![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege81d | Structured version Visualization version GIF version |
Description: If the image of 𝑈 is a subset 𝑈, 𝐴 is an element of 𝑈 and 𝐵 follows 𝐴 in the transitive closure of 𝑅, then 𝐵 is an element of 𝑈. Similar to Proposition 81 of [Frege1879] p. 63. Compare with frege81 42998. (Contributed by RP, 15-Jul-2020.) |
Ref | Expression |
---|---|
frege81d.r | ⊢ (𝜑 → 𝑅 ∈ V) |
frege81d.a | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
frege81d.b | ⊢ (𝜑 → 𝐵 ∈ V) |
frege81d.ab | ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) |
frege81d.he | ⊢ (𝜑 → (𝑅 “ 𝑈) ⊆ 𝑈) |
Ref | Expression |
---|---|
frege81d | ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege81d.r | . 2 ⊢ (𝜑 → 𝑅 ∈ V) | |
2 | frege81d.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
3 | 2 | elexd 3494 | . 2 ⊢ (𝜑 → 𝐴 ∈ V) |
4 | frege81d.b | . 2 ⊢ (𝜑 → 𝐵 ∈ V) | |
5 | frege81d.ab | . 2 ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) | |
6 | frege81d.he | . 2 ⊢ (𝜑 → (𝑅 “ 𝑈) ⊆ 𝑈) | |
7 | 2 | snssd 4812 | . . . 4 ⊢ (𝜑 → {𝐴} ⊆ 𝑈) |
8 | imass2 6101 | . . . 4 ⊢ ({𝐴} ⊆ 𝑈 → (𝑅 “ {𝐴}) ⊆ (𝑅 “ 𝑈)) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → (𝑅 “ {𝐴}) ⊆ (𝑅 “ 𝑈)) |
10 | 9, 6 | sstrd 3992 | . 2 ⊢ (𝜑 → (𝑅 “ {𝐴}) ⊆ 𝑈) |
11 | 1, 3, 4, 5, 6, 10 | frege77d 42800 | 1 ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 Vcvv 3473 ⊆ wss 3948 {csn 4628 class class class wbr 5148 “ cima 5679 ‘cfv 6543 t+ctcl 14937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-n0 12478 df-z 12564 df-uz 12828 df-seq 13972 df-trcl 14939 df-relexp 14972 |
This theorem is referenced by: frege83d 42802 |
Copyright terms: Public domain | W3C validator |