MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsmsymgreq Structured version   Visualization version   GIF version

Theorem gsmsymgreq 19329
Description: Two combination of permutations moves an element of the intersection of the base sets of the permutations to the same element if each pair of corresponding permutations moves such an element to the same element. (Contributed by AV, 20-Jan-2019.)
Hypotheses
Ref Expression
gsmsymgrfix.s 𝑆 = (SymGrp‘𝑁)
gsmsymgrfix.b 𝐵 = (Base‘𝑆)
gsmsymgreq.z 𝑍 = (SymGrp‘𝑀)
gsmsymgreq.p 𝑃 = (Base‘𝑍)
gsmsymgreq.i 𝐼 = (𝑁𝑀)
Assertion
Ref Expression
gsmsymgreq (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ (𝑊 ∈ Word 𝐵𝑈 ∈ Word 𝑃 ∧ (♯‘𝑊) = (♯‘𝑈))) → (∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛𝐼 ((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑊)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛)))
Distinct variable groups:   𝐵,𝑖   𝑖,𝑁   𝑃,𝑖   𝑖,𝑊   𝑛,𝐼   𝑆,𝑛   𝑛,𝑍   𝐵,𝑛,𝑖   𝑖,𝐼   𝑛,𝑀   𝑛,𝑁   𝑃,𝑛   𝑈,𝑖,𝑛   𝑛,𝑊
Allowed substitution hints:   𝑆(𝑖)   𝑀(𝑖)   𝑍(𝑖)

Proof of Theorem gsmsymgreq
Dummy variables 𝑤 𝑦 𝑝 𝑥 𝑏 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6826 . . . . . . . 8 (𝑤 = ∅ → (♯‘𝑤) = (♯‘∅))
21oveq2d 7369 . . . . . . 7 (𝑤 = ∅ → (0..^(♯‘𝑤)) = (0..^(♯‘∅)))
32adantr 480 . . . . . 6 ((𝑤 = ∅ ∧ 𝑢 = ∅) → (0..^(♯‘𝑤)) = (0..^(♯‘∅)))
4 fveq1 6825 . . . . . . . . 9 (𝑤 = ∅ → (𝑤𝑖) = (∅‘𝑖))
54fveq1d 6828 . . . . . . . 8 (𝑤 = ∅ → ((𝑤𝑖)‘𝑛) = ((∅‘𝑖)‘𝑛))
6 fveq1 6825 . . . . . . . . 9 (𝑢 = ∅ → (𝑢𝑖) = (∅‘𝑖))
76fveq1d 6828 . . . . . . . 8 (𝑢 = ∅ → ((𝑢𝑖)‘𝑛) = ((∅‘𝑖)‘𝑛))
85, 7eqeqan12d 2743 . . . . . . 7 ((𝑤 = ∅ ∧ 𝑢 = ∅) → (((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ ((∅‘𝑖)‘𝑛) = ((∅‘𝑖)‘𝑛)))
98ralbidv 3152 . . . . . 6 ((𝑤 = ∅ ∧ 𝑢 = ∅) → (∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ ∀𝑛𝐼 ((∅‘𝑖)‘𝑛) = ((∅‘𝑖)‘𝑛)))
103, 9raleqbidv 3310 . . . . 5 ((𝑤 = ∅ ∧ 𝑢 = ∅) → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ ∀𝑖 ∈ (0..^(♯‘∅))∀𝑛𝐼 ((∅‘𝑖)‘𝑛) = ((∅‘𝑖)‘𝑛)))
11 oveq2 7361 . . . . . . . 8 (𝑤 = ∅ → (𝑆 Σg 𝑤) = (𝑆 Σg ∅))
1211fveq1d 6828 . . . . . . 7 (𝑤 = ∅ → ((𝑆 Σg 𝑤)‘𝑛) = ((𝑆 Σg ∅)‘𝑛))
13 oveq2 7361 . . . . . . . 8 (𝑢 = ∅ → (𝑍 Σg 𝑢) = (𝑍 Σg ∅))
1413fveq1d 6828 . . . . . . 7 (𝑢 = ∅ → ((𝑍 Σg 𝑢)‘𝑛) = ((𝑍 Σg ∅)‘𝑛))
