MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsmsymgreq Structured version   Visualization version   GIF version

Theorem gsmsymgreq 19362
Description: Two combination of permutations moves an element of the intersection of the base sets of the permutations to the same element if each pair of corresponding permutations moves such an element to the same element. (Contributed by AV, 20-Jan-2019.)
Hypotheses
Ref Expression
gsmsymgrfix.s 𝑆 = (SymGrp‘𝑁)
gsmsymgrfix.b 𝐵 = (Base‘𝑆)
gsmsymgreq.z 𝑍 = (SymGrp‘𝑀)
gsmsymgreq.p 𝑃 = (Base‘𝑍)
gsmsymgreq.i 𝐼 = (𝑁𝑀)
Assertion
Ref Expression
gsmsymgreq (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ (𝑊 ∈ Word 𝐵𝑈 ∈ Word 𝑃 ∧ (♯‘𝑊) = (♯‘𝑈))) → (∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛𝐼 ((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑊)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛)))
Distinct variable groups:   𝐵,𝑖   𝑖,𝑁   𝑃,𝑖   𝑖,𝑊   𝑛,𝐼   𝑆,𝑛   𝑛,𝑍   𝐵,𝑛,𝑖   𝑖,𝐼   𝑛,𝑀   𝑛,𝑁   𝑃,𝑛   𝑈,𝑖,𝑛   𝑛,𝑊
Allowed substitution hints:   𝑆(𝑖)   𝑀(𝑖)   𝑍(𝑖)

Proof of Theorem gsmsymgreq
Dummy variables 𝑤 𝑦 𝑝 𝑥 𝑏 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6858 . . . . . . . 8 (𝑤 = ∅ → (♯‘𝑤) = (♯‘∅))
21oveq2d 7403 . . . . . . 7 (𝑤 = ∅ → (0..^(♯‘𝑤)) = (0..^(♯‘∅)))
32adantr 480 . . . . . 6 ((𝑤 = ∅ ∧ 𝑢 = ∅) → (0..^(♯‘𝑤)) = (0..^(♯‘∅)))
4 fveq1 6857 . . . . . . . . 9 (𝑤 = ∅ → (𝑤𝑖) = (∅‘𝑖))
54fveq1d 6860 . . . . . . . 8 (𝑤 = ∅ → ((𝑤𝑖)‘𝑛) = ((∅‘𝑖)‘𝑛))
6 fveq1 6857 . . . . . . . . 9 (𝑢 = ∅ → (𝑢𝑖) = (∅‘𝑖))
76fveq1d 6860 . . . . . . . 8 (𝑢 = ∅ → ((𝑢𝑖)‘𝑛) = ((∅‘𝑖)‘𝑛))
85, 7eqeqan12d 2743 . . . . . . 7 ((𝑤 = ∅ ∧ 𝑢 = ∅) → (((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ ((∅‘𝑖)‘𝑛) = ((∅‘𝑖)‘𝑛)))
98ralbidv 3156 . . . . . 6 ((𝑤 = ∅ ∧ 𝑢 = ∅) → (∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ ∀𝑛𝐼 ((∅‘𝑖)‘𝑛) = ((∅‘𝑖)‘𝑛)))
103, 9raleqbidv 3319 . . . . 5 ((𝑤 = ∅ ∧ 𝑢 = ∅) → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ ∀𝑖 ∈ (0..^(♯‘∅))∀𝑛𝐼 ((∅‘𝑖)‘𝑛) = ((∅‘𝑖)‘𝑛)))
11 oveq2 7395 . . . . . . . 8 (𝑤 = ∅ → (𝑆 Σg 𝑤) = (𝑆 Σg ∅))
1211fveq1d 6860 . . . . . . 7 (𝑤 = ∅ → ((𝑆 Σg 𝑤)‘𝑛) = ((𝑆 Σg ∅)‘𝑛))
13 oveq2 7395 . . . . . . . 8 (𝑢 = ∅ → (𝑍 Σg 𝑢) = (𝑍 Σg ∅))
1413fveq1d 6860 . . . . . . 7 (𝑢 = ∅ → ((𝑍 Σg 𝑢)‘𝑛) = ((𝑍 Σg ∅)‘𝑛))
