| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp0d | Structured version Visualization version GIF version | ||
| Description: Value of a complex number raised to the zeroth power. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| expcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| exp0d | ⊢ (𝜑 → (𝐴↑0) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | exp0 14037 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴↑0) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7390 ℂcc 11073 0cc0 11075 1c1 11076 ↑cexp 14033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-1cn 11133 ax-addrcl 11136 ax-rnegex 11146 ax-cnre 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-neg 11415 df-z 12537 df-seq 13974 df-exp 14034 |
| This theorem is referenced by: faclbnd4lem3 14267 faclbnd4lem4 14268 faclbnd6 14271 hashmap 14407 absexp 15277 binom 15803 geoser 15840 pwdif 15841 cvgrat 15856 efexp 16076 pwp1fsum 16368 nn0rppwr 16538 nn0expgcd 16541 prmdvdsexpr 16694 rpexp1i 16700 phiprm 16754 odzdvds 16773 pclem 16816 pcpre1 16820 pcexp 16837 dvdsprmpweqnn 16863 prmpwdvds 16882 pgp0 19533 sylow2alem2 19555 ablfac1eu 20012 pgpfac1lem3a 20015 plyeq0lem 26122 plyco 26153 vieta1 26227 abelthlem9 26357 advlogexp 26571 cxpmul2 26605 nnlogbexp 26698 ftalem5 26994 0sgm 27061 1sgmprm 27117 dchrptlem2 27183 bposlem5 27206 lgsval2lem 27225 lgsmod 27241 lgsdilem2 27251 lgsne0 27253 chebbnd1lem1 27387 dchrisum0flblem1 27426 qabvexp 27544 ostth2lem2 27552 ostth3 27556 rusgrnumwwlk 29912 nexple 32776 cos9thpiminplylem3 33781 faclim 35740 faclim2 35742 knoppndvlem14 36520 lcmineqlem12 42035 aks4d1p8 42082 aks6d1c1p8 42110 aks6d1c4 42119 aks6d1c7lem1 42175 aks5lem8 42196 abvexp 42527 flt0 42632 fltnltalem 42657 mzpexpmpt 42740 pell14qrexpclnn0 42861 pellfund14 42893 rmxy0 42919 jm2.17a 42956 jm2.17b 42957 jm2.18 42984 jm2.23 42992 expdioph 43019 cnsrexpcl 43161 binomcxplemnotnn0 44352 dvnxpaek 45947 wallispilem2 46071 etransclem24 46263 etransclem25 46264 etransclem35 46274 lighneallem3 47612 lighneallem4 47615 altgsumbcALT 48345 expnegico01 48511 digexp 48600 dig1 48601 |
| Copyright terms: Public domain | W3C validator |