1512, 14eqeqan12d 2743 . . . . . 6 ((𝑤 = ∅ ∧ 𝑢 = ∅) → (((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛) ↔ ((𝑆 Σg ∅)‘𝑛) = ((𝑍 Σg ∅)‘𝑛)))
1615ralbidv 3152 . . . . 5 ((𝑤 = ∅ ∧ 𝑢 = ∅) → (∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛) ↔ ∀𝑛𝐼 ((𝑆 Σg ∅)‘𝑛) = ((𝑍 Σg ∅)‘𝑛)))
1710, 16imbi12d 344 . . . 4 ((𝑤 = ∅ ∧ 𝑢 = ∅) → ((∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛)) ↔ (∀𝑖 ∈ (0..^(♯‘∅))∀𝑛𝐼 ((∅‘𝑖)‘𝑛) = ((∅‘𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg ∅)‘𝑛) = ((𝑍 Σg ∅)‘𝑛))))
1817imbi2d 340 . . 3 ((𝑤 = ∅ ∧ 𝑢 = ∅) → (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛))) ↔ ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘∅))∀𝑛𝐼 ((∅‘𝑖)‘𝑛) = ((∅‘𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg ∅)‘𝑛) = ((𝑍 Σg ∅)‘𝑛)))))
19 fveq2 6826 . . . . . . . 8 (𝑤 = 𝑥 → (♯‘𝑤) = (♯‘𝑥))
2019oveq2d 7369 . . . . . . 7 (𝑤 = 𝑥 → (0..^(♯‘𝑤)) = (0..^(♯‘𝑥)))
2120adantr 480 . . . . . 6 ((𝑤 = 𝑥𝑢 = 𝑦) → (0..^(♯‘𝑤)) = (0..^(♯‘𝑥)))
22 fveq1 6825 . . . . . . . . 9 (𝑤 = 𝑥 → (𝑤𝑖) = (𝑥𝑖))
2322fveq1d 6828 . . . . . . . 8 (𝑤 = 𝑥 → ((𝑤𝑖)‘𝑛) = ((𝑥𝑖)‘𝑛))
24 fveq1 6825 . . . . . . . . 9 (𝑢 = 𝑦 → (𝑢𝑖) = (𝑦𝑖))
2524fveq1d 6828 . . . . . . . 8 (𝑢 = 𝑦 → ((𝑢𝑖)‘𝑛) = ((𝑦𝑖)‘𝑛))
2623, 25eqeqan12d 2743 . . . . . . 7 ((𝑤 = 𝑥𝑢 = 𝑦) → (((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ ((𝑥𝑖)‘𝑛) = ((𝑦𝑖)‘𝑛)))
2726ralbidv 3152 . . . . . 6 ((𝑤 = 𝑥𝑢 = 𝑦) → (∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ ∀𝑛𝐼 ((𝑥𝑖)‘𝑛) = ((𝑦𝑖)‘𝑛)))
2821, 27raleqbidv 3310 . . . . 5 ((𝑤 = 𝑥𝑢 = 𝑦) → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ ∀𝑖 ∈ (0..^(♯‘𝑥))∀𝑛𝐼 ((𝑥𝑖)‘𝑛) = ((𝑦𝑖)‘𝑛)))
29 oveq2 7361 . . . . . . . 8 (𝑤 = 𝑥 → (𝑆 Σg 𝑤) = (𝑆 Σg 𝑥))
3029fveq1d 6828 . . . . . . 7 (𝑤 = 𝑥 → ((𝑆 Σg 𝑤)‘𝑛) = ((𝑆 Σg 𝑥)‘𝑛))
31 oveq2 7361 . . . . . . . 8 (𝑢 = 𝑦 → (𝑍 Σg 𝑢) = (𝑍 Σg 𝑦))
3231fveq1d 6828 . . . . . . 7 (𝑢 = 𝑦 → ((𝑍 Σg 𝑢)‘𝑛) = ((𝑍 Σg 𝑦)‘𝑛))
3330, 32eqeqan12d 2743 . . . . . 6 ((𝑤 = 𝑥𝑢 = 𝑦) → (((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛) ↔ ((𝑆 Σg 𝑥)‘𝑛) = ((𝑍 Σg 𝑦)‘𝑛)))
3433ralbidv 3152 . . . . 5 ((𝑤 = 𝑥𝑢 = 𝑦) → (∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛) ↔ ∀𝑛𝐼 ((𝑆 Σg 𝑥)‘𝑛) = ((𝑍 Σg 𝑦)‘𝑛)))
3528, 34imbi12d 344 . . . 4 ((𝑤 = 𝑥𝑢 = 𝑦) → ((∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛)) ↔ (∀𝑖 ∈ (0..^(♯‘𝑥))∀𝑛𝐼 ((𝑥𝑖)‘𝑛) = ((𝑦𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑥)‘𝑛) = ((𝑍 Σg 𝑦)‘𝑛))))