1512, 14eqeqan12d 2743 . . . . . 6 ((𝑤 = ∅ ∧ 𝑢 = ∅) → (((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛) ↔ ((𝑆 Σg ∅)‘𝑛) = ((𝑍 Σg ∅)‘𝑛)))
1615ralbidv 3156 . . . . 5 ((𝑤 = ∅ ∧ 𝑢 = ∅) → (∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛) ↔ ∀𝑛𝐼 ((𝑆 Σg ∅)‘𝑛) = ((𝑍 Σg ∅)‘𝑛)))
1710, 16imbi12d 344 . . . 4 ((𝑤 = ∅ ∧ 𝑢 = ∅) → ((∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛)) ↔ (∀𝑖 ∈ (0..^(♯‘∅))∀𝑛𝐼 ((∅‘𝑖)‘𝑛) = ((∅‘𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg ∅)‘𝑛) = ((𝑍 Σg ∅)‘𝑛))))
1817imbi2d 340 . . 3 ((𝑤 = ∅ ∧ 𝑢 = ∅) → (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛))) ↔ ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘∅))∀𝑛𝐼 ((∅‘𝑖)‘𝑛) = ((∅‘𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg ∅)‘𝑛) = ((𝑍 Σg ∅)‘𝑛)))))
19 fveq2 6858 . . . . . . . 8 (𝑤 = 𝑥 → (♯‘𝑤) = (♯‘𝑥))
2019oveq2d 7403 . . . . . . 7 (𝑤 = 𝑥 → (0..^(♯‘𝑤)) = (0..^(♯‘𝑥)))
2120adantr 480 . . . . . 6 ((𝑤 = 𝑥𝑢 = 𝑦) → (0..^(♯‘𝑤)) = (0..^(♯‘𝑥)))
22 fveq1 6857 . . . . . . . . 9 (𝑤 = 𝑥 → (𝑤𝑖) = (𝑥𝑖))
2322fveq1d 6860 . . . . . . . 8 (𝑤 = 𝑥 → ((𝑤𝑖)‘𝑛) = ((𝑥𝑖)‘𝑛))
24 fveq1 6857 . . . . . . . . 9 (𝑢 = 𝑦 → (𝑢𝑖) = (𝑦𝑖))
2524fveq1d 6860 . . . . . . . 8 (𝑢 = 𝑦 → ((𝑢𝑖)‘𝑛) = ((𝑦𝑖)‘𝑛))
2623, 25eqeqan12d 2743 . . . . . . 7 ((𝑤 = 𝑥𝑢 = 𝑦) → (((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ ((𝑥𝑖)‘𝑛) = ((𝑦𝑖)‘𝑛)))
2726ralbidv 3156 . . . . . 6 ((𝑤 = 𝑥𝑢 = 𝑦) → (∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ ∀𝑛𝐼 ((𝑥𝑖)‘𝑛) = ((𝑦𝑖)‘𝑛)))
2821, 27raleqbidv 3319 . . . . 5 ((𝑤 = 𝑥𝑢 = 𝑦) → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ ∀𝑖 ∈ (0..^(♯‘𝑥))∀𝑛𝐼 ((𝑥𝑖)‘𝑛) = ((𝑦𝑖)‘𝑛)))
29 oveq2 7395 . . . . . . . 8 (𝑤 = 𝑥 → (𝑆 Σg 𝑤) = (𝑆 Σg 𝑥))
3029fveq1d 6860 . . . . . . 7 (𝑤 = 𝑥 → ((𝑆 Σg 𝑤)‘𝑛) = ((𝑆 Σg 𝑥)‘𝑛))
31 oveq2 7395 . . . . . . . 8 (𝑢 = 𝑦 → (𝑍 Σg 𝑢) = (𝑍 Σg 𝑦))
3231fveq1d 6860 . . . . . . 7 (𝑢 = 𝑦 → ((𝑍 Σg 𝑢)‘𝑛) = ((𝑍 Σg 𝑦)‘𝑛))
3330, 32eqeqan12d 2743 . . . . . 6 ((𝑤 = 𝑥𝑢 = 𝑦) → (((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛) ↔ ((𝑆 Σg 𝑥)‘𝑛) = ((𝑍 Σg 𝑦)‘𝑛)))
3433ralbidv 3156 . . . . 5 ((𝑤 = 𝑥𝑢 = 𝑦) → (∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛) ↔ ∀𝑛𝐼 ((𝑆 Σg 𝑥)‘𝑛) = ((𝑍 Σg 𝑦)‘𝑛)))
3528, 34imbi12d 344 . . . 4 ((𝑤 = 𝑥𝑢 = 𝑦) → ((∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛)) ↔ (∀𝑖 ∈ (0..^(♯‘𝑥))∀𝑛𝐼 ((𝑥𝑖)‘𝑛) = ((𝑦𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑥)‘𝑛) = ((𝑍 Σg 𝑦)‘𝑛))))
