| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fltdvdsabdvdsc | Structured version Visualization version GIF version | ||
| Description: Any factor of both 𝐴 and 𝐵 also divides 𝐶. This establishes the validity of fltabcoprmex 42600. (Contributed by SN, 21-Aug-2024.) |
| Ref | Expression |
|---|---|
| fltdvdsabdvdsc.a | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
| fltdvdsabdvdsc.b | ⊢ (𝜑 → 𝐵 ∈ ℕ) |
| fltdvdsabdvdsc.c | ⊢ (𝜑 → 𝐶 ∈ ℕ) |
| fltdvdsabdvdsc.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| fltdvdsabdvdsc.1 | ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) |
| Ref | Expression |
|---|---|
| fltdvdsabdvdsc | ⊢ (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fltdvdsabdvdsc.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
| 2 | fltdvdsabdvdsc.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℕ) | |
| 3 | gcdnncl 16453 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ) | |
| 4 | 1, 2, 3 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝐴 gcd 𝐵) ∈ ℕ) |
| 5 | fltdvdsabdvdsc.n | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 6 | 5 | nnnn0d 12479 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| 7 | 4, 6 | nnexpcld 14186 | . . . . 5 ⊢ (𝜑 → ((𝐴 gcd 𝐵)↑𝑁) ∈ ℕ) |
| 8 | 7 | nnzd 12532 | . . . 4 ⊢ (𝜑 → ((𝐴 gcd 𝐵)↑𝑁) ∈ ℤ) |
| 9 | 1, 6 | nnexpcld 14186 | . . . . 5 ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℕ) |
| 10 | 9 | nnzd 12532 | . . . 4 ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℤ) |
| 11 | 2, 6 | nnexpcld 14186 | . . . . 5 ⊢ (𝜑 → (𝐵↑𝑁) ∈ ℕ) |
| 12 | 11 | nnzd 12532 | . . . 4 ⊢ (𝜑 → (𝐵↑𝑁) ∈ ℤ) |
| 13 | 4 | nnzd 12532 | . . . . 5 ⊢ (𝜑 → (𝐴 gcd 𝐵) ∈ ℤ) |
| 14 | 1 | nnzd 12532 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℤ) |
| 15 | 2 | nnzd 12532 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℤ) |
| 16 | gcddvds 16449 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) | |
| 17 | 14, 15, 16 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) |
| 18 | 17 | simpld 494 | . . . . 5 ⊢ (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐴) |
| 19 | 13, 14, 6, 18 | dvdsexpad 42293 | . . . 4 ⊢ (𝜑 → ((𝐴 gcd 𝐵)↑𝑁) ∥ (𝐴↑𝑁)) |
| 20 | 17 | simprd 495 | . . . . 5 ⊢ (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐵) |
| 21 | 13, 15, 6, 20 | dvdsexpad 42293 | . . . 4 ⊢ (𝜑 → ((𝐴 gcd 𝐵)↑𝑁) ∥ (𝐵↑𝑁)) |
| 22 | 8, 10, 12, 19, 21 | dvds2addd 16238 | . . 3 ⊢ (𝜑 → ((𝐴 gcd 𝐵)↑𝑁) ∥ ((𝐴↑𝑁) + (𝐵↑𝑁))) |
| 23 | fltdvdsabdvdsc.1 | . . 3 ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) | |
| 24 | 22, 23 | breqtrd 5128 | . 2 ⊢ (𝜑 → ((𝐴 gcd 𝐵)↑𝑁) ∥ (𝐶↑𝑁)) |
| 25 | fltdvdsabdvdsc.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℕ) | |
| 26 | dvdsexpnn 42294 | . . 3 ⊢ (((𝐴 gcd 𝐵) ∈ ℕ ∧ 𝐶 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐶 ↔ ((𝐴 gcd 𝐵)↑𝑁) ∥ (𝐶↑𝑁))) | |
| 27 | 4, 25, 5, 26 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝐴 gcd 𝐵) ∥ 𝐶 ↔ ((𝐴 gcd 𝐵)↑𝑁) ∥ (𝐶↑𝑁))) |
| 28 | 24, 27 | mpbird 257 | 1 ⊢ (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 (class class class)co 7369 + caddc 11047 ℕcn 12162 ℤcz 12505 ↑cexp 14002 ∥ cdvds 16198 gcd cgcd 16440 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-fl 13730 df-mod 13808 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-dvds 16199 df-gcd 16441 |
| This theorem is referenced by: flt4lem2 42608 |
| Copyright terms: Public domain | W3C validator |