3635imbi2d 340 . . 3 ((𝑤 = 𝑥𝑢 = 𝑦) → (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛))) ↔ ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘𝑥))∀𝑛𝐼 ((𝑥𝑖)‘𝑛) = ((𝑦𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑥)‘𝑛) = ((𝑍 Σg 𝑦)‘𝑛)))))
37 fveq2 6826 . . . . . . . 8 (𝑤 = (𝑥 ++ ⟨“𝑏”⟩) → (♯‘𝑤) = (♯‘(𝑥 ++ ⟨“𝑏”⟩)))
3837oveq2d 7369 . . . . . . 7 (𝑤 = (𝑥 ++ ⟨“𝑏”⟩) → (0..^(♯‘𝑤)) = (0..^(♯‘(𝑥 ++ ⟨“𝑏”⟩))))
3938adantr 480 . . . . . 6 ((𝑤 = (𝑥 ++ ⟨“𝑏”⟩) ∧ 𝑢 = (𝑦 ++ ⟨“𝑝”⟩)) → (0..^(♯‘𝑤)) = (0..^(♯‘(𝑥 ++ ⟨“𝑏”⟩))))
40 fveq1 6825 . . . . . . . . 9 (𝑤 = (𝑥 ++ ⟨“𝑏”⟩) → (𝑤𝑖) = ((𝑥 ++ ⟨“𝑏”⟩)‘𝑖))
4140fveq1d 6828 . . . . . . . 8 (𝑤 = (𝑥 ++ ⟨“𝑏”⟩) → ((𝑤𝑖)‘𝑛) = (((𝑥 ++ ⟨“𝑏”⟩)‘𝑖)‘𝑛))
42 fveq1 6825 . . . . . . . . 9 (𝑢 = (𝑦 ++ ⟨“𝑝”⟩) → (𝑢𝑖) = ((𝑦 ++ ⟨“𝑝”⟩)‘𝑖))
4342fveq1d 6828 . . . . . . . 8 (𝑢 = (𝑦 ++ ⟨“𝑝”⟩) → ((𝑢𝑖)‘𝑛) = (((𝑦 ++ ⟨“𝑝”⟩)‘𝑖)‘𝑛))
4441, 43eqeqan12d 2743 . . . . . . 7 ((𝑤 = (𝑥 ++ ⟨“𝑏”⟩) ∧ 𝑢 = (𝑦 ++ ⟨“𝑝”⟩)) → (((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ (((𝑥 ++ ⟨“𝑏”⟩)‘𝑖)‘𝑛) = (((𝑦 ++ ⟨“𝑝”⟩)‘𝑖)‘𝑛)))
4544ralbidv 3152 . . . . . 6 ((𝑤 = (𝑥 ++ ⟨“𝑏”⟩) ∧ 𝑢 = (𝑦 ++ ⟨“𝑝”⟩)) → (∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ ∀𝑛𝐼 (((𝑥 ++ ⟨“𝑏”⟩)‘𝑖)‘𝑛) = (((𝑦 ++ ⟨“𝑝”⟩)‘𝑖)‘𝑛)))
4639, 45raleqbidv 3310 . . . . 5 ((𝑤 = (𝑥 ++ ⟨“𝑏”⟩) ∧ 𝑢 = (𝑦 ++ ⟨“𝑝”⟩)) → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ ∀𝑖 ∈ (0..^(♯‘(𝑥 ++ ⟨“𝑏”⟩)))∀𝑛𝐼 (((𝑥 ++ ⟨“𝑏”⟩)‘𝑖)‘𝑛) = (((𝑦 ++ ⟨“𝑝”⟩)‘𝑖)‘𝑛)))
47 oveq2 7361 . . . . . . . 8 (𝑤 = (𝑥 ++ ⟨“𝑏”⟩) → (𝑆 Σg 𝑤) = (𝑆 Σg (𝑥 ++ ⟨“𝑏”⟩)))
4847fveq1d 6828 . . . . . . 7 (𝑤 = (𝑥 ++ ⟨“𝑏”⟩) → ((𝑆 Σg 𝑤)‘𝑛) = ((𝑆 Σg (𝑥 ++ ⟨“𝑏”⟩))‘𝑛))
49 oveq2 7361 . . . . . . . 8 (𝑢 = (𝑦 ++ ⟨“𝑝”⟩) → (𝑍 Σg 𝑢) = (𝑍 Σg (𝑦 ++ ⟨“𝑝”⟩)))
5049fveq1d 6828 . . . . . . 7 (𝑢 = (𝑦 ++ ⟨“𝑝”⟩) → ((𝑍 Σg 𝑢)‘𝑛) = ((𝑍 Σg (𝑦 ++ ⟨“𝑝”⟩))‘𝑛))
5148, 50eqeqan12d 2743 . . . . . 6 ((𝑤 = (𝑥 ++ ⟨“𝑏”⟩) ∧ 𝑢 = (𝑦 ++ ⟨“𝑝”⟩)) → (((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛) ↔ ((𝑆 Σg (𝑥 ++ ⟨“𝑏”⟩))‘𝑛) = ((𝑍 Σg (𝑦 ++ ⟨“𝑝”⟩))‘𝑛)))
5251ralbidv 3152 . . . . 5 ((𝑤 = (𝑥 ++ ⟨“𝑏”⟩) ∧ 𝑢 = (𝑦 ++ ⟨“𝑝”⟩)) → (∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛) ↔ ∀𝑛𝐼 ((𝑆 Σg (𝑥 ++ ⟨“𝑏”⟩))‘𝑛) = ((𝑍 Σg (𝑦 ++ ⟨“𝑝”⟩))‘𝑛)))