3635imbi2d 340 . . 3 ((𝑤 = 𝑥𝑢 = 𝑦) → (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛))) ↔ ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘𝑥))∀𝑛𝐼 ((𝑥𝑖)‘𝑛) = ((𝑦𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑥)‘𝑛) = ((𝑍 Σg 𝑦)‘𝑛)))))
37 fveq2 6858 . . . . . . . 8 (𝑤 = (𝑥 ++ ⟨“𝑏”⟩) → (♯‘𝑤) = (♯‘(𝑥 ++ ⟨“𝑏”⟩)))
3837oveq2d 7403 . . . . . . 7 (𝑤 = (𝑥 ++ ⟨“𝑏”⟩) → (0..^(♯‘𝑤)) = (0..^(♯‘(𝑥 ++ ⟨“𝑏”⟩))))
3938adantr 480 . . . . . 6 ((𝑤 = (𝑥 ++ ⟨“𝑏”⟩) ∧ 𝑢 = (𝑦 ++ ⟨“𝑝”⟩)) → (0..^(♯‘𝑤)) = (0..^(♯‘(𝑥 ++ ⟨“𝑏”⟩))))
40 fveq1 6857 . . . . . . . . 9 (𝑤 = (𝑥 ++ ⟨“𝑏”⟩) → (𝑤𝑖) = ((𝑥 ++ ⟨“𝑏”⟩)‘𝑖))
4140fveq1d 6860 . . . . . . . 8 (𝑤 = (𝑥 ++ ⟨“𝑏”⟩) → ((𝑤𝑖)‘𝑛) = (((𝑥 ++ ⟨“𝑏”⟩)‘𝑖)‘𝑛))
42 fveq1 6857 . . . . . . . . 9 (𝑢 = (𝑦 ++ ⟨“𝑝”⟩) → (𝑢𝑖) = ((𝑦 ++ ⟨“𝑝”⟩)‘𝑖))
4342fveq1d 6860 . . . . . . . 8 (𝑢 = (𝑦 ++ ⟨“𝑝”⟩) → ((𝑢𝑖)‘𝑛) = (((𝑦 ++ ⟨“𝑝”⟩)‘𝑖)‘𝑛))
4441, 43eqeqan12d 2743 . . . . . . 7 ((𝑤 = (𝑥 ++ ⟨“𝑏”⟩) ∧ 𝑢 = (𝑦 ++ ⟨“𝑝”⟩)) → (((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ (((𝑥 ++ ⟨“𝑏”⟩)‘𝑖)‘𝑛) = (((𝑦 ++ ⟨“𝑝”⟩)‘𝑖)‘𝑛)))
4544ralbidv 3156 . . . . . 6 ((𝑤 = (𝑥 ++ ⟨“𝑏”⟩) ∧ 𝑢 = (𝑦 ++ ⟨“𝑝”⟩)) → (∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ ∀𝑛𝐼 (((𝑥 ++ ⟨“𝑏”⟩)‘𝑖)‘𝑛) = (((𝑦 ++ ⟨“𝑝”⟩)‘𝑖)‘𝑛)))
4639, 45raleqbidv 3319 . . . . 5 ((𝑤 = (𝑥 ++ ⟨“𝑏”⟩) ∧ 𝑢 = (𝑦 ++ ⟨“𝑝”⟩)) → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ ∀𝑖 ∈ (0..^(♯‘(𝑥 ++ ⟨“𝑏”⟩)))∀𝑛𝐼 (((𝑥 ++ ⟨“𝑏”⟩)‘𝑖)‘𝑛) = (((𝑦 ++ ⟨“𝑝”⟩)‘𝑖)‘𝑛)))
47 oveq2 7395 . . . . . . . 8 (𝑤 = (𝑥 ++ ⟨“𝑏”⟩) → (𝑆 Σg 𝑤) = (𝑆 Σg (𝑥 ++ ⟨“𝑏”⟩)))
4847fveq1d 6860 . . . . . . 7 (𝑤 = (𝑥 ++ ⟨“𝑏”⟩) → ((𝑆 Σg 𝑤)‘𝑛) = ((𝑆 Σg (𝑥 ++ ⟨“𝑏”⟩))‘𝑛))
49 oveq2 7395 . . . . . . . 8 (𝑢 = (𝑦 ++ ⟨“𝑝”⟩) → (𝑍 Σg 𝑢) = (𝑍 Σg (𝑦 ++ ⟨“𝑝”⟩)))
5049fveq1d 6860 . . . . . . 7 (𝑢 = (𝑦 ++ ⟨“𝑝”⟩) → ((𝑍 Σg 𝑢)‘𝑛) = ((𝑍 Σg (𝑦 ++ ⟨“𝑝”⟩))‘𝑛))
5148, 50eqeqan12d 2743 . . . . . 6 ((𝑤 = (𝑥 ++ ⟨“𝑏”⟩) ∧ 𝑢 = (𝑦 ++ ⟨“𝑝”⟩)) → (((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛) ↔ ((𝑆 Σg (𝑥 ++ ⟨“𝑏”⟩))‘𝑛) = ((𝑍 Σg (𝑦 ++ ⟨“𝑝”⟩))‘𝑛)))
5251ralbidv 3156 . . . . 5 ((𝑤 = (𝑥 ++ ⟨“𝑏”⟩) ∧ 𝑢 = (𝑦 ++ ⟨“𝑝”⟩)) → (∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛) ↔ ∀𝑛𝐼 ((𝑆 Σg (𝑥 ++ ⟨“𝑏”⟩))‘𝑛) = ((𝑍 Σg (𝑦 ++ ⟨“𝑝”⟩))‘𝑛)))
