MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsmsymgreq Structured version   Visualization version   GIF version

Theorem gsmsymgreq 19474
Description: Two combination of permutations moves an element of the intersection of the base sets of the permutations to the same element if each pair of corresponding permutations moves such an element to the same element. (Contributed by AV, 20-Jan-2019.)
Hypotheses
Ref Expression
gsmsymgrfix.s 𝑆 = (SymGrp‘𝑁)
gsmsymgrfix.b 𝐵 = (Base‘𝑆)
gsmsymgreq.z 𝑍 = (SymGrp‘𝑀)
gsmsymgreq.p 𝑃 = (Base‘𝑍)
gsmsymgreq.i 𝐼 = (𝑁𝑀)
Assertion
Ref Expression
gsmsymgreq (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ (𝑊 ∈ Word 𝐵𝑈 ∈ Word 𝑃 ∧ (♯‘𝑊) = (♯‘𝑈))) → (∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛𝐼 ((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑊)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛)))
Distinct variable groups:   𝐵,𝑖   𝑖,𝑁   𝑃,𝑖   𝑖,𝑊   𝑛,𝐼   𝑆,𝑛   𝑛,𝑍   𝐵,𝑛,𝑖   𝑖,𝐼   𝑛,𝑀   𝑛,𝑁   𝑃,𝑛   𝑈,𝑖,𝑛   𝑛,𝑊
Allowed substitution hints:   𝑆(𝑖)   𝑀(𝑖)   𝑍(𝑖)

Proof of Theorem gsmsymgreq
Dummy variables 𝑤 𝑦 𝑝 𝑥 𝑏 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6920 . . . . . . . 8 (𝑤 = ∅ → (♯‘𝑤) = (♯‘∅))
21oveq2d 7464 . . . . . . 7 (𝑤 = ∅ → (0..^(♯‘𝑤)) = (0..^(♯‘∅)))
32adantr 480 . . . . . 6 ((𝑤 = ∅ ∧ 𝑢 = ∅) → (0..^(♯‘𝑤)) = (0..^(♯‘∅)))
4 fveq1 6919 . . . . . . . . 9 (𝑤 = ∅ → (𝑤𝑖) = (∅‘𝑖))
54fveq1d 6922 . . . . . . . 8 (𝑤 = ∅ → ((𝑤𝑖)‘𝑛) = ((∅‘𝑖)‘𝑛))
6 fveq1 6919 . . . . . . . . 9 (𝑢 = ∅ → (𝑢𝑖) = (∅‘𝑖))
76fveq1d 6922 . . . . . . . 8 (𝑢 = ∅ → ((𝑢𝑖)‘𝑛) = ((∅‘𝑖)‘𝑛))
85, 7eqeqan12d 2754 . . . . . . 7 ((𝑤 = ∅ ∧ 𝑢 = ∅) → (((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ ((∅‘𝑖)‘𝑛) = ((∅‘𝑖)‘𝑛)))
98ralbidv 3184 . . . . . 6 ((𝑤 = ∅ ∧ 𝑢 = ∅) → (∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ ∀𝑛𝐼 ((∅‘𝑖)‘𝑛) = ((∅‘𝑖)‘𝑛)))
103, 9raleqbidv 3354 . . . . 5 ((𝑤 = ∅ ∧ 𝑢 = ∅) → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ ∀𝑖 ∈ (0..^(♯‘∅))∀𝑛𝐼 ((∅‘𝑖)‘𝑛) = ((∅‘𝑖)‘𝑛)))
11 oveq2 7456 . . . . . . . 8 (𝑤 = ∅ → (𝑆 Σg 𝑤) = (𝑆 Σg ∅))
1211fveq1d 6922 . . . . . . 7 (𝑤 = ∅ → ((𝑆 Σg 𝑤)‘𝑛) = ((𝑆 Σg ∅)‘𝑛))
13 oveq2 7456 . . . . . . . 8 (𝑢 = ∅ → (𝑍 Σg 𝑢) = (𝑍 Σg ∅))
1413fveq1d 6922 . . . . . . 7 (𝑢 = ∅ → ((𝑍 Σg 𝑢)‘𝑛) = ((𝑍 Σg ∅)‘𝑛))