5346, 52imbi12d 344 . . . 4 ((𝑤 = (𝑥 ++ ⟨“𝑏”⟩) ∧ 𝑢 = (𝑦 ++ ⟨“𝑝”⟩)) → ((∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛)) ↔ (∀𝑖 ∈ (0..^(♯‘(𝑥 ++ ⟨“𝑏”⟩)))∀𝑛𝐼 (((𝑥 ++ ⟨“𝑏”⟩)‘𝑖)‘𝑛) = (((𝑦 ++ ⟨“𝑝”⟩)‘𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg (𝑥 ++ ⟨“𝑏”⟩))‘𝑛) = ((𝑍 Σg (𝑦 ++ ⟨“𝑝”⟩))‘𝑛))))
5453imbi2d 340 . . 3 ((𝑤 = (𝑥 ++ ⟨“𝑏”⟩) ∧ 𝑢 = (𝑦 ++ ⟨“𝑝”⟩)) → (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛))) ↔ ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘(𝑥 ++ ⟨“𝑏”⟩)))∀𝑛𝐼 (((𝑥 ++ ⟨“𝑏”⟩)‘𝑖)‘𝑛) = (((𝑦 ++ ⟨“𝑝”⟩)‘𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg (𝑥 ++ ⟨“𝑏”⟩))‘𝑛) = ((𝑍 Σg (𝑦 ++ ⟨“𝑝”⟩))‘𝑛)))))
55 fveq2 6826 . . . . . . 7 (𝑤 = 𝑊 → (♯‘𝑤) = (♯‘𝑊))
5655oveq2d 7369 . . . . . 6 (𝑤 = 𝑊 → (0..^(♯‘𝑤)) = (0..^(♯‘𝑊)))
57 fveq1 6825 . . . . . . . . 9 (𝑤 = 𝑊 → (𝑤𝑖) = (𝑊𝑖))
5857fveq1d 6828 . . . . . . . 8 (𝑤 = 𝑊 → ((𝑤𝑖)‘𝑛) = ((𝑊𝑖)‘𝑛))
5958eqeq1d 2731 . . . . . . 7 (𝑤 = 𝑊 → (((𝑤𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) ↔ ((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))
6059ralbidv 3152 . . . . . 6 (𝑤 = 𝑊 → (∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) ↔ ∀𝑛𝐼 ((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))
6156, 60raleqbidv 3310 . . . . 5 (𝑤 = 𝑊 → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛𝐼 ((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))
62 oveq2 7361 . . . . . . . 8 (𝑤 = 𝑊 → (𝑆 Σg 𝑤) = (𝑆 Σg 𝑊))
6362fveq1d 6828 . . . . . . 7 (𝑤 = 𝑊 → ((𝑆 Σg 𝑤)‘𝑛) = ((𝑆 Σg 𝑊)‘𝑛))
6463eqeq1d 2731 . . . . . 6 (𝑤 = 𝑊 → (((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛) ↔ ((𝑆 Σg 𝑊)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛)))
6564ralbidv 3152 . . . . 5 (𝑤 = 𝑊 → (∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛) ↔ ∀𝑛𝐼 ((𝑆 Σg 𝑊)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛)))
6661, 65imbi12d 344 . . . 4 (𝑤 = 𝑊 → ((∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛)) ↔ (∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛𝐼 ((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑊)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛))))
6766imbi2d 340 . . 3 (𝑤 = 𝑊 → (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛))) ↔ ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛𝐼 ((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑊)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛)))))
68 fveq1 6825 . . . . . . . . 9 (𝑢 = 𝑈 → (𝑢𝑖) = (𝑈𝑖))