5346, 52imbi12d 344 . . . 4 ((𝑤 = (𝑥 ++ ⟨“𝑏”⟩) ∧ 𝑢 = (𝑦 ++ ⟨“𝑝”⟩)) → ((∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛)) ↔ (∀𝑖 ∈ (0..^(♯‘(𝑥 ++ ⟨“𝑏”⟩)))∀𝑛𝐼 (((𝑥 ++ ⟨“𝑏”⟩)‘𝑖)‘𝑛) = (((𝑦 ++ ⟨“𝑝”⟩)‘𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg (𝑥 ++ ⟨“𝑏”⟩))‘𝑛) = ((𝑍 Σg (𝑦 ++ ⟨“𝑝”⟩))‘𝑛))))
5453imbi2d 340 . . 3 ((𝑤 = (𝑥 ++ ⟨“𝑏”⟩) ∧ 𝑢 = (𝑦 ++ ⟨“𝑝”⟩)) → (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛))) ↔ ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘(𝑥 ++ ⟨“𝑏”⟩)))∀𝑛𝐼 (((𝑥 ++ ⟨“𝑏”⟩)‘𝑖)‘𝑛) = (((𝑦 ++ ⟨“𝑝”⟩)‘𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg (𝑥 ++ ⟨“𝑏”⟩))‘𝑛) = ((𝑍 Σg (𝑦 ++ ⟨“𝑝”⟩))‘𝑛)))))
55 fveq2 6858 . . . . . . 7 (𝑤 = 𝑊 → (♯‘𝑤) = (♯‘𝑊))
5655oveq2d 7403 . . . . . 6 (𝑤 = 𝑊 → (0..^(♯‘𝑤)) = (0..^(♯‘𝑊)))
57 fveq1 6857 . . . . . . . . 9 (𝑤 = 𝑊 → (𝑤𝑖) = (𝑊𝑖))
5857fveq1d 6860 . . . . . . . 8 (𝑤 = 𝑊 → ((𝑤𝑖)‘𝑛) = ((𝑊𝑖)‘𝑛))
5958eqeq1d 2731 . . . . . . 7 (𝑤 = 𝑊 → (((𝑤𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) ↔ ((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))
6059ralbidv 3156 . . . . . 6 (𝑤 = 𝑊 → (∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) ↔ ∀𝑛𝐼 ((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))
6156, 60raleqbidv 3319 . . . . 5 (𝑤 = 𝑊 → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛𝐼 ((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))
62 oveq2 7395 . . . . . . . 8 (𝑤 = 𝑊 → (𝑆 Σg 𝑤) = (𝑆 Σg 𝑊))
6362fveq1d 6860 . . . . . . 7 (𝑤 = 𝑊 → ((𝑆 Σg 𝑤)‘𝑛) = ((𝑆 Σg 𝑊)‘𝑛))
6463eqeq1d 2731 . . . . . 6 (𝑤 = 𝑊 → (((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛) ↔ ((𝑆 Σg 𝑊)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛)))
6564ralbidv 3156 . . . . 5 (𝑤 = 𝑊 → (∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛) ↔ ∀𝑛𝐼 ((𝑆 Σg 𝑊)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛)))
6661, 65imbi12d 344 . . . 4 (𝑤 = 𝑊 → ((∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛)) ↔ (∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛𝐼 ((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑊)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛))))
6766imbi2d 340 . . 3 (𝑤 = 𝑊 → (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛))) ↔ ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛𝐼 ((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑊)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛)))))
