Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fltdvdsabdvdsc Structured version   Visualization version   GIF version

Theorem fltdvdsabdvdsc 41380
Description: Any factor of both 𝐴 and 𝐵 also divides 𝐶. This establishes the validity of fltabcoprmex 41381. (Contributed by SN, 21-Aug-2024.)
Hypotheses
Ref Expression
fltdvdsabdvdsc.a (𝜑𝐴 ∈ ℕ)
fltdvdsabdvdsc.b (𝜑𝐵 ∈ ℕ)
fltdvdsabdvdsc.c (𝜑𝐶 ∈ ℕ)
fltdvdsabdvdsc.n (𝜑𝑁 ∈ ℕ)
fltdvdsabdvdsc.1 (𝜑 → ((𝐴𝑁) + (𝐵𝑁)) = (𝐶𝑁))
Assertion
Ref Expression
fltdvdsabdvdsc (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐶)

Proof of Theorem fltdvdsabdvdsc
StepHypRef Expression
1 fltdvdsabdvdsc.a . . . . . . 7 (𝜑𝐴 ∈ ℕ)
2 fltdvdsabdvdsc.b . . . . . . 7 (𝜑𝐵 ∈ ℕ)
3 gcdnncl 16448 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ)
41, 2, 3syl2anc 585 . . . . . 6 (𝜑 → (𝐴 gcd 𝐵) ∈ ℕ)
5 fltdvdsabdvdsc.n . . . . . . 7 (𝜑𝑁 ∈ ℕ)
65nnnn0d 12532 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
74, 6nnexpcld 14208 . . . . 5 (𝜑 → ((𝐴 gcd 𝐵)↑𝑁) ∈ ℕ)
87nnzd 12585 . . . 4 (𝜑 → ((𝐴 gcd 𝐵)↑𝑁) ∈ ℤ)
91, 6nnexpcld 14208 . . . . 5 (𝜑 → (𝐴𝑁) ∈ ℕ)
109nnzd 12585 . . . 4 (𝜑 → (𝐴𝑁) ∈ ℤ)
112, 6nnexpcld 14208 . . . . 5 (𝜑 → (𝐵𝑁) ∈ ℕ)
1211nnzd 12585 . . . 4 (𝜑 → (𝐵𝑁) ∈ ℤ)
134nnzd 12585 . . . . 5 (𝜑 → (𝐴 gcd 𝐵) ∈ ℤ)
141nnzd 12585 . . . . 5 (𝜑𝐴 ∈ ℤ)
152nnzd 12585 . . . . . . 7 (𝜑𝐵 ∈ ℤ)
16 gcddvds 16444 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
1714, 15, 16syl2anc 585 . . . . . 6 (𝜑 → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
1817simpld 496 . . . . 5 (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐴)
1913, 14, 6, 18dvdsexpad 41223 . . . 4 (𝜑 → ((𝐴 gcd 𝐵)↑𝑁) ∥ (𝐴𝑁))
2017simprd 497 . . . . 5 (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐵)
2113, 15, 6, 20dvdsexpad 41223 . . . 4 (𝜑 → ((𝐴 gcd 𝐵)↑𝑁) ∥ (𝐵𝑁))
228, 10, 12, 19, 21dvds2addd 16235 . . 3 (𝜑 → ((𝐴 gcd 𝐵)↑𝑁) ∥ ((𝐴𝑁) + (𝐵𝑁)))
23 fltdvdsabdvdsc.1 . . 3 (𝜑 → ((𝐴𝑁) + (𝐵𝑁)) = (𝐶𝑁))
2422, 23breqtrd 5175 . 2 (𝜑 → ((𝐴 gcd 𝐵)↑𝑁) ∥ (𝐶𝑁))
25 fltdvdsabdvdsc.c . . 3 (𝜑𝐶 ∈ ℕ)
26 dvdsexpnn 41231 . . 3 (((𝐴 gcd 𝐵) ∈ ℕ ∧ 𝐶 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐶 ↔ ((𝐴 gcd 𝐵)↑𝑁) ∥ (𝐶𝑁)))
274, 25, 5, 26syl3anc 1372 . 2 (𝜑 → ((𝐴 gcd 𝐵) ∥ 𝐶 ↔ ((𝐴 gcd 𝐵)↑𝑁) ∥ (𝐶𝑁)))
2824, 27mpbird 257 1 (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107   class class class wbr 5149  (class class class)co 7409   + caddc 11113  cn 12212  cz 12558  cexp 14027  cdvds 16197   gcd cgcd 16435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-sup 9437  df-inf 9438  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-n0 12473  df-z 12559  df-uz 12823  df-rp 12975  df-fl 13757  df-mod 13835  df-seq 13967  df-exp 14028  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-dvds 16198  df-gcd 16436
This theorem is referenced by:  flt4lem2  41389
  Copyright terms: Public domain W3C validator