| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp0d | Structured version Visualization version GIF version | ||
| Description: Value of a complex number raised to the zeroth power. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| expcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| exp0d | ⊢ (𝜑 → (𝐴↑0) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | exp0 14083 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴↑0) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 (class class class)co 7405 ℂcc 11127 0cc0 11129 1c1 11130 ↑cexp 14079 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-1cn 11187 ax-addrcl 11190 ax-rnegex 11200 ax-cnre 11202 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-neg 11469 df-z 12589 df-seq 14020 df-exp 14080 |
| This theorem is referenced by: faclbnd4lem3 14313 faclbnd4lem4 14314 faclbnd6 14317 hashmap 14453 absexp 15323 binom 15846 geoser 15883 pwdif 15884 cvgrat 15899 efexp 16119 pwp1fsum 16410 nn0rppwr 16580 nn0expgcd 16583 prmdvdsexpr 16736 rpexp1i 16742 phiprm 16796 odzdvds 16815 pclem 16858 pcpre1 16862 pcexp 16879 dvdsprmpweqnn 16905 prmpwdvds 16924 pgp0 19577 sylow2alem2 19599 ablfac1eu 20056 pgpfac1lem3a 20059 plyeq0lem 26167 plyco 26198 vieta1 26272 abelthlem9 26402 advlogexp 26616 cxpmul2 26650 nnlogbexp 26743 ftalem5 27039 0sgm 27106 1sgmprm 27162 dchrptlem2 27228 bposlem5 27251 lgsval2lem 27270 lgsmod 27286 lgsdilem2 27296 lgsne0 27298 chebbnd1lem1 27432 dchrisum0flblem1 27471 qabvexp 27589 ostth2lem2 27597 ostth3 27601 rusgrnumwwlk 29957 nexple 32823 cos9thpiminplylem3 33818 faclim 35763 faclim2 35765 knoppndvlem14 36543 lcmineqlem12 42053 aks4d1p8 42100 aks6d1c1p8 42128 aks6d1c4 42137 aks6d1c7lem1 42193 aks5lem8 42214 abvexp 42555 flt0 42660 fltnltalem 42685 mzpexpmpt 42768 pell14qrexpclnn0 42889 pellfund14 42921 rmxy0 42947 jm2.17a 42984 jm2.17b 42985 jm2.18 43012 jm2.23 43020 expdioph 43047 cnsrexpcl 43189 binomcxplemnotnn0 44380 dvnxpaek 45971 wallispilem2 46095 etransclem24 46287 etransclem25 46288 etransclem35 46298 lighneallem3 47621 lighneallem4 47624 altgsumbcALT 48328 expnegico01 48494 digexp 48587 dig1 48588 |
| Copyright terms: Public domain | W3C validator |