68 fveq1 6857 . . . . . . . . 9 (𝑢 = 𝑈 → (𝑢𝑖) = (𝑈𝑖))
6968fveq1d 6860 . . . . . . . 8 (𝑢 = 𝑈 → ((𝑢𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛))
7069eqeq2d 2740 . . . . . . 7 (𝑢 = 𝑈 → (((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ ((𝑤𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))
7170ralbidv 3156 . . . . . 6 (𝑢 = 𝑈 → (∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ ∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))
7271ralbidv 3156 . . . . 5 (𝑢 = 𝑈 → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ ∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))
73 oveq2 7395 . . . . . . . 8 (𝑢 = 𝑈 → (𝑍 Σg 𝑢) = (𝑍 Σg 𝑈))
7473fveq1d 6860 . . . . . . 7 (𝑢 = 𝑈 → ((𝑍 Σg 𝑢)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛))
7574eqeq2d 2740 . . . . . 6 (𝑢 = 𝑈 → (((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛) ↔ ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛)))
7675ralbidv 3156 . . . . 5 (𝑢 = 𝑈 → (∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛) ↔ ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛)))
7772, 76imbi12d 344 . . . 4 (𝑢 = 𝑈 → ((∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛)) ↔ (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛))))
7877imbi2d 340 . . 3 (𝑢 = 𝑈 → (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛))) ↔ ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛)))))
79 gsmsymgreq.i . . . . . . . . . 10 𝐼 = (𝑁𝑀)
80 eleq2 2817 . . . . . . . . . . . 12 (𝐼 = (𝑁𝑀) → (𝑛𝐼𝑛 ∈ (𝑁𝑀)))
81 elin 3930 . . . . . . . . . . . 12 (𝑛 ∈ (𝑁𝑀) ↔ (𝑛𝑁𝑛𝑀))
8280, 81bitrdi 287 . . . . . . . . . . 11 (𝐼 = (𝑁𝑀) → (𝑛𝐼 ↔ (𝑛𝑁𝑛𝑀)))
83 simpl 482 . . . . . . . . . . 11 ((𝑛𝑁𝑛𝑀) → 𝑛𝑁)
8482, 83biimtrdi 253 . . . . . . . . . 10 (𝐼 = (𝑁𝑀) → (𝑛𝐼𝑛𝑁))
8579, 84ax-mp 5 . . . . . . . . 9 (𝑛𝐼𝑛𝑁)
8685adantl 481 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ 𝑛𝐼) → 𝑛𝑁)
87 fvresi 7147 . . . . . . . 8 (𝑛𝑁 → (( I ↾ 𝑁)‘𝑛) = 𝑛)
8886, 87syl 17 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ 𝑛𝐼) → (( I ↾ 𝑁)‘𝑛) = 𝑛)
89 simpr 484 . . . . . . . . . . 11 ((𝑛𝑁𝑛𝑀) → 𝑛𝑀)
9082, 89biimtrdi 253 . . . . . . . . . 10 (𝐼 = (𝑁𝑀) → (𝑛𝐼𝑛𝑀))
9179, 90ax-mp 5 . . . . . . . . 9 (𝑛𝐼𝑛𝑀)
9291adantl 481 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ 𝑛𝐼) → 𝑛𝑀)
93 fvresi 7147 . . . . . . . 8 (𝑛𝑀 → (( I ↾ 𝑀)‘𝑛) = 𝑛)
