![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fltdvdsabdvdsc | Structured version Visualization version GIF version |
Description: Any factor of both 𝐴 and 𝐵 also divides 𝐶. This establishes the validity of fltabcoprmex 41381. (Contributed by SN, 21-Aug-2024.) |
Ref | Expression |
---|---|
fltdvdsabdvdsc.a | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
fltdvdsabdvdsc.b | ⊢ (𝜑 → 𝐵 ∈ ℕ) |
fltdvdsabdvdsc.c | ⊢ (𝜑 → 𝐶 ∈ ℕ) |
fltdvdsabdvdsc.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
fltdvdsabdvdsc.1 | ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) |
Ref | Expression |
---|---|
fltdvdsabdvdsc | ⊢ (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fltdvdsabdvdsc.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
2 | fltdvdsabdvdsc.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℕ) | |
3 | gcdnncl 16448 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ) | |
4 | 1, 2, 3 | syl2anc 585 | . . . . . 6 ⊢ (𝜑 → (𝐴 gcd 𝐵) ∈ ℕ) |
5 | fltdvdsabdvdsc.n | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
6 | 5 | nnnn0d 12532 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
7 | 4, 6 | nnexpcld 14208 | . . . . 5 ⊢ (𝜑 → ((𝐴 gcd 𝐵)↑𝑁) ∈ ℕ) |
8 | 7 | nnzd 12585 | . . . 4 ⊢ (𝜑 → ((𝐴 gcd 𝐵)↑𝑁) ∈ ℤ) |
9 | 1, 6 | nnexpcld 14208 | . . . . 5 ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℕ) |
10 | 9 | nnzd 12585 | . . . 4 ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℤ) |
11 | 2, 6 | nnexpcld 14208 | . . . . 5 ⊢ (𝜑 → (𝐵↑𝑁) ∈ ℕ) |
12 | 11 | nnzd 12585 | . . . 4 ⊢ (𝜑 → (𝐵↑𝑁) ∈ ℤ) |
13 | 4 | nnzd 12585 | . . . . 5 ⊢ (𝜑 → (𝐴 gcd 𝐵) ∈ ℤ) |
14 | 1 | nnzd 12585 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℤ) |
15 | 2 | nnzd 12585 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℤ) |
16 | gcddvds 16444 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) | |
17 | 14, 15, 16 | syl2anc 585 | . . . . . 6 ⊢ (𝜑 → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) |
18 | 17 | simpld 496 | . . . . 5 ⊢ (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐴) |
19 | 13, 14, 6, 18 | dvdsexpad 41223 | . . . 4 ⊢ (𝜑 → ((𝐴 gcd 𝐵)↑𝑁) ∥ (𝐴↑𝑁)) |
20 | 17 | simprd 497 | . . . . 5 ⊢ (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐵) |
21 | 13, 15, 6, 20 | dvdsexpad 41223 | . . . 4 ⊢ (𝜑 → ((𝐴 gcd 𝐵)↑𝑁) ∥ (𝐵↑𝑁)) |
22 | 8, 10, 12, 19, 21 | dvds2addd 16235 | . . 3 ⊢ (𝜑 → ((𝐴 gcd 𝐵)↑𝑁) ∥ ((𝐴↑𝑁) + (𝐵↑𝑁))) |
23 | fltdvdsabdvdsc.1 | . . 3 ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) | |
24 | 22, 23 | breqtrd 5175 | . 2 ⊢ (𝜑 → ((𝐴 gcd 𝐵)↑𝑁) ∥ (𝐶↑𝑁)) |
25 | fltdvdsabdvdsc.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℕ) | |
26 | dvdsexpnn 41231 | . . 3 ⊢ (((𝐴 gcd 𝐵) ∈ ℕ ∧ 𝐶 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐶 ↔ ((𝐴 gcd 𝐵)↑𝑁) ∥ (𝐶↑𝑁))) | |
27 | 4, 25, 5, 26 | syl3anc 1372 | . 2 ⊢ (𝜑 → ((𝐴 gcd 𝐵) ∥ 𝐶 ↔ ((𝐴 gcd 𝐵)↑𝑁) ∥ (𝐶↑𝑁))) |
28 | 24, 27 | mpbird 257 | 1 ⊢ (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 class class class wbr 5149 (class class class)co 7409 + caddc 11113 ℕcn 12212 ℤcz 12558 ↑cexp 14027 ∥ cdvds 16197 gcd cgcd 16435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-sup 9437 df-inf 9438 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-2 12275 df-3 12276 df-n0 12473 df-z 12559 df-uz 12823 df-rp 12975 df-fl 13757 df-mod 13835 df-seq 13967 df-exp 14028 df-cj 15046 df-re 15047 df-im 15048 df-sqrt 15182 df-abs 15183 df-dvds 16198 df-gcd 16436 |
This theorem is referenced by: flt4lem2 41389 |
Copyright terms: Public domain | W3C validator |