1512, 14eqeqan12d 2754 . . . . . 6 ((𝑤 = ∅ ∧ 𝑢 = ∅) → (((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛) ↔ ((𝑆 Σg ∅)‘𝑛) = ((𝑍 Σg ∅)‘𝑛)))
1615ralbidv 3184 . . . . 5 ((𝑤 = ∅ ∧ 𝑢 = ∅) → (∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛) ↔ ∀𝑛𝐼 ((𝑆 Σg ∅)‘𝑛) = ((𝑍 Σg ∅)‘𝑛)))
1710, 16imbi12d 344 . . . 4 ((𝑤 = ∅ ∧ 𝑢 = ∅) → ((∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛)) ↔ (∀𝑖 ∈ (0..^(♯‘∅))∀𝑛𝐼 ((∅‘𝑖)‘𝑛) = ((∅‘𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg ∅)‘𝑛) = ((𝑍 Σg ∅)‘𝑛))))
1817imbi2d 340 . . 3 ((𝑤 = ∅ ∧ 𝑢 = ∅) → (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛))) ↔ ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘∅))∀𝑛𝐼 ((∅‘𝑖)‘𝑛) = ((∅‘𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg ∅)‘𝑛) = ((𝑍 Σg ∅)‘𝑛)))))
19 fveq2 6920 . . . . . . . 8 (𝑤 = 𝑥 → (♯‘𝑤) = (♯‘𝑥))
2019oveq2d 7464 . . . . . . 7 (𝑤 = 𝑥 → (0..^(♯‘𝑤)) = (0..^(♯‘𝑥)))
2120adantr 480 . . . . . 6 ((𝑤 = 𝑥𝑢 = 𝑦) → (0..^(♯‘𝑤)) = (0..^(♯‘𝑥)))
22 fveq1 6919 . . . . . . . . 9 (𝑤 = 𝑥 → (𝑤𝑖) = (𝑥𝑖))
2322fveq1d 6922 . . . . . . . 8 (𝑤 = 𝑥 → ((𝑤𝑖)‘𝑛) = ((𝑥𝑖)‘𝑛))
24 fveq1 6919 . . . . . . . . 9 (𝑢 = 𝑦 → (𝑢𝑖) = (𝑦𝑖))
2524fveq1d 6922 . . . . . . . 8 (𝑢 = 𝑦 → ((𝑢𝑖)‘𝑛) = ((𝑦𝑖)‘𝑛))
2623, 25eqeqan12d 2754 . . . . . . 7 ((𝑤 = 𝑥𝑢 = 𝑦) → (((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ ((𝑥𝑖)‘𝑛) = ((𝑦𝑖)‘𝑛)))
2726ralbidv 3184 . . . . . 6 ((𝑤 = 𝑥𝑢 = 𝑦) → (∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ ∀𝑛𝐼 ((𝑥𝑖)‘𝑛) = ((𝑦𝑖)‘𝑛)))
2821, 27raleqbidv 3354 . . . . 5 ((𝑤 = 𝑥𝑢 = 𝑦) → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ ∀𝑖 ∈ (0..^(♯‘𝑥))∀𝑛𝐼 ((𝑥𝑖)‘𝑛) = ((𝑦𝑖)‘𝑛)))
29 oveq2 7456 . . . . . . . 8 (𝑤 = 𝑥 → (𝑆 Σg 𝑤) = (𝑆 Σg 𝑥))
3029fveq1d 6922 . . . . . . 7 (𝑤 = 𝑥 → ((𝑆 Σg 𝑤)‘𝑛) = ((𝑆 Σg 𝑥)‘𝑛))
31 oveq2 7456 . . . . . . . 8 (𝑢 = 𝑦 → (𝑍 Σg 𝑢) = (𝑍 Σg 𝑦))
3231fveq1d 6922 . . . . . . 7 (𝑢 = 𝑦 → ((𝑍 Σg 𝑢)‘𝑛) = ((𝑍 Σg 𝑦)‘𝑛))
3330, 32eqeqan12d 2754 . . . . . 6 ((𝑤 = 𝑥𝑢 = 𝑦) → (((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛) ↔ ((𝑆 Σg 𝑥)‘𝑛) = ((𝑍 Σg 𝑦)‘𝑛)))
3433ralbidv 3184 . . . . 5 ((𝑤 = 𝑥𝑢 = 𝑦) → (∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛) ↔ ∀𝑛𝐼 ((𝑆 Σg 𝑥)‘𝑛) = ((𝑍 Σg 𝑦)‘𝑛)))
3528, 34imbi12d 344 . . . 4 ((𝑤 = 𝑥𝑢 = 𝑦) → ((∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛)) ↔ (∀𝑖 ∈ (0..^(♯‘𝑥))∀𝑛𝐼 ((𝑥𝑖)‘𝑛) = ((𝑦𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑥)‘𝑛) = ((𝑍 Σg 𝑦)‘𝑛))))
