Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exp0d | Structured version Visualization version GIF version |
Description: Value of a complex number raised to the 0th power. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
expcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
exp0d | ⊢ (𝜑 → (𝐴↑0) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | exp0 13714 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴↑0) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 (class class class)co 7255 ℂcc 10800 0cc0 10802 1c1 10803 ↑cexp 13710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-1cn 10860 ax-addrcl 10863 ax-rnegex 10873 ax-cnre 10875 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-neg 11138 df-z 12250 df-seq 13650 df-exp 13711 |
This theorem is referenced by: faclbnd4lem3 13937 faclbnd4lem4 13938 faclbnd6 13941 hashmap 14078 absexp 14944 binom 15470 geoser 15507 pwdif 15508 cvgrat 15523 efexp 15738 pwp1fsum 16028 prmdvdsexpr 16350 rpexp1i 16356 phiprm 16406 odzdvds 16424 pclem 16467 pcpre1 16471 pcexp 16488 dvdsprmpweqnn 16514 prmpwdvds 16533 pgp0 19116 sylow2alem2 19138 ablfac1eu 19591 pgpfac1lem3a 19594 plyeq0lem 25276 plyco 25307 vieta1 25377 abelthlem9 25504 advlogexp 25715 cxpmul2 25749 nnlogbexp 25836 ftalem5 26131 0sgm 26198 1sgmprm 26252 dchrptlem2 26318 bposlem5 26341 lgsval2lem 26360 lgsmod 26376 lgsdilem2 26386 lgsne0 26388 chebbnd1lem1 26522 dchrisum0flblem1 26561 qabvexp 26679 ostth2lem2 26687 ostth3 26691 rusgrnumwwlk 28241 nexple 31877 faclim 33618 faclim2 33620 knoppndvlem14 34632 lcmineqlem12 39976 aks4d1p8 40023 nn0rppwr 40254 nn0expgcd 40256 flt0 40390 fltnltalem 40415 mzpexpmpt 40483 pell14qrexpclnn0 40604 pellfund14 40636 rmxy0 40661 jm2.17a 40698 jm2.17b 40699 jm2.18 40726 jm2.23 40734 expdioph 40761 cnsrexpcl 40906 binomcxplemnotnn0 41863 dvnxpaek 43373 wallispilem2 43497 etransclem24 43689 etransclem25 43690 etransclem35 43700 lighneallem3 44947 lighneallem4 44950 altgsumbcALT 45577 expnegico01 45747 digexp 45841 dig1 45842 |
Copyright terms: Public domain | W3C validator |