MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsmsymgreq Structured version   Visualization version   GIF version

Theorem gsmsymgreq 19299
Description: Two combination of permutations moves an element of the intersection of the base sets of the permutations to the same element if each pair of corresponding permutations moves such an element to the same element. (Contributed by AV, 20-Jan-2019.)
Hypotheses
Ref Expression
gsmsymgrfix.s 𝑆 = (SymGrp‘𝑁)
gsmsymgrfix.b 𝐵 = (Base‘𝑆)
gsmsymgreq.z 𝑍 = (SymGrp‘𝑀)
gsmsymgreq.p 𝑃 = (Base‘𝑍)
gsmsymgreq.i 𝐼 = (𝑁𝑀)
Assertion
Ref Expression
gsmsymgreq (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ (𝑊 ∈ Word 𝐵𝑈 ∈ Word 𝑃 ∧ (♯‘𝑊) = (♯‘𝑈))) → (∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛𝐼 ((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑊)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛)))
Distinct variable groups:   𝐵,𝑖   𝑖,𝑁   𝑃,𝑖   𝑖,𝑊   𝑛,𝐼   𝑆,𝑛   𝑛,𝑍   𝐵,𝑛,𝑖   𝑖,𝐼   𝑛,𝑀   𝑛,𝑁   𝑃,𝑛   𝑈,𝑖,𝑛   𝑛,𝑊
Allowed substitution hints:   𝑆(𝑖)   𝑀(𝑖)   𝑍(𝑖)

Proof of Theorem gsmsymgreq
Dummy variables 𝑤 𝑦 𝑝 𝑥 𝑏 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6891 . . . . . . . 8 (𝑤 = ∅ → (♯‘𝑤) = (♯‘∅))
21oveq2d 7424 . . . . . . 7 (𝑤 = ∅ → (0..^(♯‘𝑤)) = (0..^(♯‘∅)))
32adantr 481 . . . . . 6 ((𝑤 = ∅ ∧ 𝑢 = ∅) → (0..^(♯‘𝑤)) = (0..^(♯‘∅)))
4 fveq1 6890 . . . . . . . . 9 (𝑤 = ∅ → (𝑤𝑖) = (∅‘𝑖))
54fveq1d 6893 . . . . . . . 8 (𝑤 = ∅ → ((𝑤𝑖)‘𝑛) = ((∅‘𝑖)‘𝑛))
6 fveq1 6890 . . . . . . . . 9 (𝑢 = ∅ → (𝑢𝑖) = (∅‘𝑖))
76fveq1d 6893 . . . . . . . 8 (𝑢 = ∅ → ((𝑢𝑖)‘𝑛) = ((∅‘𝑖)‘𝑛))
85, 7eqeqan12d 2746 . . . . . . 7 ((𝑤 = ∅ ∧ 𝑢 = ∅) → (((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ ((∅‘𝑖)‘𝑛) = ((∅‘𝑖)‘𝑛)))
98ralbidv 3177 . . . . . 6 ((𝑤 = ∅ ∧ 𝑢 = ∅) → (∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ ∀𝑛𝐼 ((∅‘𝑖)‘𝑛) = ((∅‘𝑖)‘𝑛)))
103, 9raleqbidv 3342 . . . . 5 ((𝑤 = ∅ ∧ 𝑢 = ∅) → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ ∀𝑖 ∈ (0..^(♯‘∅))∀𝑛𝐼 ((∅‘𝑖)‘𝑛) = ((∅‘𝑖)‘𝑛)))
11 oveq2 7416 . . . . . . . 8 (𝑤 = ∅ → (𝑆 Σg 𝑤) = (𝑆 Σg ∅))
1211fveq1d 6893 . . . . . . 7 (𝑤 = ∅ → ((𝑆 Σg 𝑤)‘𝑛) = ((𝑆 Σg ∅)‘𝑛))
13 oveq2 7416 . . . . . . . 8 (𝑢 = ∅ → (𝑍 Σg 𝑢) = (𝑍 Σg ∅))
1413fveq1d 6893 . . . . . . 7 (𝑢 = ∅ → ((𝑍 Σg 𝑢)‘𝑛) = ((𝑍 Σg ∅)‘𝑛))
1512, 14eqeqan12d 2746 . . . . . 6 ((𝑤 = ∅ ∧ 𝑢 = ∅) → (((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛) ↔ ((𝑆 Σg ∅)‘𝑛) = ((𝑍 Σg ∅)‘𝑛)))