3635imbi2d 340 . . 3 ((𝑤 = 𝑥𝑢 = 𝑦) → (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛))) ↔ ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘𝑥))∀𝑛𝐼 ((𝑥𝑖)‘𝑛) = ((𝑦𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑥)‘𝑛) = ((𝑍 Σg 𝑦)‘𝑛)))))
37 fveq2 6920 . . . . . . . 8 (𝑤 = (𝑥 ++ ⟨“𝑏”⟩) → (♯‘𝑤) = (♯‘(𝑥 ++ ⟨“𝑏”⟩)))
3837oveq2d 7464 . . . . . . 7 (𝑤 = (𝑥 ++ ⟨“𝑏”⟩) → (0..^(♯‘𝑤)) = (0..^(♯‘(𝑥 ++ ⟨“𝑏”⟩))))
3938adantr 480 . . . . . 6 ((𝑤 = (𝑥 ++ ⟨“𝑏”⟩) ∧ 𝑢 = (𝑦 ++ ⟨“𝑝”⟩)) → (0..^(♯‘𝑤)) = (0..^(♯‘(𝑥 ++ ⟨“𝑏”⟩))))
40 fveq1 6919 . . . . . . . . 9 (𝑤 = (𝑥 ++ ⟨“𝑏”⟩) → (𝑤𝑖) = ((𝑥 ++ ⟨“𝑏”⟩)‘𝑖))
4140fveq1d 6922 . . . . . . . 8 (𝑤 = (𝑥 ++ ⟨“𝑏”⟩) → ((𝑤𝑖)‘𝑛) = (((𝑥 ++ ⟨“𝑏”⟩)‘𝑖)‘𝑛))
42 fveq1 6919 . . . . . . . . 9 (𝑢 = (𝑦 ++ ⟨“𝑝”⟩) → (𝑢𝑖) = ((𝑦 ++ ⟨“𝑝”⟩)‘𝑖))
4342fveq1d 6922 . . . . . . . 8 (𝑢 = (𝑦 ++ ⟨“𝑝”⟩) → ((𝑢𝑖)‘𝑛) = (((𝑦 ++ ⟨“𝑝”⟩)‘𝑖)‘𝑛))
4441, 43eqeqan12d 2754 . . . . . . 7 ((𝑤 = (𝑥 ++ ⟨“𝑏”⟩) ∧ 𝑢 = (𝑦 ++ ⟨“𝑝”⟩)) → (((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ (((𝑥 ++ ⟨“𝑏”⟩)‘𝑖)‘𝑛) = (((𝑦 ++ ⟨“𝑝”⟩)‘𝑖)‘𝑛)))
4544ralbidv 3184 . . . . . 6 ((𝑤 = (𝑥 ++ ⟨“𝑏”⟩) ∧ 𝑢 = (𝑦 ++ ⟨“𝑝”⟩)) → (∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ ∀𝑛𝐼 (((𝑥 ++ ⟨“𝑏”⟩)‘𝑖)‘𝑛) = (((𝑦 ++ ⟨“𝑝”⟩)‘𝑖)‘𝑛)))
4639, 45raleqbidv 3354 . . . . 5 ((𝑤 = (𝑥 ++ ⟨“𝑏”⟩) ∧ 𝑢 = (𝑦 ++ ⟨“𝑝”⟩)) → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ ∀𝑖 ∈ (0..^(♯‘(𝑥 ++ ⟨“𝑏”⟩)))∀𝑛𝐼 (((𝑥 ++ ⟨“𝑏”⟩)‘𝑖)‘𝑛) = (((𝑦 ++ ⟨“𝑝”⟩)‘𝑖)‘𝑛)))
47 oveq2 7456 . . . . . . . 8 (𝑤 = (𝑥 ++ ⟨“𝑏”⟩) → (𝑆 Σg 𝑤) = (𝑆 Σg (𝑥 ++ ⟨“𝑏”⟩)))
4847fveq1d 6922 . . . . . . 7 (𝑤 = (𝑥 ++ ⟨“𝑏”⟩) → ((𝑆 Σg 𝑤)‘𝑛) = ((𝑆 Σg (𝑥 ++ ⟨“𝑏”⟩))‘𝑛))
49 oveq2 7456 . . . . . . . 8 (𝑢 = (𝑦 ++ ⟨“𝑝”⟩) → (𝑍 Σg 𝑢) = (𝑍 Σg (𝑦 ++ ⟨“𝑝”⟩)))
5049fveq1d 6922 . . . . . . 7 (𝑢 = (𝑦 ++ ⟨“𝑝”⟩) → ((𝑍 Σg 𝑢)‘𝑛) = ((𝑍 Σg (𝑦 ++ ⟨“𝑝”⟩))‘𝑛))
5148, 50eqeqan12d 2754 . . . . . 6 ((𝑤 = (𝑥 ++ ⟨“𝑏”⟩) ∧ 𝑢 = (𝑦 ++ ⟨“𝑝”⟩)) → (((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛) ↔ ((𝑆 Σg (𝑥 ++ ⟨“𝑏”⟩))‘𝑛) = ((𝑍 Σg (𝑦 ++ ⟨“𝑝”⟩))‘𝑛)))
5251ralbidv 3184 . . . . 5 ((𝑤 = (𝑥 ++ ⟨“𝑏”⟩) ∧ 𝑢 = (𝑦 ++ ⟨“𝑝”⟩)) → (∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛) ↔ ∀𝑛𝐼 ((𝑆 Σg (𝑥 ++ ⟨“𝑏”⟩))‘𝑛) = ((𝑍 Σg (𝑦 ++ ⟨“𝑝”⟩))‘𝑛)))