9492, 93syl 17 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ 𝑛𝐼) → (( I ↾ 𝑀)‘𝑛) = 𝑛)
9588, 94eqtr4d 2767 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ 𝑛𝐼) → (( I ↾ 𝑁)‘𝑛) = (( I ↾ 𝑀)‘𝑛))
9695ralrimiva 3125 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → ∀𝑛𝐼 (( I ↾ 𝑁)‘𝑛) = (( I ↾ 𝑀)‘𝑛))
97 eqid 2729 . . . . . . . . . 10 (0g𝑆) = (0g𝑆)
9897gsum0 18611 . . . . . . . . 9 (𝑆 Σg ∅) = (0g𝑆)
99 gsmsymgrfix.s . . . . . . . . . . 11 𝑆 = (SymGrp‘𝑁)
10099symgid 19331 . . . . . . . . . 10 (𝑁 ∈ Fin → ( I ↾ 𝑁) = (0g𝑆))
101100adantr 480 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → ( I ↾ 𝑁) = (0g𝑆))
10298, 101eqtr4id 2783 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (𝑆 Σg ∅) = ( I ↾ 𝑁))
103102fveq1d 6860 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → ((𝑆 Σg ∅)‘𝑛) = (( I ↾ 𝑁)‘𝑛))
104 eqid 2729 . . . . . . . . . 10 (0g𝑍) = (0g𝑍)
105104gsum0 18611 . . . . . . . . 9 (𝑍 Σg ∅) = (0g𝑍)
106 gsmsymgreq.z . . . . . . . . . . 11 𝑍 = (SymGrp‘𝑀)
107106symgid 19331 . . . . . . . . . 10 (𝑀 ∈ Fin → ( I ↾ 𝑀) = (0g𝑍))
108107adantl 481 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → ( I ↾ 𝑀) = (0g𝑍))
109105, 108eqtr4id 2783 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (𝑍 Σg ∅) = ( I ↾ 𝑀))
110109fveq1d 6860 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → ((𝑍 Σg ∅)‘𝑛) = (( I ↾ 𝑀)‘𝑛))
111103, 110eqeq12d 2745 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (((𝑆 Σg ∅)‘𝑛) = ((𝑍 Σg ∅)‘𝑛) ↔ (( I ↾ 𝑁)‘𝑛) = (( I ↾ 𝑀)‘𝑛)))
112111ralbidv 3156 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑛𝐼 ((𝑆 Σg ∅)‘𝑛) = ((𝑍 Σg ∅)‘𝑛) ↔ ∀𝑛𝐼 (( I ↾ 𝑁)‘𝑛) = (( I ↾ 𝑀)‘𝑛)))
11396, 112mpbird 257 . . . 4 ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → ∀𝑛𝐼 ((𝑆 Σg ∅)‘𝑛) = ((𝑍 Σg ∅)‘𝑛))
114113a1d 25 . . 3 ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘∅))∀𝑛𝐼 ((∅‘𝑖)‘𝑛) = ((∅‘𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg ∅)‘𝑛) = ((𝑍 Σg ∅)‘𝑛)))
115 gsmsymgrfix.b . . . . . 6 𝐵 = (Base‘𝑆)
116 gsmsymgreq.p . . . . . 6 𝑃 = (Base‘𝑍)
11799, 115, 106, 116, 79gsmsymgreqlem2 19361 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑥 ∈ Word 𝐵𝑏𝐵) ∧ (𝑦 ∈ Word 𝑃𝑝𝑃) ∧ (♯‘𝑥) = (♯‘𝑦))) → ((∀𝑖 ∈ (0..^(♯‘𝑥))∀𝑛𝐼 ((𝑥𝑖)‘𝑛) = ((𝑦𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑥)‘𝑛) = ((𝑍 Σg 𝑦)‘𝑛)) → (∀𝑖 ∈ (0..^(♯‘(𝑥 ++ ⟨“𝑏”⟩)))∀𝑛𝐼 (((𝑥 ++ ⟨“𝑏”⟩)‘𝑖)‘𝑛) = (((𝑦 ++ ⟨“𝑝”⟩)‘𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg (𝑥 ++ ⟨“𝑏”⟩))‘𝑛) = ((𝑍 Σg (𝑦 ++ ⟨“𝑝”⟩))‘𝑛))))
