| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp0d | Structured version Visualization version GIF version | ||
| Description: Value of a complex number raised to the zeroth power. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| expcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| exp0d | ⊢ (𝜑 → (𝐴↑0) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | exp0 13990 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴↑0) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7353 ℂcc 11026 0cc0 11028 1c1 11029 ↑cexp 13986 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-1cn 11086 ax-addrcl 11089 ax-rnegex 11099 ax-cnre 11101 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-neg 11368 df-z 12490 df-seq 13927 df-exp 13987 |
| This theorem is referenced by: faclbnd4lem3 14220 faclbnd4lem4 14221 faclbnd6 14224 hashmap 14360 absexp 15229 binom 15755 geoser 15792 pwdif 15793 cvgrat 15808 efexp 16028 pwp1fsum 16320 nn0rppwr 16490 nn0expgcd 16493 prmdvdsexpr 16646 rpexp1i 16652 phiprm 16706 odzdvds 16725 pclem 16768 pcpre1 16772 pcexp 16789 dvdsprmpweqnn 16815 prmpwdvds 16834 pgp0 19493 sylow2alem2 19515 ablfac1eu 19972 pgpfac1lem3a 19975 plyeq0lem 26131 plyco 26162 vieta1 26236 abelthlem9 26366 advlogexp 26580 cxpmul2 26614 nnlogbexp 26707 ftalem5 27003 0sgm 27070 1sgmprm 27126 dchrptlem2 27192 bposlem5 27215 lgsval2lem 27234 lgsmod 27250 lgsdilem2 27260 lgsne0 27262 chebbnd1lem1 27396 dchrisum0flblem1 27435 qabvexp 27553 ostth2lem2 27561 ostth3 27565 rusgrnumwwlk 29938 nexple 32802 cos9thpiminplylem3 33753 faclim 35721 faclim2 35723 knoppndvlem14 36501 lcmineqlem12 42016 aks4d1p8 42063 aks6d1c1p8 42091 aks6d1c4 42100 aks6d1c7lem1 42156 aks5lem8 42177 abvexp 42508 flt0 42613 fltnltalem 42638 mzpexpmpt 42721 pell14qrexpclnn0 42842 pellfund14 42874 rmxy0 42899 jm2.17a 42936 jm2.17b 42937 jm2.18 42964 jm2.23 42972 expdioph 42999 cnsrexpcl 43141 binomcxplemnotnn0 44332 dvnxpaek 45927 wallispilem2 46051 etransclem24 46243 etransclem25 46244 etransclem35 46254 lighneallem3 47595 lighneallem4 47598 altgsumbcALT 48341 expnegico01 48507 digexp 48596 dig1 48597 |
| Copyright terms: Public domain | W3C validator |