1615ralbidv 3177 . . . . 5 ((𝑤 = ∅ ∧ 𝑢 = ∅) → (∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛) ↔ ∀𝑛𝐼 ((𝑆 Σg ∅)‘𝑛) = ((𝑍 Σg ∅)‘𝑛)))
1710, 16imbi12d 344 . . . 4 ((𝑤 = ∅ ∧ 𝑢 = ∅) → ((∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛)) ↔ (∀𝑖 ∈ (0..^(♯‘∅))∀𝑛𝐼 ((∅‘𝑖)‘𝑛) = ((∅‘𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg ∅)‘𝑛) = ((𝑍 Σg ∅)‘𝑛))))
1817imbi2d 340 . . 3 ((𝑤 = ∅ ∧ 𝑢 = ∅) → (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛))) ↔ ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘∅))∀𝑛𝐼 ((∅‘𝑖)‘𝑛) = ((∅‘𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg ∅)‘𝑛) = ((𝑍 Σg ∅)‘𝑛)))))
19 fveq2 6891 . . . . . . . 8 (𝑤 = 𝑥 → (♯‘𝑤) = (♯‘𝑥))
2019oveq2d 7424 . . . . . . 7 (𝑤 = 𝑥 → (0..^(♯‘𝑤)) = (0..^(♯‘𝑥)))
2120adantr 481 . . . . . 6 ((𝑤 = 𝑥𝑢 = 𝑦) → (0..^(♯‘𝑤)) = (0..^(♯‘𝑥)))
22 fveq1 6890 . . . . . . . . 9 (𝑤 = 𝑥 → (𝑤𝑖) = (𝑥𝑖))
2322fveq1d 6893 . . . . . . . 8 (𝑤 = 𝑥 → ((𝑤𝑖)‘𝑛) = ((𝑥𝑖)‘𝑛))
24 fveq1 6890 . . . . . . . . 9 (𝑢 = 𝑦 → (𝑢𝑖) = (𝑦𝑖))
2524fveq1d 6893 . . . . . . . 8 (𝑢 = 𝑦 → ((𝑢𝑖)‘𝑛) = ((𝑦𝑖)‘𝑛))
2623, 25eqeqan12d 2746 . . . . . . 7 ((𝑤 = 𝑥𝑢 = 𝑦) → (((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ ((𝑥𝑖)‘𝑛) = ((𝑦𝑖)‘𝑛)))
2726ralbidv 3177 . . . . . 6 ((𝑤 = 𝑥𝑢 = 𝑦) → (∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ ∀𝑛𝐼 ((𝑥𝑖)‘𝑛) = ((𝑦𝑖)‘𝑛)))
2821, 27raleqbidv 3342 . . . . 5 ((𝑤 = 𝑥𝑢 = 𝑦) → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ ∀𝑖 ∈ (0..^(♯‘𝑥))∀𝑛𝐼 ((𝑥𝑖)‘𝑛) = ((𝑦𝑖)‘𝑛)))
29 oveq2 7416 . . . . . . . 8 (𝑤 = 𝑥 → (𝑆 Σg 𝑤) = (𝑆 Σg 𝑥))
3029fveq1d 6893 . . . . . . 7 (𝑤 = 𝑥 → ((𝑆 Σg 𝑤)‘𝑛) = ((𝑆 Σg 𝑥)‘𝑛))
31 oveq2 7416 . . . . . . . 8 (𝑢 = 𝑦 → (𝑍 Σg 𝑢) = (𝑍 Σg 𝑦))
3231fveq1d 6893 . . . . . . 7 (𝑢 = 𝑦 → ((𝑍 Σg 𝑢)‘𝑛) = ((𝑍 Σg 𝑦)‘𝑛))
3330, 32eqeqan12d 2746 . . . . . 6 ((𝑤 = 𝑥𝑢 = 𝑦) → (((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛) ↔ ((𝑆 Σg 𝑥)‘𝑛) = ((𝑍 Σg 𝑦)‘𝑛)))
3433ralbidv 3177 . . . . 5 ((𝑤 = 𝑥𝑢 = 𝑦) → (∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛) ↔ ∀𝑛𝐼 ((𝑆 Σg 𝑥)‘𝑛) = ((𝑍 Σg 𝑦)‘𝑛)))
3528, 34imbi12d 344 . . . 4 ((𝑤 = 𝑥𝑢 = 𝑦) → ((∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛)) ↔ (∀𝑖 ∈ (0..^(♯‘𝑥))∀𝑛𝐼 ((𝑥𝑖)‘𝑛) = ((𝑦𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑥)‘𝑛) = ((𝑍 Σg 𝑦)‘𝑛))))
