Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exp0d | Structured version Visualization version GIF version |
Description: Value of a complex number raised to the 0th power. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
expcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
exp0d | ⊢ (𝜑 → (𝐴↑0) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | exp0 13892 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴↑0) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 (class class class)co 7342 ℂcc 10975 0cc0 10977 1c1 10978 ↑cexp 13888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pr 5377 ax-1cn 11035 ax-addrcl 11038 ax-rnegex 11048 ax-cnre 11050 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-sbc 3732 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-br 5098 df-opab 5160 df-mpt 5181 df-id 5523 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-iota 6436 df-fun 6486 df-fv 6492 df-ov 7345 df-oprab 7346 df-mpo 7347 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-neg 11314 df-z 12426 df-seq 13828 df-exp 13889 |
This theorem is referenced by: faclbnd4lem3 14115 faclbnd4lem4 14116 faclbnd6 14119 hashmap 14255 absexp 15116 binom 15642 geoser 15679 pwdif 15680 cvgrat 15695 efexp 15910 pwp1fsum 16200 prmdvdsexpr 16520 rpexp1i 16526 phiprm 16576 odzdvds 16594 pclem 16637 pcpre1 16641 pcexp 16658 dvdsprmpweqnn 16684 prmpwdvds 16703 pgp0 19298 sylow2alem2 19320 ablfac1eu 19771 pgpfac1lem3a 19774 plyeq0lem 25477 plyco 25508 vieta1 25578 abelthlem9 25705 advlogexp 25916 cxpmul2 25950 nnlogbexp 26037 ftalem5 26332 0sgm 26399 1sgmprm 26453 dchrptlem2 26519 bposlem5 26542 lgsval2lem 26561 lgsmod 26577 lgsdilem2 26587 lgsne0 26589 chebbnd1lem1 26723 dchrisum0flblem1 26762 qabvexp 26880 ostth2lem2 26888 ostth3 26892 rusgrnumwwlk 28628 nexple 32273 faclim 34002 faclim2 34004 knoppndvlem14 34842 lcmineqlem12 40351 aks4d1p8 40398 nn0rppwr 40642 nn0expgcd 40644 flt0 40785 fltnltalem 40810 mzpexpmpt 40878 pell14qrexpclnn0 40999 pellfund14 41031 rmxy0 41057 jm2.17a 41094 jm2.17b 41095 jm2.18 41122 jm2.23 41130 expdioph 41157 cnsrexpcl 41302 binomcxplemnotnn0 42345 dvnxpaek 43869 wallispilem2 43993 etransclem24 44185 etransclem25 44186 etransclem35 44196 lighneallem3 45475 lighneallem4 45478 altgsumbcALT 46105 expnegico01 46275 digexp 46369 dig1 46370 |
Copyright terms: Public domain | W3C validator |