![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exp0d | Structured version Visualization version GIF version |
Description: Value of a complex number raised to the zeroth power. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
expcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
exp0d | ⊢ (𝜑 → (𝐴↑0) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | exp0 14116 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴↑0) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 (class class class)co 7448 ℂcc 11182 0cc0 11184 1c1 11185 ↑cexp 14112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-1cn 11242 ax-addrcl 11245 ax-rnegex 11255 ax-cnre 11257 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-neg 11523 df-z 12640 df-seq 14053 df-exp 14113 |
This theorem is referenced by: faclbnd4lem3 14344 faclbnd4lem4 14345 faclbnd6 14348 hashmap 14484 absexp 15353 binom 15878 geoser 15915 pwdif 15916 cvgrat 15931 efexp 16149 pwp1fsum 16439 nn0rppwr 16608 nn0expgcd 16611 prmdvdsexpr 16764 rpexp1i 16770 phiprm 16824 odzdvds 16842 pclem 16885 pcpre1 16889 pcexp 16906 dvdsprmpweqnn 16932 prmpwdvds 16951 pgp0 19638 sylow2alem2 19660 ablfac1eu 20117 pgpfac1lem3a 20120 plyeq0lem 26269 plyco 26300 vieta1 26372 abelthlem9 26502 advlogexp 26715 cxpmul2 26749 nnlogbexp 26842 ftalem5 27138 0sgm 27205 1sgmprm 27261 dchrptlem2 27327 bposlem5 27350 lgsval2lem 27369 lgsmod 27385 lgsdilem2 27395 lgsne0 27397 chebbnd1lem1 27531 dchrisum0flblem1 27570 qabvexp 27688 ostth2lem2 27696 ostth3 27700 rusgrnumwwlk 30008 nexple 33973 faclim 35708 faclim2 35710 knoppndvlem14 36491 lcmineqlem12 41997 aks4d1p8 42044 aks6d1c1p8 42072 aks6d1c4 42081 aks6d1c7lem1 42137 aks5lem8 42158 abvexp 42487 flt0 42592 fltnltalem 42617 mzpexpmpt 42701 pell14qrexpclnn0 42822 pellfund14 42854 rmxy0 42880 jm2.17a 42917 jm2.17b 42918 jm2.18 42945 jm2.23 42953 expdioph 42980 cnsrexpcl 43122 binomcxplemnotnn0 44325 dvnxpaek 45863 wallispilem2 45987 etransclem24 46179 etransclem25 46180 etransclem35 46190 lighneallem3 47481 lighneallem4 47484 altgsumbcALT 48078 expnegico01 48247 digexp 48341 dig1 48342 |
Copyright terms: Public domain | W3C validator |