3635imbi2d 340 . . 3 ((𝑤 = 𝑥𝑢 = 𝑦) → (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛))) ↔ ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘𝑥))∀𝑛𝐼 ((𝑥𝑖)‘𝑛) = ((𝑦𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑥)‘𝑛) = ((𝑍 Σg 𝑦)‘𝑛)))))
37 fveq2 6891 . . . . . . . 8 (𝑤 = (𝑥 ++ ⟨“𝑏”⟩) → (♯‘𝑤) = (♯‘(𝑥 ++ ⟨“𝑏”⟩)))
3837oveq2d 7424 . . . . . . 7 (𝑤 = (𝑥 ++ ⟨“𝑏”⟩) → (0..^(♯‘𝑤)) = (0..^(♯‘(𝑥 ++ ⟨“𝑏”⟩))))
3938adantr 481 . . . . . 6 ((𝑤 = (𝑥 ++ ⟨“𝑏”⟩) ∧ 𝑢 = (𝑦 ++ ⟨“𝑝”⟩)) → (0..^(♯‘𝑤)) = (0..^(♯‘(𝑥 ++ ⟨“𝑏”⟩))))
40 fveq1 6890 . . . . . . . . 9 (𝑤 = (𝑥 ++ ⟨“𝑏”⟩) → (𝑤𝑖) = ((𝑥 ++ ⟨“𝑏”⟩)‘𝑖))
4140fveq1d 6893 . . . . . . . 8 (𝑤 = (𝑥 ++ ⟨“𝑏”⟩) → ((𝑤𝑖)‘𝑛) = (((𝑥 ++ ⟨“𝑏”⟩)‘𝑖)‘𝑛))
42 fveq1 6890 . . . . . . . . 9 (𝑢 = (𝑦 ++ ⟨“𝑝”⟩) → (𝑢𝑖) = ((𝑦 ++ ⟨“𝑝”⟩)‘𝑖))
4342fveq1d 6893 . . . . . . . 8 (𝑢 = (𝑦 ++ ⟨“𝑝”⟩) → ((𝑢𝑖)‘𝑛) = (((𝑦 ++ ⟨“𝑝”⟩)‘𝑖)‘𝑛))
4441, 43eqeqan12d 2746 . . . . . . 7 ((𝑤 = (𝑥 ++ ⟨“𝑏”⟩) ∧ 𝑢 = (𝑦 ++ ⟨“𝑝”⟩)) → (((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ (((𝑥 ++ ⟨“𝑏”⟩)‘𝑖)‘𝑛) = (((𝑦 ++ ⟨“𝑝”⟩)‘𝑖)‘𝑛)))
4544ralbidv 3177 . . . . . 6 ((𝑤 = (𝑥 ++ ⟨“𝑏”⟩) ∧ 𝑢 = (𝑦 ++ ⟨“𝑝”⟩)) → (∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ ∀𝑛𝐼 (((𝑥 ++ ⟨“𝑏”⟩)‘𝑖)‘𝑛) = (((𝑦 ++ ⟨“𝑝”⟩)‘𝑖)‘𝑛)))
4639, 45raleqbidv 3342 . . . . 5 ((𝑤 = (𝑥 ++ ⟨“𝑏”⟩) ∧ 𝑢 = (𝑦 ++ ⟨“𝑝”⟩)) → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ ∀𝑖 ∈ (0..^(♯‘(𝑥 ++ ⟨“𝑏”⟩)))∀𝑛𝐼 (((𝑥 ++ ⟨“𝑏”⟩)‘𝑖)‘𝑛) = (((𝑦 ++ ⟨“𝑝”⟩)‘𝑖)‘𝑛)))
47 oveq2 7416 . . . . . . . 8 (𝑤 = (𝑥 ++ ⟨“𝑏”⟩) → (𝑆 Σg 𝑤) = (𝑆 Σg (𝑥 ++ ⟨“𝑏”⟩)))
4847fveq1d 6893 . . . . . . 7 (𝑤 = (𝑥 ++ ⟨“𝑏”⟩) → ((𝑆 Σg 𝑤)‘𝑛) = ((𝑆 Σg (𝑥 ++ ⟨“𝑏”⟩))‘𝑛))
49 oveq2 7416 . . . . . . . 8 (𝑢 = (𝑦 ++ ⟨“𝑝”⟩) → (𝑍 Σg 𝑢) = (𝑍 Σg (𝑦 ++ ⟨“𝑝”⟩)))
5049fveq1d 6893 . . . . . . 7 (𝑢 = (𝑦 ++ ⟨“𝑝”⟩) → ((𝑍 Σg 𝑢)‘𝑛) = ((𝑍 Σg (𝑦 ++ ⟨“𝑝”⟩))‘𝑛))
5148, 50eqeqan12d 2746 . . . . . 6 ((𝑤 = (𝑥 ++ ⟨“𝑏”⟩) ∧ 𝑢 = (𝑦 ++ ⟨“𝑝”⟩)) → (((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛) ↔ ((𝑆 Σg (𝑥 ++ ⟨“𝑏”⟩))‘𝑛) = ((𝑍 Σg (𝑦 ++ ⟨“𝑝”⟩))‘𝑛)))
5251ralbidv 3177 . . . . 5 ((𝑤 = (𝑥 ++ ⟨“𝑏”⟩) ∧ 𝑢 = (𝑦 ++ ⟨“𝑝”⟩)) → (∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛) ↔ ∀𝑛𝐼 ((𝑆 Σg (𝑥 ++ ⟨“𝑏”⟩))‘𝑛) = ((𝑍 Σg (𝑦 ++ ⟨“𝑝”⟩))‘𝑛)))
5346, 52imbi12d 344 . . . 4 ((𝑤 = (𝑥 ++ ⟨“𝑏”⟩) ∧ 𝑢 = (𝑦 ++ ⟨“𝑝”⟩)) → ((∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛)) ↔ (∀𝑖 ∈ (0..^(♯‘(𝑥 ++ ⟨“𝑏”⟩)))∀𝑛𝐼 (((𝑥 ++ ⟨“𝑏”⟩)‘𝑖)‘𝑛) = (((𝑦 ++ ⟨“𝑝”⟩)‘𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg (𝑥 ++ ⟨“𝑏”⟩))‘𝑛) = ((𝑍 Σg (𝑦 ++ ⟨“𝑝”⟩))‘𝑛))))
