MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsmsymgreq Structured version   Visualization version   GIF version

Theorem gsmsymgreq 19348
Description: Two combination of permutations moves an element of the intersection of the base sets of the permutations to the same element if each pair of corresponding permutations moves such an element to the same element. (Contributed by AV, 20-Jan-2019.)
Hypotheses
Ref Expression
gsmsymgrfix.s 𝑆 = (SymGrp‘𝑁)
gsmsymgrfix.b 𝐵 = (Base‘𝑆)
gsmsymgreq.z 𝑍 = (SymGrp‘𝑀)
gsmsymgreq.p 𝑃 = (Base‘𝑍)
gsmsymgreq.i 𝐼 = (𝑁𝑀)
Assertion
Ref Expression
gsmsymgreq (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ (𝑊 ∈ Word 𝐵𝑈 ∈ Word 𝑃 ∧ (♯‘𝑊) = (♯‘𝑈))) → (∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛𝐼 ((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑊)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛)))
Distinct variable groups:   𝐵,𝑖   𝑖,𝑁   𝑃,𝑖   𝑖,𝑊   𝑛,𝐼   𝑆,𝑛   𝑛,𝑍   𝐵,𝑛,𝑖   𝑖,𝐼   𝑛,𝑀   𝑛,𝑁   𝑃,𝑛   𝑈,𝑖,𝑛   𝑛,𝑊
Allowed substitution hints:   𝑆(𝑖)   𝑀(𝑖)   𝑍(𝑖)

Proof of Theorem gsmsymgreq
Dummy variables 𝑤 𝑦 𝑝 𝑥 𝑏 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6830 . . . . . . . 8 (𝑤 = ∅ → (♯‘𝑤) = (♯‘∅))
21oveq2d 7370 . . . . . . 7 (𝑤 = ∅ → (0..^(♯‘𝑤)) = (0..^(♯‘∅)))
32adantr 480 . . . . . 6 ((𝑤 = ∅ ∧ 𝑢 = ∅) → (0..^(♯‘𝑤)) = (0..^(♯‘∅)))
4 fveq1 6829 . . . . . . . . 9 (𝑤 = ∅ → (𝑤𝑖) = (∅‘𝑖))
54fveq1d 6832 . . . . . . . 8 (𝑤 = ∅ → ((𝑤𝑖)‘𝑛) = ((∅‘𝑖)‘𝑛))
6 fveq1 6829 . . . . . . . . 9 (𝑢 = ∅ → (𝑢𝑖) = (∅‘𝑖))
76fveq1d 6832 . . . . . . . 8 (𝑢 = ∅ → ((𝑢𝑖)‘𝑛) = ((∅‘𝑖)‘𝑛))
85, 7eqeqan12d 2747 . . . . . . 7 ((𝑤 = ∅ ∧ 𝑢 = ∅) → (((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ ((∅‘𝑖)‘𝑛) = ((∅‘𝑖)‘𝑛)))
98ralbidv 3156 . . . . . 6 ((𝑤 = ∅ ∧ 𝑢 = ∅) → (∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ ∀𝑛𝐼 ((∅‘𝑖)‘𝑛) = ((∅‘𝑖)‘𝑛)))
103, 9raleqbidv 3313 . . . . 5 ((𝑤 = ∅ ∧ 𝑢 = ∅) → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ ∀𝑖 ∈ (0..^(♯‘∅))∀𝑛𝐼 ((∅‘𝑖)‘𝑛) = ((∅‘𝑖)‘𝑛)))
11 oveq2 7362 . . . . . . . 8 (𝑤 = ∅ → (𝑆 Σg 𝑤) = (𝑆 Σg ∅))
1211fveq1d 6832 . . . . . . 7 (𝑤 = ∅ → ((𝑆 Σg 𝑤)‘𝑛) = ((𝑆 Σg ∅)‘𝑛))
13 oveq2 7362 . . . . . . . 8 (𝑢 = ∅ → (𝑍 Σg 𝑢) = (𝑍 Σg ∅))
1413fveq1d 6832 . . . . . . 7 (𝑢 = ∅ → ((𝑍 Σg 𝑢)‘𝑛) = ((𝑍 Σg ∅)‘𝑛))
1512, 14eqeqan12d 2747 . . . . . 6 ((𝑤 = ∅ ∧ 𝑢 = ∅) → (((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛) ↔ ((𝑆 Σg ∅)‘𝑛) = ((𝑍 Σg ∅)‘𝑛)))