6968fveq1d 6828 . . . . . . . 8 (𝑢 = 𝑈 → ((𝑢𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛))
7069eqeq2d 2740 . . . . . . 7 (𝑢 = 𝑈 → (((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ ((𝑤𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))
7170ralbidv 3152 . . . . . 6 (𝑢 = 𝑈 → (∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ ∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))
7271ralbidv 3152 . . . . 5 (𝑢 = 𝑈 → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ ∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))
73 oveq2 7361 . . . . . . . 8 (𝑢 = 𝑈 → (𝑍 Σg 𝑢) = (𝑍 Σg 𝑈))
7473fveq1d 6828 . . . . . . 7 (𝑢 = 𝑈 → ((𝑍 Σg 𝑢)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛))
7574eqeq2d 2740 . . . . . 6 (𝑢 = 𝑈 → (((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛) ↔ ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛)))
7675ralbidv 3152 . . . . 5 (𝑢 = 𝑈 → (∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛) ↔ ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛)))
7772, 76imbi12d 344 . . . 4 (𝑢 = 𝑈 → ((∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛)) ↔ (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛))))
7877imbi2d 340 . . 3 (𝑢 = 𝑈 → (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛))) ↔ ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛)))))
79 gsmsymgreq.i . . . . . . . . . 10 𝐼 = (𝑁𝑀)
80 eleq2 2817 . . . . . . . . . . . 12 (𝐼 = (𝑁𝑀) → (𝑛𝐼𝑛 ∈ (𝑁𝑀)))
81 elin 3921 . . . . . . . . . . . 12 (𝑛 ∈ (𝑁𝑀) ↔ (𝑛𝑁𝑛𝑀))
8280, 81bitrdi 287 . . . . . . . . . . 11 (𝐼 = (𝑁𝑀) → (𝑛𝐼 ↔ (𝑛𝑁𝑛𝑀)))
83 simpl 482 . . . . . . . . . . 11 ((𝑛𝑁𝑛𝑀) → 𝑛𝑁)
8482, 83biimtrdi 253 . . . . . . . . . 10 (𝐼 = (𝑁𝑀) → (𝑛𝐼𝑛𝑁))
8579, 84ax-mp 5 . . . . . . . . 9 (𝑛𝐼𝑛𝑁)
8685adantl 481 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ 𝑛𝐼) → 𝑛𝑁)
87 fvresi 7113 . . . . . . . 8 (𝑛𝑁 → (( I ↾ 𝑁)‘𝑛) = 𝑛)
8886, 87syl 17 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ 𝑛𝐼) → (( I ↾ 𝑁)‘𝑛) = 𝑛)
89 simpr 484 . . . . . . . . . . 11 ((𝑛𝑁𝑛𝑀) → 𝑛𝑀)
9082, 89biimtrdi 253 . . . . . . . . . 10 (𝐼 = (𝑁𝑀) → (𝑛𝐼𝑛𝑀))
9179, 90ax-mp 5 . . . . . . . . 9 (𝑛𝐼𝑛𝑀)
9291adantl 481 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ 𝑛𝐼) → 𝑛𝑀)
93 fvresi 7113 . . . . . . . 8 (𝑛𝑀 → (( I ↾ 𝑀)‘𝑛) = 𝑛)
9492, 93syl 17 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ 𝑛𝐼) → (( I ↾ 𝑀)‘𝑛) = 𝑛)