5453imbi2d 340 . . 3 ((𝑤 = (𝑥 ++ ⟨“𝑏”⟩) ∧ 𝑢 = (𝑦 ++ ⟨“𝑝”⟩)) → (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛))) ↔ ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘(𝑥 ++ ⟨“𝑏”⟩)))∀𝑛𝐼 (((𝑥 ++ ⟨“𝑏”⟩)‘𝑖)‘𝑛) = (((𝑦 ++ ⟨“𝑝”⟩)‘𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg (𝑥 ++ ⟨“𝑏”⟩))‘𝑛) = ((𝑍 Σg (𝑦 ++ ⟨“𝑝”⟩))‘𝑛)))))
55 fveq2 6891 . . . . . . 7 (𝑤 = 𝑊 → (♯‘𝑤) = (♯‘𝑊))
5655oveq2d 7424 . . . . . 6 (𝑤 = 𝑊 → (0..^(♯‘𝑤)) = (0..^(♯‘𝑊)))
57 fveq1 6890 . . . . . . . . 9 (𝑤 = 𝑊 → (𝑤𝑖) = (𝑊𝑖))
5857fveq1d 6893 . . . . . . . 8 (𝑤 = 𝑊 → ((𝑤𝑖)‘𝑛) = ((𝑊𝑖)‘𝑛))
5958eqeq1d 2734 . . . . . . 7 (𝑤 = 𝑊 → (((𝑤𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) ↔ ((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))
6059ralbidv 3177 . . . . . 6 (𝑤 = 𝑊 → (∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) ↔ ∀𝑛𝐼 ((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))
6156, 60raleqbidv 3342 . . . . 5 (𝑤 = 𝑊 → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛𝐼 ((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))
62 oveq2 7416 . . . . . . . 8 (𝑤 = 𝑊 → (𝑆 Σg 𝑤) = (𝑆 Σg 𝑊))
6362fveq1d 6893 . . . . . . 7 (𝑤 = 𝑊 → ((𝑆 Σg 𝑤)‘𝑛) = ((𝑆 Σg 𝑊)‘𝑛))
6463eqeq1d 2734 . . . . . 6 (𝑤 = 𝑊 → (((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛) ↔ ((𝑆 Σg 𝑊)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛)))
6564ralbidv 3177 . . . . 5 (𝑤 = 𝑊 → (∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛) ↔ ∀𝑛𝐼 ((𝑆 Σg 𝑊)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛)))
6661, 65imbi12d 344 . . . 4 (𝑤 = 𝑊 → ((∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛)) ↔ (∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛𝐼 ((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑊)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛))))
6766imbi2d 340 . . 3 (𝑤 = 𝑊 → (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛))) ↔ ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛𝐼 ((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑊)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛)))))
68 fveq1 6890 . . . . . . . . 9 (𝑢 = 𝑈 → (𝑢𝑖) = (𝑈𝑖))
6968fveq1d 6893 . . . . . . . 8 (𝑢 = 𝑈 → ((𝑢𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛))
