| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp0d | Structured version Visualization version GIF version | ||
| Description: Value of a complex number raised to the zeroth power. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| expcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| exp0d | ⊢ (𝜑 → (𝐴↑0) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | exp0 13972 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴↑0) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 (class class class)co 7346 ℂcc 11004 0cc0 11006 1c1 11007 ↑cexp 13968 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-1cn 11064 ax-addrcl 11067 ax-rnegex 11077 ax-cnre 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-neg 11347 df-z 12469 df-seq 13909 df-exp 13969 |
| This theorem is referenced by: faclbnd4lem3 14202 faclbnd4lem4 14203 faclbnd6 14206 hashmap 14342 absexp 15211 binom 15737 geoser 15774 pwdif 15775 cvgrat 15790 efexp 16010 pwp1fsum 16302 nn0rppwr 16472 nn0expgcd 16475 prmdvdsexpr 16628 rpexp1i 16634 phiprm 16688 odzdvds 16707 pclem 16750 pcpre1 16754 pcexp 16771 dvdsprmpweqnn 16797 prmpwdvds 16816 pgp0 19509 sylow2alem2 19531 ablfac1eu 19988 pgpfac1lem3a 19991 plyeq0lem 26143 plyco 26174 vieta1 26248 abelthlem9 26378 advlogexp 26592 cxpmul2 26626 nnlogbexp 26719 ftalem5 27015 0sgm 27082 1sgmprm 27138 dchrptlem2 27204 bposlem5 27227 lgsval2lem 27246 lgsmod 27262 lgsdilem2 27272 lgsne0 27274 chebbnd1lem1 27408 dchrisum0flblem1 27447 qabvexp 27565 ostth2lem2 27573 ostth3 27577 rusgrnumwwlk 29954 nexple 32825 cos9thpiminplylem3 33795 faclim 35788 faclim2 35790 knoppndvlem14 36565 lcmineqlem12 42079 aks4d1p8 42126 aks6d1c1p8 42154 aks6d1c4 42163 aks6d1c7lem1 42219 aks5lem8 42240 abvexp 42571 flt0 42676 fltnltalem 42701 mzpexpmpt 42784 pell14qrexpclnn0 42905 pellfund14 42937 rmxy0 42962 jm2.17a 42999 jm2.17b 43000 jm2.18 43027 jm2.23 43035 expdioph 43062 cnsrexpcl 43204 binomcxplemnotnn0 44395 dvnxpaek 45986 wallispilem2 46110 etransclem24 46302 etransclem25 46303 etransclem35 46313 lighneallem3 47644 lighneallem4 47647 altgsumbcALT 48390 expnegico01 48556 digexp 48645 dig1 48646 |
| Copyright terms: Public domain | W3C validator |