax-addrcl 10932 ax-rnegex 10942 ax-cnre 10944 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-neg 11208 df-z 12320 df-seq 13722 df-exp 13783 |
This theorem is referenced by: faclbnd4lem3 14009 faclbnd4lem4 14010 faclbnd6 14013 hashmap 14150 absexp 15016 binom 15542 geoser 15579 pwdif 15580 cvgrat 15595 efexp 15810 pwp1fsum 16100 prmdvdsexpr 16422 rpexp1i 16428 phiprm 16478 odzdvds 16496 pclem 16539 pcpre1 16543 pcexp 16560 dvdsprmpweqnn 16586 prmpwdvds 16605 pgp0 19201 sylow2alem2 19223 ablfac1eu 19676 pgpfac1lem3a 19679 plyeq0lem 25371 plyco 25402 vieta1 25472 abelthlem9 25599 advlogexp 25810 cxpmul2 25844 nnlogbexp 25931 ftalem5 26226 0sgm 26293 1sgmprm 26347 dchrptlem2 26413 bposlem5 26436 lgsval2lem 26455 lgsmod 26471 lgsdilem2 26481 lgsne0 26483 chebbnd1lem1 26617 dchrisum0flblem1 26656 qabvexp 26774 ostth2lem2 26782 ostth3 26786 rusgrnumwwlk 28340 nexple 31977 faclim 33712 faclim2 33714 knoppndvlem14 34705 lcmineqlem12 40048 aks4d1p8 40095 nn0rppwr 40333 nn0expgcd 40335 flt0 40474 fltnltalem 40499 mzpexpmpt 40567 pell14qrexpclnn0 40688 pellfund14 40720 rmxy0 40745 jm2.17a 40782 jm2.17b 40783 jm2.18 40810 jm2.23 40818 expdioph 40845 cnsrexpcl 40990 binomcxplemnotnn0 41974 dvnxpaek 43483 wallispilem2 43607 etransclem24 43799 etransclem25 43800 etransclem35 43810 lighneallem3 45059 lighneallem4 45062 altgsumbcALT 45689 expnegico01 45859 digexp 45953 dig1 45954 |
Copyright terms: Public domain | W3C validator |