5346, 52imbi12d 344 . . . 4 ((𝑤 = (𝑥 ++ ⟨“𝑏”⟩) ∧ 𝑢 = (𝑦 ++ ⟨“𝑝”⟩)) → ((∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛)) ↔ (∀𝑖 ∈ (0..^(♯‘(𝑥 ++ ⟨“𝑏”⟩)))∀𝑛𝐼 (((𝑥 ++ ⟨“𝑏”⟩)‘𝑖)‘𝑛) = (((𝑦 ++ ⟨“𝑝”⟩)‘𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg (𝑥 ++ ⟨“𝑏”⟩))‘𝑛) = ((𝑍 Σg (𝑦 ++ ⟨“𝑝”⟩))‘𝑛))))
5453imbi2d 340 . . 3 ((𝑤 = (𝑥 ++ ⟨“𝑏”⟩) ∧ 𝑢 = (𝑦 ++ ⟨“𝑝”⟩)) → (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛))) ↔ ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘(𝑥 ++ ⟨“𝑏”⟩)))∀𝑛𝐼 (((𝑥 ++ ⟨“𝑏”⟩)‘𝑖)‘𝑛) = (((𝑦 ++ ⟨“𝑝”⟩)‘𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg (𝑥 ++ ⟨“𝑏”⟩))‘𝑛) = ((𝑍 Σg (𝑦 ++ ⟨“𝑝”⟩))‘𝑛)))))
55 fveq2 6920 . . . . . . 7 (𝑤 = 𝑊 → (♯‘𝑤) = (♯‘𝑊))
5655oveq2d 7464 . . . . . 6 (𝑤 = 𝑊 → (0..^(♯‘𝑤)) = (0..^(♯‘𝑊)))
57 fveq1 6919 . . . . . . . . 9 (𝑤 = 𝑊 → (𝑤𝑖) = (𝑊𝑖))
5857fveq1d 6922 . . . . . . . 8 (𝑤 = 𝑊 → ((𝑤𝑖)‘𝑛) = ((𝑊𝑖)‘𝑛))
5958eqeq1d 2742 . . . . . . 7 (𝑤 = 𝑊 → (((𝑤𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) ↔ ((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))
6059ralbidv 3184 . . . . . 6 (𝑤 = 𝑊 → (∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) ↔ ∀𝑛𝐼 ((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))
6156, 60raleqbidv 3354 . . . . 5 (𝑤 = 𝑊 → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛𝐼 ((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))
62 oveq2 7456 . . . . . . . 8 (𝑤 = 𝑊 → (𝑆 Σg 𝑤) = (𝑆 Σg 𝑊))
6362fveq1d 6922 . . . . . . 7 (𝑤 = 𝑊 → ((𝑆 Σg 𝑤)‘𝑛) = ((𝑆 Σg 𝑊)‘𝑛))
6463eqeq1d 2742 . . . . . 6 (𝑤 = 𝑊 → (((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛) ↔ ((𝑆 Σg 𝑊)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛)))
6564ralbidv 3184 . . . . 5 (𝑤 = 𝑊 → (∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛) ↔ ∀𝑛𝐼 ((𝑆 Σg 𝑊)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛)))
6661, 65imbi12d 344 . . . 4 (𝑤 = 𝑊 → ((∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛)) ↔ (∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛𝐼 ((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑊)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛))))
6766imbi2d 340 . . 3 (𝑤 = 𝑊 → (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛))) ↔ ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛𝐼 ((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑊)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛)))))