1615ralbidv 3156 . . . . 5 ((𝑤 = ∅ ∧ 𝑢 = ∅) → (∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛) ↔ ∀𝑛𝐼 ((𝑆 Σg ∅)‘𝑛) = ((𝑍 Σg ∅)‘𝑛)))
1710, 16imbi12d 344 . . . 4 ((𝑤 = ∅ ∧ 𝑢 = ∅) → ((∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛)) ↔ (∀𝑖 ∈ (0..^(♯‘∅))∀𝑛𝐼 ((∅‘𝑖)‘𝑛) = ((∅‘𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg ∅)‘𝑛) = ((𝑍 Σg ∅)‘𝑛))))
1817imbi2d 340 . . 3 ((𝑤 = ∅ ∧ 𝑢 = ∅) → (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛))) ↔ ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘∅))∀𝑛𝐼 ((∅‘𝑖)‘𝑛) = ((∅‘𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg ∅)‘𝑛) = ((𝑍 Σg ∅)‘𝑛)))))
19 fveq2 6830 . . . . . . . 8 (𝑤 = 𝑥 → (♯‘𝑤) = (♯‘𝑥))
2019oveq2d 7370 . . . . . . 7 (𝑤 = 𝑥 → (0..^(♯‘𝑤)) = (0..^(♯‘𝑥)))
2120adantr 480 . . . . . 6 ((𝑤 = 𝑥𝑢 = 𝑦) → (0..^(♯‘𝑤)) = (0..^(♯‘𝑥)))
22 fveq1 6829 . . . . . . . . 9 (𝑤 = 𝑥 → (𝑤𝑖) = (𝑥𝑖))
2322fveq1d 6832 . . . . . . . 8 (𝑤 = 𝑥 → ((𝑤𝑖)‘𝑛) = ((𝑥𝑖)‘𝑛))
24 fveq1 6829 . . . . . . . . 9 (𝑢 = 𝑦 → (𝑢𝑖) = (𝑦𝑖))
2524fveq1d 6832 . . . . . . . 8 (𝑢 = 𝑦 → ((𝑢𝑖)‘𝑛) = ((𝑦𝑖)‘𝑛))
2623, 25eqeqan12d 2747 . . . . . . 7 ((𝑤 = 𝑥𝑢 = 𝑦) → (((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ ((𝑥𝑖)‘𝑛) = ((𝑦𝑖)‘𝑛)))
2726ralbidv 3156 . . . . . 6 ((𝑤 = 𝑥𝑢 = 𝑦) → (∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ ∀𝑛𝐼 ((𝑥𝑖)‘𝑛) = ((𝑦𝑖)‘𝑛)))
2821, 27raleqbidv 3313 . . . . 5 ((𝑤 = 𝑥𝑢 = 𝑦) → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ ∀𝑖 ∈ (0..^(♯‘𝑥))∀𝑛𝐼 ((𝑥𝑖)‘𝑛) = ((𝑦𝑖)‘𝑛)))
29 oveq2 7362 . . . . . . . 8 (𝑤 = 𝑥 → (𝑆 Σg 𝑤) = (𝑆 Σg 𝑥))
3029fveq1d 6832 . . . . . . 7 (𝑤 = 𝑥 → ((𝑆 Σg 𝑤)‘𝑛) = ((𝑆 Σg 𝑥)‘𝑛))
31 oveq2 7362 . . . . . . . 8 (𝑢 = 𝑦 → (𝑍 Σg 𝑢) = (𝑍 Σg 𝑦))
3231fveq1d 6832 . . . . . . 7 (𝑢 = 𝑦 → ((𝑍 Σg 𝑢)‘𝑛) = ((𝑍 Σg 𝑦)‘𝑛))
3330, 32eqeqan12d 2747 . . . . . 6 ((𝑤 = 𝑥𝑢 = 𝑦) → (((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛) ↔ ((𝑆 Σg 𝑥)‘𝑛) = ((𝑍 Σg 𝑦)‘𝑛)))
3433ralbidv 3156 . . . . 5 ((𝑤 = 𝑥𝑢 = 𝑦) → (∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛) ↔ ∀𝑛𝐼 ((𝑆 Σg 𝑥)‘𝑛) = ((𝑍 Σg 𝑦)‘𝑛)))
3528, 34imbi12d 344 . . . 4 ((𝑤 = 𝑥𝑢 = 𝑦) → ((∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛)) ↔ (∀𝑖 ∈ (0..^(♯‘𝑥))∀𝑛𝐼 ((𝑥𝑖)‘𝑛) = ((𝑦𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑥)‘𝑛) = ((𝑍 Σg 𝑦)‘𝑛))))
3635imbi2d 340 . . 3 ((𝑤 = 𝑥𝑢 = 𝑦) → (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛))) ↔ ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘𝑥))∀𝑛𝐼 ((𝑥𝑖)‘𝑛) = ((𝑦𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑥)‘𝑛) = ((𝑍 Σg 𝑦)‘𝑛)))))
