![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege126d | Structured version Visualization version GIF version |
Description: If 𝐹 is a function, 𝐴 is the successor of 𝑋, and 𝐵 follows 𝑋 in the transitive closure of 𝐹, then (for distinct 𝐴 and 𝐵) either 𝐴 follows 𝐵 or 𝐵 follows 𝐴 in the transitive closure of 𝐹. Similar to Proposition 126 of [Frege1879] p. 81. Compare with frege126 43946. (Contributed by RP, 16-Jul-2020.) |
Ref | Expression |
---|---|
frege126d.f | ⊢ (𝜑 → 𝐹 ∈ V) |
frege126d.x | ⊢ (𝜑 → 𝑋 ∈ dom 𝐹) |
frege126d.a | ⊢ (𝜑 → 𝐴 = (𝐹‘𝑋)) |
frege126d.xb | ⊢ (𝜑 → 𝑋(t+‘𝐹)𝐵) |
frege126d.fun | ⊢ (𝜑 → Fun 𝐹) |
Ref | Expression |
---|---|
frege126d | ⊢ (𝜑 → (𝐴(t+‘𝐹)𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵(t+‘𝐹)𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege126d.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ V) | |
2 | frege126d.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ dom 𝐹) | |
3 | frege126d.a | . . 3 ⊢ (𝜑 → 𝐴 = (𝐹‘𝑋)) | |
4 | frege126d.xb | . . 3 ⊢ (𝜑 → 𝑋(t+‘𝐹)𝐵) | |
5 | frege126d.fun | . . 3 ⊢ (𝜑 → Fun 𝐹) | |
6 | 1, 2, 3, 4, 5 | frege124d 43718 | . 2 ⊢ (𝜑 → (𝐴(t+‘𝐹)𝐵 ∨ 𝐴 = 𝐵)) |
7 | 6 | frege114d 43715 | 1 ⊢ (𝜑 → (𝐴(t+‘𝐹)𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵(t+‘𝐹)𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1086 = wceq 1537 ∈ wcel 2108 Vcvv 3488 class class class wbr 5166 dom cdm 5695 Fun wfun 6562 ‘cfv 6568 t+ctcl 15028 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7764 ax-cnex 11234 ax-resscn 11235 ax-1cn 11236 ax-icn 11237 ax-addcl 11238 ax-addrcl 11239 ax-mulcl 11240 ax-mulrcl 11241 ax-mulcom 11242 ax-addass 11243 ax-mulass 11244 ax-distr 11245 ax-i2m1 11246 ax-1ne0 11247 ax-1rid 11248 ax-rnegex 11249 ax-rrecex 11250 ax-cnre 11251 ax-pre-lttri 11252 ax-pre-lttrn 11253 ax-pre-ltadd 11254 ax-pre-mulgt0 11255 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5650 df-we 5652 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-pred 6327 df-ord 6393 df-on 6394 df-lim 6395 df-suc 6396 df-iota 6520 df-fun 6570 df-fn 6571 df-f 6572 df-f1 6573 df-fo 6574 df-f1o 6575 df-fv 6576 df-riota 7399 df-ov 7446 df-oprab 7447 df-mpo 7448 df-om 7898 df-1st 8024 df-2nd 8025 df-frecs 8316 df-wrecs 8347 df-recs 8421 df-rdg 8460 df-er 8757 df-en 8998 df-dom 8999 df-sdom 9000 df-pnf 11320 df-mnf 11321 df-xr 11322 df-ltxr 11323 df-le 11324 df-sub 11516 df-neg 11517 df-nn 12288 df-2 12350 df-n0 12548 df-z 12634 df-uz 12898 df-fz 13562 df-seq 14047 df-trcl 15030 df-relexp 15063 |
This theorem is referenced by: frege129d 43720 |
Copyright terms: Public domain | W3C validator |