7069eqeq2d 2743 . . . . . . 7 (𝑢 = 𝑈 → (((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ ((𝑤𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))
7170ralbidv 3177 . . . . . 6 (𝑢 = 𝑈 → (∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ ∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))
7271ralbidv 3177 . . . . 5 (𝑢 = 𝑈 → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ ∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))
73 oveq2 7416 . . . . . . . 8 (𝑢 = 𝑈 → (𝑍 Σg 𝑢) = (𝑍 Σg 𝑈))
7473fveq1d 6893 . . . . . . 7 (𝑢 = 𝑈 → ((𝑍 Σg 𝑢)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛))
7574eqeq2d 2743 . . . . . 6 (𝑢 = 𝑈 → (((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛) ↔ ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛)))
7675ralbidv 3177 . . . . 5 (𝑢 = 𝑈 → (∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛) ↔ ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛)))
7772, 76imbi12d 344 . . . 4 (𝑢 = 𝑈 → ((∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛)) ↔ (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛))))
7877imbi2d 340 . . 3 (𝑢 = 𝑈 → (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛))) ↔ ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛)))))
79 gsmsymgreq.i . . . . . . . . . 10 𝐼 = (𝑁𝑀)
80 eleq2 2822 . . . . . . . . . . . 12 (𝐼 = (𝑁𝑀) → (𝑛𝐼𝑛 ∈ (𝑁𝑀)))
81 elin 3964 . . . . . . . . . . . 12 (𝑛 ∈ (𝑁𝑀) ↔ (𝑛𝑁𝑛𝑀))
8280, 81bitrdi 286 . . . . . . . . . . 11 (𝐼 = (𝑁𝑀) → (𝑛𝐼 ↔ (𝑛𝑁𝑛𝑀)))
83 simpl 483 . . . . . . . . . . 11 ((𝑛𝑁𝑛𝑀) → 𝑛𝑁)
8482, 83syl6bi 252 . . . . . . . . . 10 (𝐼 = (𝑁𝑀) → (𝑛𝐼𝑛𝑁))
8579, 84ax-mp 5 . . . . . . . . 9 (𝑛𝐼𝑛𝑁)
8685adantl 482 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ 𝑛𝐼) → 𝑛𝑁)
87 fvresi 7170 . . . . . . . 8 (𝑛𝑁 → (( I ↾ 𝑁)‘𝑛) = 𝑛)
8886, 87syl 17 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ 𝑛𝐼) → (( I ↾ 𝑁)‘𝑛) = 𝑛)
89 simpr 485 . . . . . . . . . . 11 ((𝑛𝑁𝑛𝑀) → 𝑛𝑀)
9082, 89syl6bi 252 . . . . . . . . . 10 (𝐼 = (𝑁𝑀) → (𝑛𝐼𝑛𝑀))
9179, 90ax-mp 5 . . . . . . . . 9 (𝑛𝐼𝑛𝑀)
9291adantl 482 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ 𝑛𝐼) → 𝑛𝑀)
93 fvresi 7170 . . . . . . . 8 (𝑛𝑀 → (( I ↾ 𝑀)‘𝑛) = 𝑛)
9492, 93syl 17 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ 𝑛𝐼) → (( I ↾ 𝑀)‘𝑛) = 𝑛)