118117expcom 413 . . . 4 (((𝑥 ∈ Word 𝐵𝑏𝐵) ∧ (𝑦 ∈ Word 𝑃𝑝𝑃) ∧ (♯‘𝑥) = (♯‘𝑦)) → ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → ((∀𝑖 ∈ (0..^(♯‘𝑥))∀𝑛𝐼 ((𝑥𝑖)‘𝑛) = ((𝑦𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑥)‘𝑛) = ((𝑍 Σg 𝑦)‘𝑛)) → (∀𝑖 ∈ (0..^(♯‘(𝑥 ++ ⟨“𝑏”⟩)))∀𝑛𝐼 (((𝑥 ++ ⟨“𝑏”⟩)‘𝑖)‘𝑛) = (((𝑦 ++ ⟨“𝑝”⟩)‘𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg (𝑥 ++ ⟨“𝑏”⟩))‘𝑛) = ((𝑍 Σg (𝑦 ++ ⟨“𝑝”⟩))‘𝑛)))))
119118a2d 29 . . 3 (((𝑥 ∈ Word 𝐵𝑏𝐵) ∧ (𝑦 ∈ Word 𝑃𝑝𝑃) ∧ (♯‘𝑥) = (♯‘𝑦)) → (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘𝑥))∀𝑛𝐼 ((𝑥𝑖)‘𝑛) = ((𝑦𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑥)‘𝑛) = ((𝑍 Σg 𝑦)‘𝑛))) → ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘(𝑥 ++ ⟨“𝑏”⟩)))∀𝑛𝐼 (((𝑥 ++ ⟨“𝑏”⟩)‘𝑖)‘𝑛) = (((𝑦 ++ ⟨“𝑝”⟩)‘𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg (𝑥 ++ ⟨“𝑏”⟩))‘𝑛) = ((𝑍 Σg (𝑦 ++ ⟨“𝑝”⟩))‘𝑛)))))
12018, 36, 54, 67, 78, 114, 119wrd2ind 14688 . 2 ((𝑊 ∈ Word 𝐵𝑈 ∈ Word 𝑃 ∧ (♯‘𝑊) = (♯‘𝑈)) → ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛𝐼 ((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑊)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛))))
121120impcom 407 1 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ (𝑊 ∈ Word 𝐵𝑈 ∈ Word 𝑃 ∧ (♯‘𝑊) = (♯‘𝑈))) → (∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛𝐼 ((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑊)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  cin 3913  c0 4296   I cid 5532  cres 5640  cfv 6511  (class class class)co 7387  Fincfn 8918  0cc0 11068  ..^cfzo 13615  chash 14295  Word cword 14478   ++ cconcat 14535  ⟨“cs1 14560  Basecbs 17179  0gc0g 17402   Σg cgsu 17403  SymGrpcsymg 19299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-word 14479  df-lsw 14528  df-concat 14536  df-s1 14561  df-substr 14606  df-pfx 14636  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-tset 17239  df-0g 17404  df-gsum 17405  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-efmnd 18796  df-grp 18868  df-symg 19300
This theorem is referenced by:  psgndiflemB  21509
  Copyright terms: Public domain W3C validator