| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp0d | Structured version Visualization version GIF version | ||
| Description: Value of a complex number raised to the zeroth power. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| expcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| exp0d | ⊢ (𝜑 → (𝐴↑0) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | exp0 14030 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴↑0) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7387 ℂcc 11066 0cc0 11068 1c1 11069 ↑cexp 14026 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-1cn 11126 ax-addrcl 11129 ax-rnegex 11139 ax-cnre 11141 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-neg 11408 df-z 12530 df-seq 13967 df-exp 14027 |
| This theorem is referenced by: faclbnd4lem3 14260 faclbnd4lem4 14261 faclbnd6 14264 hashmap 14400 absexp 15270 binom 15796 geoser 15833 pwdif 15834 cvgrat 15849 efexp 16069 pwp1fsum 16361 nn0rppwr 16531 nn0expgcd 16534 prmdvdsexpr 16687 rpexp1i 16693 phiprm 16747 odzdvds 16766 pclem 16809 pcpre1 16813 pcexp 16830 dvdsprmpweqnn 16856 prmpwdvds 16875 pgp0 19526 sylow2alem2 19548 ablfac1eu 20005 pgpfac1lem3a 20008 plyeq0lem 26115 plyco 26146 vieta1 26220 abelthlem9 26350 advlogexp 26564 cxpmul2 26598 nnlogbexp 26691 ftalem5 26987 0sgm 27054 1sgmprm 27110 dchrptlem2 27176 bposlem5 27199 lgsval2lem 27218 lgsmod 27234 lgsdilem2 27244 lgsne0 27246 chebbnd1lem1 27380 dchrisum0flblem1 27419 qabvexp 27537 ostth2lem2 27545 ostth3 27549 rusgrnumwwlk 29905 nexple 32769 cos9thpiminplylem3 33774 faclim 35733 faclim2 35735 knoppndvlem14 36513 lcmineqlem12 42028 aks4d1p8 42075 aks6d1c1p8 42103 aks6d1c4 42112 aks6d1c7lem1 42168 aks5lem8 42189 abvexp 42520 flt0 42625 fltnltalem 42650 mzpexpmpt 42733 pell14qrexpclnn0 42854 pellfund14 42886 rmxy0 42912 jm2.17a 42949 jm2.17b 42950 jm2.18 42977 jm2.23 42985 expdioph 43012 cnsrexpcl 43154 binomcxplemnotnn0 44345 dvnxpaek 45940 wallispilem2 46064 etransclem24 46256 etransclem25 46257 etransclem35 46267 lighneallem3 47608 lighneallem4 47611 altgsumbcALT 48341 expnegico01 48507 digexp 48596 dig1 48597 |
| Copyright terms: Public domain | W3C validator |