9588, 94eqtr4d 2775 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ 𝑛𝐼) → (( I ↾ 𝑁)‘𝑛) = (( I ↾ 𝑀)‘𝑛))
9695ralrimiva 3146 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → ∀𝑛𝐼 (( I ↾ 𝑁)‘𝑛) = (( I ↾ 𝑀)‘𝑛))
97 eqid 2732 . . . . . . . . . 10 (0g𝑆) = (0g𝑆)
9897gsum0 18602 . . . . . . . . 9 (𝑆 Σg ∅) = (0g𝑆)
99 gsmsymgrfix.s . . . . . . . . . . 11 𝑆 = (SymGrp‘𝑁)
10099symgid 19268 . . . . . . . . . 10 (𝑁 ∈ Fin → ( I ↾ 𝑁) = (0g𝑆))
101100adantr 481 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → ( I ↾ 𝑁) = (0g𝑆))
10298, 101eqtr4id 2791 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (𝑆 Σg ∅) = ( I ↾ 𝑁))
103102fveq1d 6893 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → ((𝑆 Σg ∅)‘𝑛) = (( I ↾ 𝑁)‘𝑛))
104 eqid 2732 . . . . . . . . . 10 (0g𝑍) = (0g𝑍)
105104gsum0 18602 . . . . . . . . 9 (𝑍 Σg ∅) = (0g𝑍)
106 gsmsymgreq.z . . . . . . . . . . 11 𝑍 = (SymGrp‘𝑀)
107106symgid 19268 . . . . . . . . . 10 (𝑀 ∈ Fin → ( I ↾ 𝑀) = (0g𝑍))
108107adantl 482 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → ( I ↾ 𝑀) = (0g𝑍))
109105, 108eqtr4id 2791 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (𝑍 Σg ∅) = ( I ↾ 𝑀))
110109fveq1d 6893 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → ((𝑍 Σg ∅)‘𝑛) = (( I ↾ 𝑀)‘𝑛))
111103, 110eqeq12d 2748 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (((𝑆 Σg ∅)‘𝑛) = ((𝑍 Σg ∅)‘𝑛) ↔ (( I ↾ 𝑁)‘𝑛) = (( I ↾ 𝑀)‘𝑛)))
112111ralbidv 3177 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑛𝐼 ((𝑆 Σg ∅)‘𝑛) = ((𝑍 Σg ∅)‘𝑛) ↔ ∀𝑛𝐼 (( I ↾ 𝑁)‘𝑛) = (( I ↾ 𝑀)‘𝑛)))
11396, 112mpbird 256 . . . 4 ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → ∀𝑛𝐼 ((𝑆 Σg ∅)‘𝑛) = ((𝑍 Σg ∅)‘𝑛))
114113a1d 25 . . 3 ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘∅))∀𝑛𝐼 ((∅‘𝑖)‘𝑛) = ((∅‘𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg ∅)‘𝑛) = ((𝑍 Σg ∅)‘𝑛)))
115 gsmsymgrfix.b . . . . . 6 𝐵 = (Base‘𝑆)
116 gsmsymgreq.p . . . . . 6 𝑃 = (Base‘𝑍)
11799, 115, 106, 116, 79gsmsymgreqlem2 19298 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑥 ∈ Word 𝐵𝑏𝐵) ∧ (𝑦 ∈ Word 𝑃𝑝𝑃) ∧ (♯‘𝑥) = (♯‘𝑦))) → ((∀𝑖 ∈ (0..^(♯‘𝑥))∀𝑛𝐼 ((𝑥𝑖)‘𝑛) = ((𝑦𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑥)‘𝑛) = ((𝑍 Σg 𝑦)‘𝑛)) → (∀𝑖 ∈ (0..^(♯‘(𝑥 ++ ⟨“𝑏”⟩)))∀𝑛𝐼 (((𝑥 ++ ⟨“𝑏”⟩)‘𝑖)‘𝑛) = (((𝑦 ++ ⟨“𝑝”⟩)‘𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg (𝑥 ++ ⟨“𝑏”⟩))‘𝑛) = ((𝑍 Σg (𝑦 ++ ⟨“𝑝”⟩))‘𝑛))))
