Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege94 Structured version   Visualization version   GIF version

Theorem frege94 43921
Description: Looking one past a pair related by transitive closure of a relation. Proposition 94 of [Frege1879] p. 70. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege94.x 𝑋𝑈
frege94.z 𝑍𝑉
frege94.r 𝑅𝑊
Assertion
Ref Expression
frege94 ((𝑌𝑅𝑍 → (𝑋(t+‘𝑅)𝑌 → ∀𝑓(∀𝑤(𝑋𝑅𝑤𝑤𝑓) → (𝑅 hereditary 𝑓𝑍𝑓)))) → (𝑌𝑅𝑍 → (𝑋(t+‘𝑅)𝑌𝑋(t+‘𝑅)𝑍)))
Distinct variable groups:   𝑤,𝑓,𝑅   𝑈,𝑓   𝑓,𝑉   𝑓,𝑊   𝑓,𝑋,𝑤   𝑓,𝑍
Allowed substitution hints:   𝑈(𝑤)   𝑉(𝑤)   𝑊(𝑤)   𝑌(𝑤,𝑓)   𝑍(𝑤)

Proof of Theorem frege94
StepHypRef Expression
1 frege94.x . . 3 𝑋𝑈
2 frege94.z . . 3 𝑍𝑉
3 frege94.r . . 3 𝑅𝑊
41, 2, 3frege93 43920 . 2 (∀𝑓(∀𝑤(𝑋𝑅𝑤𝑤𝑓) → (𝑅 hereditary 𝑓𝑍𝑓)) → 𝑋(t+‘𝑅)𝑍)
5 frege7 43772 . 2 ((∀𝑓(∀𝑤(𝑋𝑅𝑤𝑤𝑓) → (𝑅 hereditary 𝑓𝑍𝑓)) → 𝑋(t+‘𝑅)𝑍) → ((𝑌𝑅𝑍 → (𝑋(t+‘𝑅)𝑌 → ∀𝑓(∀𝑤(𝑋𝑅𝑤𝑤𝑓) → (𝑅 hereditary 𝑓𝑍𝑓)))) → (𝑌𝑅𝑍 → (𝑋(t+‘𝑅)𝑌𝑋(t+‘𝑅)𝑍))))
64, 5ax-mp 5 1 ((𝑌𝑅𝑍 → (𝑋(t+‘𝑅)𝑌 → ∀𝑓(∀𝑤(𝑋𝑅𝑤𝑤𝑓) → (𝑅 hereditary 𝑓𝑍𝑓)))) → (𝑌𝑅𝑍 → (𝑋(t+‘𝑅)𝑌𝑋(t+‘𝑅)𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535  wcel 2108   class class class wbr 5166  cfv 6575  t+ctcl 15036   hereditary whe 43736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-cnex 11242  ax-resscn 11243  ax-1cn 11244  ax-icn 11245  ax-addcl 11246  ax-addrcl 11247  ax-mulcl 11248  ax-mulrcl 11249  ax-mulcom 11250  ax-addass 11251  ax-mulass 11252  ax-distr 11253  ax-i2m1 11254  ax-1ne0 11255  ax-1rid 11256  ax-rnegex 11257  ax-rrecex 11258  ax-cnre 11259  ax-pre-lttri 11260  ax-pre-lttrn 11261  ax-pre-ltadd 11262  ax-pre-mulgt0 11263  ax-frege1 43754  ax-frege2 43755  ax-frege8 43773  ax-frege52a 43821  ax-frege58b 43865
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ifp 1064  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6334  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-riota 7406  df-ov 7453  df-oprab 7454  df-mpo 7455  df-om 7906  df-2nd 8033  df-frecs 8324  df-wrecs 8355  df-recs 8429  df-rdg 8468  df-er 8765  df-en 9006  df-dom 9007  df-sdom 9008  df-pnf 11328  df-mnf 11329  df-xr 11330  df-ltxr 11331  df-le 11332  df-sub 11524  df-neg 11525  df-nn 12296  df-2 12358  df-n0 12556  df-z 12642  df-uz 12906  df-seq 14055  df-trcl 15038  df-relexp 15071  df-he 43737
This theorem is referenced by:  frege95  43922
  Copyright terms: Public domain W3C validator