Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fltdvdsabdvdsc Structured version   Visualization version   GIF version

Theorem fltdvdsabdvdsc 40391
Description: Any factor of both 𝐴 and 𝐵 also divides 𝐶. This establishes the validity of fltabcoprmex 40392. (Contributed by SN, 21-Aug-2024.)
Hypotheses
Ref Expression
fltdvdsabdvdsc.a (𝜑𝐴 ∈ ℕ)
fltdvdsabdvdsc.b (𝜑𝐵 ∈ ℕ)
fltdvdsabdvdsc.c (𝜑𝐶 ∈ ℕ)
fltdvdsabdvdsc.n (𝜑𝑁 ∈ ℕ)
fltdvdsabdvdsc.1 (𝜑 → ((𝐴𝑁) + (𝐵𝑁)) = (𝐶𝑁))
Assertion
Ref Expression
fltdvdsabdvdsc (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐶)

Proof of Theorem fltdvdsabdvdsc
StepHypRef Expression
1 fltdvdsabdvdsc.a . . . . . . 7 (𝜑𝐴 ∈ ℕ)
2 fltdvdsabdvdsc.b . . . . . . 7 (𝜑𝐵 ∈ ℕ)
3 gcdnncl 16142 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ)
41, 2, 3syl2anc 583 . . . . . 6 (𝜑 → (𝐴 gcd 𝐵) ∈ ℕ)
5 fltdvdsabdvdsc.n . . . . . . 7 (𝜑𝑁 ∈ ℕ)
65nnnn0d 12223 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
74, 6nnexpcld 13888 . . . . 5 (𝜑 → ((𝐴 gcd 𝐵)↑𝑁) ∈ ℕ)
87nnzd 12354 . . . 4 (𝜑 → ((𝐴 gcd 𝐵)↑𝑁) ∈ ℤ)
91, 6nnexpcld 13888 . . . . 5 (𝜑 → (𝐴𝑁) ∈ ℕ)
109nnzd 12354 . . . 4 (𝜑 → (𝐴𝑁) ∈ ℤ)
112, 6nnexpcld 13888 . . . . 5 (𝜑 → (𝐵𝑁) ∈ ℕ)
1211nnzd 12354 . . . 4 (𝜑 → (𝐵𝑁) ∈ ℤ)
134nnzd 12354 . . . . 5 (𝜑 → (𝐴 gcd 𝐵) ∈ ℤ)
141nnzd 12354 . . . . 5 (𝜑𝐴 ∈ ℤ)
152nnzd 12354 . . . . . . 7 (𝜑𝐵 ∈ ℤ)
16 gcddvds 16138 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
1714, 15, 16syl2anc 583 . . . . . 6 (𝜑 → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
1817simpld 494 . . . . 5 (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐴)
1913, 14, 6, 18dvdsexpad 40253 . . . 4 (𝜑 → ((𝐴 gcd 𝐵)↑𝑁) ∥ (𝐴𝑁))
2017simprd 495 . . . . 5 (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐵)
2113, 15, 6, 20dvdsexpad 40253 . . . 4 (𝜑 → ((𝐴 gcd 𝐵)↑𝑁) ∥ (𝐵𝑁))
228, 10, 12, 19, 21dvds2addd 15929 . . 3 (𝜑 → ((𝐴 gcd 𝐵)↑𝑁) ∥ ((𝐴𝑁) + (𝐵𝑁)))
23 fltdvdsabdvdsc.1 . . 3 (𝜑 → ((𝐴𝑁) + (𝐵𝑁)) = (𝐶𝑁))
2422, 23breqtrd 5096 . 2 (𝜑 → ((𝐴 gcd 𝐵)↑𝑁) ∥ (𝐶𝑁))
25 fltdvdsabdvdsc.c . . 3 (𝜑𝐶 ∈ ℕ)
26 dvdsexpnn 40261 . . 3 (((𝐴 gcd 𝐵) ∈ ℕ ∧ 𝐶 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐶 ↔ ((𝐴 gcd 𝐵)↑𝑁) ∥ (𝐶𝑁)))
274, 25, 5, 26syl3anc 1369 . 2 (𝜑 → ((𝐴 gcd 𝐵) ∥ 𝐶 ↔ ((𝐴 gcd 𝐵)↑𝑁) ∥ (𝐶𝑁)))
2824, 27mpbird 256 1 (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108   class class class wbr 5070  (class class class)co 7255   + caddc 10805  cn 11903  cz 12249  cexp 13710  cdvds 15891   gcd cgcd 16129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-gcd 16130
This theorem is referenced by:  flt4lem2  40400
  Copyright terms: Public domain W3C validator