37 fveq2 6830 . . . . . . . 8 (𝑤 = (𝑥 ++ ⟨“𝑏”⟩) → (♯‘𝑤) = (♯‘(𝑥 ++ ⟨“𝑏”⟩)))
3837oveq2d 7370 . . . . . . 7 (𝑤 = (𝑥 ++ ⟨“𝑏”⟩) → (0..^(♯‘𝑤)) = (0..^(♯‘(𝑥 ++ ⟨“𝑏”⟩))))
3938adantr 480 . . . . . 6 ((𝑤 = (𝑥 ++ ⟨“𝑏”⟩) ∧ 𝑢 = (𝑦 ++ ⟨“𝑝”⟩)) → (0..^(♯‘𝑤)) = (0..^(♯‘(𝑥 ++ ⟨“𝑏”⟩))))
40 fveq1 6829 . . . . . . . . 9 (𝑤 = (𝑥 ++ ⟨“𝑏”⟩) → (𝑤𝑖) = ((𝑥 ++ ⟨“𝑏”⟩)‘𝑖))
4140fveq1d 6832 . . . . . . . 8 (𝑤 = (𝑥 ++ ⟨“𝑏”⟩) → ((𝑤𝑖)‘𝑛) = (((𝑥 ++ ⟨“𝑏”⟩)‘𝑖)‘𝑛))
42 fveq1 6829 . . . . . . . . 9 (𝑢 = (𝑦 ++ ⟨“𝑝”⟩) → (𝑢𝑖) = ((𝑦 ++ ⟨“𝑝”⟩)‘𝑖))
4342fveq1d 6832 . . . . . . . 8 (𝑢 = (𝑦 ++ ⟨“𝑝”⟩) → ((𝑢𝑖)‘𝑛) = (((𝑦 ++ ⟨“𝑝”⟩)‘𝑖)‘𝑛))
4441, 43eqeqan12d 2747 . . . . . . 7 ((𝑤 = (𝑥 ++ ⟨“𝑏”⟩) ∧ 𝑢 = (𝑦 ++ ⟨“𝑝”⟩)) → (((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ (((𝑥 ++ ⟨“𝑏”⟩)‘𝑖)‘𝑛) = (((𝑦 ++ ⟨“𝑝”⟩)‘𝑖)‘𝑛)))
4544ralbidv 3156 . . . . . 6 ((𝑤 = (𝑥 ++ ⟨“𝑏”⟩) ∧ 𝑢 = (𝑦 ++ ⟨“𝑝”⟩)) → (∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ ∀𝑛𝐼 (((𝑥 ++ ⟨“𝑏”⟩)‘𝑖)‘𝑛) = (((𝑦 ++ ⟨“𝑝”⟩)‘𝑖)‘𝑛)))
4639, 45raleqbidv 3313 . . . . 5 ((𝑤 = (𝑥 ++ ⟨“𝑏”⟩) ∧ 𝑢 = (𝑦 ++ ⟨“𝑝”⟩)) → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ ∀𝑖 ∈ (0..^(♯‘(𝑥 ++ ⟨“𝑏”⟩)))∀𝑛𝐼 (((𝑥 ++ ⟨“𝑏”⟩)‘𝑖)‘𝑛) = (((𝑦 ++ ⟨“𝑝”⟩)‘𝑖)‘𝑛)))
47 oveq2 7362 . . . . . . . 8 (𝑤 = (𝑥 ++ ⟨“𝑏”⟩) → (𝑆 Σg 𝑤) = (𝑆 Σg (𝑥 ++ ⟨“𝑏”⟩)))
4847fveq1d 6832 . . . . . . 7 (𝑤 = (𝑥 ++ ⟨“𝑏”⟩) → ((𝑆 Σg 𝑤)‘𝑛) = ((𝑆 Σg (𝑥 ++ ⟨“𝑏”⟩))‘𝑛))
49 oveq2 7362 . . . . . . . 8 (𝑢 = (𝑦 ++ ⟨“𝑝”⟩) → (𝑍 Σg 𝑢) = (𝑍 Σg (𝑦 ++ ⟨“𝑝”⟩)))
5049fveq1d 6832 . . . . . . 7 (𝑢 = (𝑦 ++ ⟨“𝑝”⟩) → ((𝑍 Σg 𝑢)‘𝑛) = ((𝑍 Σg (𝑦 ++ ⟨“𝑝”⟩))‘𝑛))
5148, 50eqeqan12d 2747 . . . . . 6 ((𝑤 = (𝑥 ++ ⟨“𝑏”⟩) ∧ 𝑢 = (𝑦 ++ ⟨“𝑝”⟩)) → (((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛) ↔ ((𝑆 Σg (𝑥 ++ ⟨“𝑏”⟩))‘𝑛) = ((𝑍 Σg (𝑦 ++ ⟨“𝑝”⟩))‘𝑛)))
5251ralbidv 3156 . . . . 5 ((𝑤 = (𝑥 ++ ⟨“𝑏”⟩) ∧ 𝑢 = (𝑦 ++ ⟨“𝑝”⟩)) → (∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛) ↔ ∀𝑛𝐼 ((𝑆 Σg (𝑥 ++ ⟨“𝑏”⟩))‘𝑛) = ((𝑍 Σg (𝑦 ++ ⟨“𝑝”⟩))‘𝑛)))
5346, 52imbi12d 344 . . . 4 ((𝑤 = (𝑥 ++ ⟨“𝑏”⟩) ∧ 𝑢 = (𝑦 ++ ⟨“𝑝”⟩)) → ((∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛)) ↔ (∀𝑖 ∈ (0..^(♯‘(𝑥 ++ ⟨“𝑏”⟩)))∀𝑛𝐼 (((𝑥 ++ ⟨“𝑏”⟩)‘𝑖)‘𝑛) = (((𝑦 ++ ⟨“𝑝”⟩)‘𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg (𝑥 ++ ⟨“𝑏”⟩))‘𝑛) = ((𝑍 Σg (𝑦 ++ ⟨“𝑝”⟩))‘𝑛))))