68 fveq1 6919 . . . . . . . . 9 (𝑢 = 𝑈 → (𝑢𝑖) = (𝑈𝑖))
6968fveq1d 6922 . . . . . . . 8 (𝑢 = 𝑈 → ((𝑢𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛))
7069eqeq2d 2751 . . . . . . 7 (𝑢 = 𝑈 → (((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ ((𝑤𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))
7170ralbidv 3184 . . . . . 6 (𝑢 = 𝑈 → (∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ ∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))
7271ralbidv 3184 . . . . 5 (𝑢 = 𝑈 → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ ∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))
73 oveq2 7456 . . . . . . . 8 (𝑢 = 𝑈 → (𝑍 Σg 𝑢) = (𝑍 Σg 𝑈))
7473fveq1d 6922 . . . . . . 7 (𝑢 = 𝑈 → ((𝑍 Σg 𝑢)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛))
7574eqeq2d 2751 . . . . . 6 (𝑢 = 𝑈 → (((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛) ↔ ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛)))
7675ralbidv 3184 . . . . 5 (𝑢 = 𝑈 → (∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛) ↔ ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛)))
7772, 76imbi12d 344 . . . 4 (𝑢 = 𝑈 → ((∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛)) ↔ (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛))))
7877imbi2d 340 . . 3 (𝑢 = 𝑈 → (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛))) ↔ ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛)))))
79 gsmsymgreq.i . . . . . . . . . 10 𝐼 = (𝑁𝑀)
80 eleq2 2833 . . . . . . . . . . . 12 (𝐼 = (𝑁𝑀) → (𝑛𝐼𝑛 ∈ (𝑁𝑀)))
81 elin 3992 . . . . . . . . . . . 12 (𝑛 ∈ (𝑁𝑀) ↔ (𝑛𝑁𝑛𝑀))
8280, 81bitrdi 287 . . . . . . . . . . 11 (𝐼 = (𝑁𝑀) → (𝑛𝐼 ↔ (𝑛𝑁𝑛𝑀)))
83 simpl 482 . . . . . . . . . . 11 ((𝑛𝑁𝑛𝑀) → 𝑛𝑁)
8482, 83biimtrdi 253 . . . . . . . . . 10 (𝐼 = (𝑁𝑀) → (𝑛𝐼𝑛𝑁))
8579, 84ax-mp 5 . . . . . . . . 9 (𝑛𝐼𝑛𝑁)
8685adantl 481 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ 𝑛𝐼) → 𝑛𝑁)
87 fvresi 7207 . . . . . . . 8 (𝑛𝑁 → (( I ↾ 𝑁)‘𝑛) = 𝑛)
8886, 87syl 17 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ 𝑛𝐼) → (( I ↾ 𝑁)‘𝑛) = 𝑛)
89 simpr 484 . . . . . . . . . . 11 ((𝑛𝑁𝑛𝑀) → 𝑛𝑀)
9082, 89biimtrdi 253 . . . . . . . . . 10 (𝐼 = (𝑁𝑀) → (𝑛𝐼𝑛𝑀))
9179, 90ax-mp 5 . . . . . . . . 9 (𝑛𝐼𝑛𝑀)
9291adantl 481 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ 𝑛𝐼) → 𝑛𝑀)
93 fvresi 7207 . . . . . . . 8 (𝑛𝑀 → (( I ↾ 𝑀)‘𝑛) = 𝑛)