9588, 94eqtr4d 2767 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ 𝑛𝐼) → (( I ↾ 𝑁)‘𝑛) = (( I ↾ 𝑀)‘𝑛))
9695ralrimiva 3121 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → ∀𝑛𝐼 (( I ↾ 𝑁)‘𝑛) = (( I ↾ 𝑀)‘𝑛))
97 eqid 2729 . . . . . . . . . 10 (0g𝑆) = (0g𝑆)
9897gsum0 18576 . . . . . . . . 9 (𝑆 Σg ∅) = (0g𝑆)
99 gsmsymgrfix.s . . . . . . . . . . 11 𝑆 = (SymGrp‘𝑁)
10099symgid 19298 . . . . . . . . . 10 (𝑁 ∈ Fin → ( I ↾ 𝑁) = (0g𝑆))
101100adantr 480 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → ( I ↾ 𝑁) = (0g𝑆))
10298, 101eqtr4id 2783 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (𝑆 Σg ∅) = ( I ↾ 𝑁))
103102fveq1d 6828 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → ((𝑆 Σg ∅)‘𝑛) = (( I ↾ 𝑁)‘𝑛))
104 eqid 2729 . . . . . . . . . 10 (0g𝑍) = (0g𝑍)
105104gsum0 18576 . . . . . . . . 9 (𝑍 Σg ∅) = (0g𝑍)
106 gsmsymgreq.z . . . . . . . . . . 11 𝑍 = (SymGrp‘𝑀)
107106symgid 19298 . . . . . . . . . 10 (𝑀 ∈ Fin → ( I ↾ 𝑀) = (0g𝑍))
108107adantl 481 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → ( I ↾ 𝑀) = (0g𝑍))
109105, 108eqtr4id 2783 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (𝑍 Σg ∅) = ( I ↾ 𝑀))
110109fveq1d 6828 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → ((𝑍 Σg ∅)‘𝑛) = (( I ↾ 𝑀)‘𝑛))
111103, 110eqeq12d 2745 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (((𝑆 Σg ∅)‘𝑛) = ((𝑍 Σg ∅)‘𝑛) ↔ (( I ↾ 𝑁)‘𝑛) = (( I ↾ 𝑀)‘𝑛)))
112111ralbidv 3152 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑛𝐼 ((𝑆 Σg ∅)‘𝑛) = ((𝑍 Σg ∅)‘𝑛) ↔ ∀𝑛𝐼 (( I ↾ 𝑁)‘𝑛) = (( I ↾ 𝑀)‘𝑛)))
11396, 112mpbird 257 . . . 4 ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → ∀𝑛𝐼 ((𝑆 Σg ∅)‘𝑛) = ((𝑍 Σg ∅)‘𝑛))
114113a1d 25 . . 3 ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘∅))∀𝑛𝐼 ((∅‘𝑖)‘𝑛) = ((∅‘𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg ∅)‘𝑛) = ((𝑍 Σg ∅)‘𝑛)))
115 gsmsymgrfix.b . . . . . 6 𝐵 = (Base‘𝑆)
116 gsmsymgreq.p . . . . . 6 𝑃 = (Base‘𝑍)
11799, 115, 106, 116, 79gsmsymgreqlem2 19328 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑥 ∈ Word 𝐵𝑏𝐵) ∧ (𝑦 ∈ Word 𝑃𝑝𝑃) ∧ (♯‘𝑥) = (♯‘𝑦))) → ((∀𝑖 ∈ (0..^(♯‘𝑥))∀𝑛𝐼 ((𝑥𝑖)‘𝑛) = ((𝑦𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑥)‘𝑛) = ((𝑍 Σg 𝑦)‘𝑛)) → (∀𝑖 ∈ (0..^(♯‘(𝑥 ++ ⟨“𝑏”⟩)))∀𝑛𝐼 (((𝑥 ++ ⟨“𝑏”⟩)‘𝑖)‘𝑛) = (((𝑦 ++ ⟨“𝑝”⟩)‘𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg (𝑥 ++ ⟨“𝑏”⟩))‘𝑛) = ((𝑍 Σg (𝑦 ++ ⟨“𝑝”⟩))‘𝑛))))