5453imbi2d 340 . . 3 ((𝑤 = (𝑥 ++ ⟨“𝑏”⟩) ∧ 𝑢 = (𝑦 ++ ⟨“𝑝”⟩)) → (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛))) ↔ ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘(𝑥 ++ ⟨“𝑏”⟩)))∀𝑛𝐼 (((𝑥 ++ ⟨“𝑏”⟩)‘𝑖)‘𝑛) = (((𝑦 ++ ⟨“𝑝”⟩)‘𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg (𝑥 ++ ⟨“𝑏”⟩))‘𝑛) = ((𝑍 Σg (𝑦 ++ ⟨“𝑝”⟩))‘𝑛)))))
55 fveq2 6830 . . . . . . 7 (𝑤 = 𝑊 → (♯‘𝑤) = (♯‘𝑊))
5655oveq2d 7370 . . . . . 6 (𝑤 = 𝑊 → (0..^(♯‘𝑤)) = (0..^(♯‘𝑊)))
57 fveq1 6829 . . . . . . . . 9 (𝑤 = 𝑊 → (𝑤𝑖) = (𝑊𝑖))
5857fveq1d 6832 . . . . . . . 8 (𝑤 = 𝑊 → ((𝑤𝑖)‘𝑛) = ((𝑊𝑖)‘𝑛))
5958eqeq1d 2735 . . . . . . 7 (𝑤 = 𝑊 → (((𝑤𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) ↔ ((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))
6059ralbidv 3156 . . . . . 6 (𝑤 = 𝑊 → (∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) ↔ ∀𝑛𝐼 ((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))
6156, 60raleqbidv 3313 . . . . 5 (𝑤 = 𝑊 → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛𝐼 ((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))
62 oveq2 7362 . . . . . . . 8 (𝑤 = 𝑊 → (𝑆 Σg 𝑤) = (𝑆 Σg 𝑊))
6362fveq1d 6832 . . . . . . 7 (𝑤 = 𝑊 → ((𝑆 Σg 𝑤)‘𝑛) = ((𝑆 Σg 𝑊)‘𝑛))
6463eqeq1d 2735 . . . . . 6 (𝑤 = 𝑊 → (((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛) ↔ ((𝑆 Σg 𝑊)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛)))
6564ralbidv 3156 . . . . 5 (𝑤 = 𝑊 → (∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛) ↔ ∀𝑛𝐼 ((𝑆 Σg 𝑊)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛)))
6661, 65imbi12d 344 . . . 4 (𝑤 = 𝑊 → ((∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛)) ↔ (∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛𝐼 ((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑊)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛))))
6766imbi2d 340 . . 3 (𝑤 = 𝑊 → (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛))) ↔ ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛𝐼 ((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑊)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛)))))
68 fveq1 6829 . . . . . . . . 9 (𝑢 = 𝑈 → (𝑢𝑖) = (𝑈𝑖))
6968fveq1d 6832 . . . . . . . 8 (𝑢 = 𝑈 → ((𝑢𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛))
7069eqeq2d 2744 . . . . . . 7 (𝑢 = 𝑈 → (((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ ((𝑤𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))
7170ralbidv 3156 . . . . . 6 (𝑢 = 𝑈 → (∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ ∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))