9492, 93syl 17 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ 𝑛𝐼) → (( I ↾ 𝑀)‘𝑛) = 𝑛)
9588, 94eqtr4d 2783 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ 𝑛𝐼) → (( I ↾ 𝑁)‘𝑛) = (( I ↾ 𝑀)‘𝑛))
9695ralrimiva 3152 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → ∀𝑛𝐼 (( I ↾ 𝑁)‘𝑛) = (( I ↾ 𝑀)‘𝑛))
97 eqid 2740 . . . . . . . . . 10 (0g𝑆) = (0g𝑆)
9897gsum0 18722 . . . . . . . . 9 (𝑆 Σg ∅) = (0g𝑆)
99 gsmsymgrfix.s . . . . . . . . . . 11 𝑆 = (SymGrp‘𝑁)
10099symgid 19443 . . . . . . . . . 10 (𝑁 ∈ Fin → ( I ↾ 𝑁) = (0g𝑆))
101100adantr 480 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → ( I ↾ 𝑁) = (0g𝑆))
10298, 101eqtr4id 2799 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (𝑆 Σg ∅) = ( I ↾ 𝑁))
103102fveq1d 6922 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → ((𝑆 Σg ∅)‘𝑛) = (( I ↾ 𝑁)‘𝑛))
104 eqid 2740 . . . . . . . . . 10 (0g𝑍) = (0g𝑍)
105104gsum0 18722 . . . . . . . . 9 (𝑍 Σg ∅) = (0g𝑍)
106 gsmsymgreq.z . . . . . . . . . . 11 𝑍 = (SymGrp‘𝑀)
107106symgid 19443 . . . . . . . . . 10 (𝑀 ∈ Fin → ( I ↾ 𝑀) = (0g𝑍))
108107adantl 481 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → ( I ↾ 𝑀) = (0g𝑍))
109105, 108eqtr4id 2799 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (𝑍 Σg ∅) = ( I ↾ 𝑀))
110109fveq1d 6922 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → ((𝑍 Σg ∅)‘𝑛) = (( I ↾ 𝑀)‘𝑛))
111103, 110eqeq12d 2756 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (((𝑆 Σg ∅)‘𝑛) = ((𝑍 Σg ∅)‘𝑛) ↔ (( I ↾ 𝑁)‘𝑛) = (( I ↾ 𝑀)‘𝑛)))
112111ralbidv 3184 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑛𝐼 ((𝑆 Σg ∅)‘𝑛) = ((𝑍 Σg ∅)‘𝑛) ↔ ∀𝑛𝐼 (( I ↾ 𝑁)‘𝑛) = (( I ↾ 𝑀)‘𝑛)))
11396, 112mpbird 257 . . . 4 ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → ∀𝑛𝐼 ((𝑆 Σg ∅)‘𝑛) = ((𝑍 Σg ∅)‘𝑛))
114113a1d 25 . . 3 ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘∅))∀𝑛𝐼 ((∅‘𝑖)‘𝑛) = ((∅‘𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg ∅)‘𝑛) = ((𝑍 Σg ∅)‘𝑛)))
115 gsmsymgrfix.b . . . . . 6 𝐵 = (Base‘𝑆)
116 gsmsymgreq.p . . . . . 6 𝑃 = (Base‘𝑍)
11799, 115, 106, 116, 79gsmsymgreqlem2 19473 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑥 ∈ Word 𝐵𝑏𝐵) ∧ (𝑦 ∈ Word 𝑃𝑝𝑃) ∧ (♯‘𝑥) = (♯‘𝑦))) → ((∀𝑖 ∈ (0..^(♯‘𝑥))∀𝑛𝐼 ((𝑥𝑖)‘𝑛) = ((𝑦𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑥)‘𝑛) = ((𝑍 Σg 𝑦)‘𝑛)) → (∀𝑖 ∈ (0..^(♯‘(𝑥 ++ ⟨“𝑏”⟩)))∀𝑛𝐼 (((𝑥 ++ ⟨“𝑏”⟩)‘𝑖)‘𝑛) = (((𝑦 ++ ⟨“𝑝”⟩)‘𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg (𝑥 ++ ⟨“𝑏”⟩))‘𝑛) = ((𝑍 Σg (𝑦 ++ ⟨“𝑝”⟩))‘𝑛))))
