| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fltdvdsabdvdsc | Structured version Visualization version GIF version | ||
| Description: Any factor of both 𝐴 and 𝐵 also divides 𝐶. This establishes the validity of fltabcoprmex 42680. (Contributed by SN, 21-Aug-2024.) |
| Ref | Expression |
|---|---|
| fltdvdsabdvdsc.a | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
| fltdvdsabdvdsc.b | ⊢ (𝜑 → 𝐵 ∈ ℕ) |
| fltdvdsabdvdsc.c | ⊢ (𝜑 → 𝐶 ∈ ℕ) |
| fltdvdsabdvdsc.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| fltdvdsabdvdsc.1 | ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) |
| Ref | Expression |
|---|---|
| fltdvdsabdvdsc | ⊢ (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fltdvdsabdvdsc.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
| 2 | fltdvdsabdvdsc.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℕ) | |
| 3 | gcdnncl 16418 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ) | |
| 4 | 1, 2, 3 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝐴 gcd 𝐵) ∈ ℕ) |
| 5 | fltdvdsabdvdsc.n | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 6 | 5 | nnnn0d 12442 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| 7 | 4, 6 | nnexpcld 14152 | . . . . 5 ⊢ (𝜑 → ((𝐴 gcd 𝐵)↑𝑁) ∈ ℕ) |
| 8 | 7 | nnzd 12495 | . . . 4 ⊢ (𝜑 → ((𝐴 gcd 𝐵)↑𝑁) ∈ ℤ) |
| 9 | 1, 6 | nnexpcld 14152 | . . . . 5 ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℕ) |
| 10 | 9 | nnzd 12495 | . . . 4 ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℤ) |
| 11 | 2, 6 | nnexpcld 14152 | . . . . 5 ⊢ (𝜑 → (𝐵↑𝑁) ∈ ℕ) |
| 12 | 11 | nnzd 12495 | . . . 4 ⊢ (𝜑 → (𝐵↑𝑁) ∈ ℤ) |
| 13 | 4 | nnzd 12495 | . . . . 5 ⊢ (𝜑 → (𝐴 gcd 𝐵) ∈ ℤ) |
| 14 | 1 | nnzd 12495 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℤ) |
| 15 | 2 | nnzd 12495 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℤ) |
| 16 | gcddvds 16414 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) | |
| 17 | 14, 15, 16 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) |
| 18 | 17 | simpld 494 | . . . . 5 ⊢ (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐴) |
| 19 | 13, 14, 6, 18 | dvdsexpad 42373 | . . . 4 ⊢ (𝜑 → ((𝐴 gcd 𝐵)↑𝑁) ∥ (𝐴↑𝑁)) |
| 20 | 17 | simprd 495 | . . . . 5 ⊢ (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐵) |
| 21 | 13, 15, 6, 20 | dvdsexpad 42373 | . . . 4 ⊢ (𝜑 → ((𝐴 gcd 𝐵)↑𝑁) ∥ (𝐵↑𝑁)) |
| 22 | 8, 10, 12, 19, 21 | dvds2addd 16203 | . . 3 ⊢ (𝜑 → ((𝐴 gcd 𝐵)↑𝑁) ∥ ((𝐴↑𝑁) + (𝐵↑𝑁))) |
| 23 | fltdvdsabdvdsc.1 | . . 3 ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) | |
| 24 | 22, 23 | breqtrd 5115 | . 2 ⊢ (𝜑 → ((𝐴 gcd 𝐵)↑𝑁) ∥ (𝐶↑𝑁)) |
| 25 | fltdvdsabdvdsc.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℕ) | |
| 26 | dvdsexpnn 42374 | . . 3 ⊢ (((𝐴 gcd 𝐵) ∈ ℕ ∧ 𝐶 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐶 ↔ ((𝐴 gcd 𝐵)↑𝑁) ∥ (𝐶↑𝑁))) | |
| 27 | 4, 25, 5, 26 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝐴 gcd 𝐵) ∥ 𝐶 ↔ ((𝐴 gcd 𝐵)↑𝑁) ∥ (𝐶↑𝑁))) |
| 28 | 24, 27 | mpbird 257 | 1 ⊢ (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 (class class class)co 7346 + caddc 11009 ℕcn 12125 ℤcz 12468 ↑cexp 13968 ∥ cdvds 16163 gcd cgcd 16405 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 df-gcd 16406 |
| This theorem is referenced by: flt4lem2 42688 |
| Copyright terms: Public domain | W3C validator |