Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fltdvdsabdvdsc Structured version   Visualization version   GIF version

Theorem fltdvdsabdvdsc 41984
Description: Any factor of both 𝐴 and 𝐵 also divides 𝐶. This establishes the validity of fltabcoprmex 41985. (Contributed by SN, 21-Aug-2024.)
Hypotheses
Ref Expression
fltdvdsabdvdsc.a (𝜑𝐴 ∈ ℕ)
fltdvdsabdvdsc.b (𝜑𝐵 ∈ ℕ)
fltdvdsabdvdsc.c (𝜑𝐶 ∈ ℕ)
fltdvdsabdvdsc.n (𝜑𝑁 ∈ ℕ)
fltdvdsabdvdsc.1 (𝜑 → ((𝐴𝑁) + (𝐵𝑁)) = (𝐶𝑁))
Assertion
Ref Expression
fltdvdsabdvdsc (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐶)

Proof of Theorem fltdvdsabdvdsc
StepHypRef Expression
1 fltdvdsabdvdsc.a . . . . . . 7 (𝜑𝐴 ∈ ℕ)
2 fltdvdsabdvdsc.b . . . . . . 7 (𝜑𝐵 ∈ ℕ)
3 gcdnncl 16473 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ)
41, 2, 3syl2anc 583 . . . . . 6 (𝜑 → (𝐴 gcd 𝐵) ∈ ℕ)
5 fltdvdsabdvdsc.n . . . . . . 7 (𝜑𝑁 ∈ ℕ)
65nnnn0d 12554 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
74, 6nnexpcld 14231 . . . . 5 (𝜑 → ((𝐴 gcd 𝐵)↑𝑁) ∈ ℕ)
87nnzd 12607 . . . 4 (𝜑 → ((𝐴 gcd 𝐵)↑𝑁) ∈ ℤ)
91, 6nnexpcld 14231 . . . . 5 (𝜑 → (𝐴𝑁) ∈ ℕ)
109nnzd 12607 . . . 4 (𝜑 → (𝐴𝑁) ∈ ℤ)
112, 6nnexpcld 14231 . . . . 5 (𝜑 → (𝐵𝑁) ∈ ℕ)
1211nnzd 12607 . . . 4 (𝜑 → (𝐵𝑁) ∈ ℤ)
134nnzd 12607 . . . . 5 (𝜑 → (𝐴 gcd 𝐵) ∈ ℤ)
141nnzd 12607 . . . . 5 (𝜑𝐴 ∈ ℤ)
152nnzd 12607 . . . . . . 7 (𝜑𝐵 ∈ ℤ)
16 gcddvds 16469 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
1714, 15, 16syl2anc 583 . . . . . 6 (𝜑 → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
1817simpld 494 . . . . 5 (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐴)
1913, 14, 6, 18dvdsexpad 41814 . . . 4 (𝜑 → ((𝐴 gcd 𝐵)↑𝑁) ∥ (𝐴𝑁))
2017simprd 495 . . . . 5 (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐵)
2113, 15, 6, 20dvdsexpad 41814 . . . 4 (𝜑 → ((𝐴 gcd 𝐵)↑𝑁) ∥ (𝐵𝑁))
228, 10, 12, 19, 21dvds2addd 16260 . . 3 (𝜑 → ((𝐴 gcd 𝐵)↑𝑁) ∥ ((𝐴𝑁) + (𝐵𝑁)))
23 fltdvdsabdvdsc.1 . . 3 (𝜑 → ((𝐴𝑁) + (𝐵𝑁)) = (𝐶𝑁))
2422, 23breqtrd 5168 . 2 (𝜑 → ((𝐴 gcd 𝐵)↑𝑁) ∥ (𝐶𝑁))
25 fltdvdsabdvdsc.c . . 3 (𝜑𝐶 ∈ ℕ)
26 dvdsexpnn 41822 . . 3 (((𝐴 gcd 𝐵) ∈ ℕ ∧ 𝐶 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐶 ↔ ((𝐴 gcd 𝐵)↑𝑁) ∥ (𝐶𝑁)))
274, 25, 5, 26syl3anc 1369 . 2 (𝜑 → ((𝐴 gcd 𝐵) ∥ 𝐶 ↔ ((𝐴 gcd 𝐵)↑𝑁) ∥ (𝐶𝑁)))
2824, 27mpbird 257 1 (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099   class class class wbr 5142  (class class class)co 7414   + caddc 11133  cn 12234  cz 12580  cexp 14050  cdvds 16222   gcd cgcd 16460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207  ax-pre-sup 11208
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-en 8956  df-dom 8957  df-sdom 8958  df-sup 9457  df-inf 9458  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-div 11894  df-nn 12235  df-2 12297  df-3 12298  df-n0 12495  df-z 12581  df-uz 12845  df-rp 12999  df-fl 13781  df-mod 13859  df-seq 13991  df-exp 14051  df-cj 15070  df-re 15071  df-im 15072  df-sqrt 15206  df-abs 15207  df-dvds 16223  df-gcd 16461
This theorem is referenced by:  flt4lem2  41993
  Copyright terms: Public domain W3C validator