118117expcom 413 . . . 4 (((𝑥 ∈ Word 𝐵𝑏𝐵) ∧ (𝑦 ∈ Word 𝑃𝑝𝑃) ∧ (♯‘𝑥) = (♯‘𝑦)) → ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → ((∀𝑖 ∈ (0..^(♯‘𝑥))∀𝑛𝐼 ((𝑥𝑖)‘𝑛) = ((𝑦𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑥)‘𝑛) = ((𝑍 Σg 𝑦)‘𝑛)) → (∀𝑖 ∈ (0..^(♯‘(𝑥 ++ ⟨“𝑏”⟩)))∀𝑛𝐼 (((𝑥 ++ ⟨“𝑏”⟩)‘𝑖)‘𝑛) = (((𝑦 ++ ⟨“𝑝”⟩)‘𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg (𝑥 ++ ⟨“𝑏”⟩))‘𝑛) = ((𝑍 Σg (𝑦 ++ ⟨“𝑝”⟩))‘𝑛)))))
119118a2d 29 . . 3 (((𝑥 ∈ Word 𝐵𝑏𝐵) ∧ (𝑦 ∈ Word 𝑃𝑝𝑃) ∧ (♯‘𝑥) = (♯‘𝑦)) → (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘𝑥))∀𝑛𝐼 ((𝑥𝑖)‘𝑛) = ((𝑦𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑥)‘𝑛) = ((𝑍 Σg 𝑦)‘𝑛))) → ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘(𝑥 ++ ⟨“𝑏”⟩)))∀𝑛𝐼 (((𝑥 ++ ⟨“𝑏”⟩)‘𝑖)‘𝑛) = (((𝑦 ++ ⟨“𝑝”⟩)‘𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg (𝑥 ++ ⟨“𝑏”⟩))‘𝑛) = ((𝑍 Σg (𝑦 ++ ⟨“𝑝”⟩))‘𝑛)))))
12018, 36, 54, 67, 78, 114, 119wrd2ind 14771 . 2 ((𝑊 ∈ Word 𝐵𝑈 ∈ Word 𝑃 ∧ (♯‘𝑊) = (♯‘𝑈)) → ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛𝐼 ((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑊)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛))))
121120impcom 407 1 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ (𝑊 ∈ Word 𝐵𝑈 ∈ Word 𝑃 ∧ (♯‘𝑊) = (♯‘𝑈))) → (∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛𝐼 ((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑊)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  cin 3975  c0 4352   I cid 5592  cres 5702  cfv 6573  (class class class)co 7448  Fincfn 9003  0cc0 11184  ..^cfzo 13711  chash 14379  Word cword 14562   ++ cconcat 14618  ⟨“cs1 14643  Basecbs 17258  0gc0g 17499   Σg cgsu 17500  SymGrpcsymg 19410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-word 14563  df-lsw 14611  df-concat 14619  df-s1 14644  df-substr 14689  df-pfx 14719  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-tset 17330  df-0g 17501  df-gsum 17502  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-efmnd 18904  df-grp 18976  df-symg 19411
This theorem is referenced by:  psgndiflemB  21641
  Copyright terms: Public domain W3C validator