| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp0d | Structured version Visualization version GIF version | ||
| Description: Value of a complex number raised to the zeroth power. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| expcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| exp0d | ⊢ (𝜑 → (𝐴↑0) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | exp0 13976 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴↑0) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 (class class class)co 7354 ℂcc 11013 0cc0 11015 1c1 11016 ↑cexp 13972 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-1cn 11073 ax-addrcl 11076 ax-rnegex 11086 ax-cnre 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-iota 6444 df-fun 6490 df-fv 6496 df-ov 7357 df-oprab 7358 df-mpo 7359 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-neg 11356 df-z 12478 df-seq 13913 df-exp 13973 |
| This theorem is referenced by: faclbnd4lem3 14206 faclbnd4lem4 14207 faclbnd6 14210 hashmap 14346 absexp 15215 binom 15741 geoser 15778 pwdif 15779 cvgrat 15794 efexp 16014 pwp1fsum 16306 nn0rppwr 16476 nn0expgcd 16479 prmdvdsexpr 16632 rpexp1i 16638 phiprm 16692 odzdvds 16711 pclem 16754 pcpre1 16758 pcexp 16775 dvdsprmpweqnn 16801 prmpwdvds 16820 pgp0 19512 sylow2alem2 19534 ablfac1eu 19991 pgpfac1lem3a 19994 plyeq0lem 26145 plyco 26176 vieta1 26250 abelthlem9 26380 advlogexp 26594 cxpmul2 26628 nnlogbexp 26721 ftalem5 27017 0sgm 27084 1sgmprm 27140 dchrptlem2 27206 bposlem5 27229 lgsval2lem 27248 lgsmod 27264 lgsdilem2 27274 lgsne0 27276 chebbnd1lem1 27410 dchrisum0flblem1 27449 qabvexp 27567 ostth2lem2 27575 ostth3 27579 rusgrnumwwlk 29960 nexple 32834 cos9thpiminplylem3 33820 faclim 35813 faclim2 35815 knoppndvlem14 36592 lcmineqlem12 42156 aks4d1p8 42203 aks6d1c1p8 42231 aks6d1c4 42240 aks6d1c7lem1 42296 aks5lem8 42317 abvexp 42653 flt0 42758 fltnltalem 42783 mzpexpmpt 42865 pell14qrexpclnn0 42986 pellfund14 43018 rmxy0 43043 jm2.17a 43080 jm2.17b 43081 jm2.18 43108 jm2.23 43116 expdioph 43143 cnsrexpcl 43285 binomcxplemnotnn0 44476 dvnxpaek 46067 wallispilem2 46191 etransclem24 46383 etransclem25 46384 etransclem35 46394 lighneallem3 47734 lighneallem4 47737 altgsumbcALT 48480 expnegico01 48646 digexp 48735 dig1 48736 |
| Copyright terms: Public domain | W3C validator |