118117expcom 413 . . . 4 (((𝑥 ∈ Word 𝐵𝑏𝐵) ∧ (𝑦 ∈ Word 𝑃𝑝𝑃) ∧ (♯‘𝑥) = (♯‘𝑦)) → ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → ((∀𝑖 ∈ (0..^(♯‘𝑥))∀𝑛𝐼 ((𝑥𝑖)‘𝑛) = ((𝑦𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑥)‘𝑛) = ((𝑍 Σg 𝑦)‘𝑛)) → (∀𝑖 ∈ (0..^(♯‘(𝑥 ++ ⟨“𝑏”⟩)))∀𝑛𝐼 (((𝑥 ++ ⟨“𝑏”⟩)‘𝑖)‘𝑛) = (((𝑦 ++ ⟨“𝑝”⟩)‘𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg (𝑥 ++ ⟨“𝑏”⟩))‘𝑛) = ((𝑍 Σg (𝑦 ++ ⟨“𝑝”⟩))‘𝑛)))))
119118a2d 29 . . 3 (((𝑥 ∈ Word 𝐵𝑏𝐵) ∧ (𝑦 ∈ Word 𝑃𝑝𝑃) ∧ (♯‘𝑥) = (♯‘𝑦)) → (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘𝑥))∀𝑛𝐼 ((𝑥𝑖)‘𝑛) = ((𝑦𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑥)‘𝑛) = ((𝑍 Σg 𝑦)‘𝑛))) → ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘(𝑥 ++ ⟨“𝑏”⟩)))∀𝑛𝐼 (((𝑥 ++ ⟨“𝑏”⟩)‘𝑖)‘𝑛) = (((𝑦 ++ ⟨“𝑝”⟩)‘𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg (𝑥 ++ ⟨“𝑏”⟩))‘𝑛) = ((𝑍 Σg (𝑦 ++ ⟨“𝑝”⟩))‘𝑛)))))
12018, 36, 54, 67, 78, 114, 119wrd2ind 14647 . 2 ((𝑊 ∈ Word 𝐵𝑈 ∈ Word 𝑃 ∧ (♯‘𝑊) = (♯‘𝑈)) → ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛𝐼 ((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑊)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛))))
121120impcom 407 1 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ (𝑊 ∈ Word 𝐵𝑈 ∈ Word 𝑃 ∧ (♯‘𝑊) = (♯‘𝑈))) → (∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛𝐼 ((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑊)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  cin 3904  c0 4286   I cid 5517  cres 5625  cfv 6486  (class class class)co 7353  Fincfn 8879  0cc0 11028  ..^cfzo 13575  chash 14255  Word cword 14438   ++ cconcat 14495  ⟨“cs1 14520  Basecbs 17138  0gc0g 17361   Σg cgsu 17362  SymGrpcsymg 19266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-xnn0 12476  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-seq 13927  df-hash 14256  df-word 14439  df-lsw 14488  df-concat 14496  df-s1 14521  df-substr 14566  df-pfx 14596  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-tset 17198  df-0g 17363  df-gsum 17364  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-efmnd 18761  df-grp 18833  df-symg 19267
This theorem is referenced by:  psgndiflemB  21525
  Copyright terms: Public domain W3C validator