118117expcom 414 . . . 4 (((𝑥 ∈ Word 𝐵𝑏𝐵) ∧ (𝑦 ∈ Word 𝑃𝑝𝑃) ∧ (♯‘𝑥) = (♯‘𝑦)) → ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → ((∀𝑖 ∈ (0..^(♯‘𝑥))∀𝑛𝐼 ((𝑥𝑖)‘𝑛) = ((𝑦𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑥)‘𝑛) = ((𝑍 Σg 𝑦)‘𝑛)) → (∀𝑖 ∈ (0..^(♯‘(𝑥 ++ ⟨“𝑏”⟩)))∀𝑛𝐼 (((𝑥 ++ ⟨“𝑏”⟩)‘𝑖)‘𝑛) = (((𝑦 ++ ⟨“𝑝”⟩)‘𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg (𝑥 ++ ⟨“𝑏”⟩))‘𝑛) = ((𝑍 Σg (𝑦 ++ ⟨“𝑝”⟩))‘𝑛)))))
119118a2d 29 . . 3 (((𝑥 ∈ Word 𝐵𝑏𝐵) ∧ (𝑦 ∈ Word 𝑃𝑝𝑃) ∧ (♯‘𝑥) = (♯‘𝑦)) → (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘𝑥))∀𝑛𝐼 ((𝑥𝑖)‘𝑛) = ((𝑦𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑥)‘𝑛) = ((𝑍 Σg 𝑦)‘𝑛))) → ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘(𝑥 ++ ⟨“𝑏”⟩)))∀𝑛𝐼 (((𝑥 ++ ⟨“𝑏”⟩)‘𝑖)‘𝑛) = (((𝑦 ++ ⟨“𝑝”⟩)‘𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg (𝑥 ++ ⟨“𝑏”⟩))‘𝑛) = ((𝑍 Σg (𝑦 ++ ⟨“𝑝”⟩))‘𝑛)))))
12018, 36, 54, 67, 78, 114, 119wrd2ind 14672 . 2 ((𝑊 ∈ Word 𝐵𝑈 ∈ Word 𝑃 ∧ (♯‘𝑊) = (♯‘𝑈)) → ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛𝐼 ((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑊)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛))))
121120impcom 408 1 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ (𝑊 ∈ Word 𝐵𝑈 ∈ Word 𝑃 ∧ (♯‘𝑊) = (♯‘𝑈))) → (∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛𝐼 ((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑊)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3061  cin 3947  c0 4322   I cid 5573  cres 5678  cfv 6543  (class class class)co 7408  Fincfn 8938  0cc0 11109  ..^cfzo 13626  chash 14289  Word cword 14463   ++ cconcat 14519  ⟨“cs1 14544  Basecbs 17143  0gc0g 17384   Σg cgsu 17385  SymGrpcsymg 19233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-card 9933  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-9 12281  df-n0 12472  df-xnn0 12544  df-z 12558  df-uz 12822  df-fz 13484  df-fzo 13627  df-seq 13966  df-hash 14290  df-word 14464  df-lsw 14512  df-concat 14520  df-s1 14545  df-substr 14590  df-pfx 14620  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-tset 17215  df-0g 17386  df-gsum 17387  df-mgm 18560  df-sgrp 18609  df-mnd 18625  df-submnd 18671  df-efmnd 18749  df-grp 18821  df-symg 19234
This theorem is referenced by:  psgndiflemB  21152
  Copyright terms: Public domain W3C validator