7271ralbidv 3156 . . . . 5 (𝑢 = 𝑈 → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) ↔ ∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))
73 oveq2 7362 . . . . . . . 8 (𝑢 = 𝑈 → (𝑍 Σg 𝑢) = (𝑍 Σg 𝑈))
7473fveq1d 6832 . . . . . . 7 (𝑢 = 𝑈 → ((𝑍 Σg 𝑢)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛))
7574eqeq2d 2744 . . . . . 6 (𝑢 = 𝑈 → (((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛) ↔ ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛)))
7675ralbidv 3156 . . . . 5 (𝑢 = 𝑈 → (∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛) ↔ ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛)))
7772, 76imbi12d 344 . . . 4 (𝑢 = 𝑈 → ((∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛)) ↔ (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛))))
7877imbi2d 340 . . 3 (𝑢 = 𝑈 → (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑢𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑢)‘𝑛))) ↔ ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑛𝐼 ((𝑤𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑤)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛)))))
79 gsmsymgreq.i . . . . . . . . . 10 𝐼 = (𝑁𝑀)
80 eleq2 2822 . . . . . . . . . . . 12 (𝐼 = (𝑁𝑀) → (𝑛𝐼𝑛 ∈ (𝑁𝑀)))
81 elin 3914 . . . . . . . . . . . 12 (𝑛 ∈ (𝑁𝑀) ↔ (𝑛𝑁𝑛𝑀))
8280, 81bitrdi 287 . . . . . . . . . . 11 (𝐼 = (𝑁𝑀) → (𝑛𝐼 ↔ (𝑛𝑁𝑛𝑀)))
83 simpl 482 . . . . . . . . . . 11 ((𝑛𝑁𝑛𝑀) → 𝑛𝑁)
8482, 83biimtrdi 253 . . . . . . . . . 10 (𝐼 = (𝑁𝑀) → (𝑛𝐼𝑛𝑁))
8579, 84ax-mp 5 . . . . . . . . 9 (𝑛𝐼𝑛𝑁)
8685adantl 481 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ 𝑛𝐼) → 𝑛𝑁)
87 fvresi 7115 . . . . . . . 8 (𝑛𝑁 → (( I ↾ 𝑁)‘𝑛) = 𝑛)
8886, 87syl 17 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ 𝑛𝐼) → (( I ↾ 𝑁)‘𝑛) = 𝑛)
89 simpr 484 . . . . . . . . . . 11 ((𝑛𝑁𝑛𝑀) → 𝑛𝑀)
9082, 89biimtrdi 253 . . . . . . . . . 10 (𝐼 = (𝑁𝑀) → (𝑛𝐼𝑛𝑀))
9179, 90ax-mp 5 . . . . . . . . 9 (𝑛𝐼𝑛𝑀)
9291adantl 481 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ 𝑛𝐼) → 𝑛𝑀)
93 fvresi 7115 . . . . . . . 8 (𝑛𝑀 → (( I ↾ 𝑀)‘𝑛) = 𝑛)
9492, 93syl 17 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ 𝑛𝐼) → (( I ↾ 𝑀)‘𝑛) = 𝑛)
9588, 94eqtr4d 2771 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ 𝑛𝐼) → (( I ↾ 𝑁)‘𝑛) = (( I ↾ 𝑀)‘𝑛))
9695ralrimiva 3125 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → ∀𝑛𝐼 (( I ↾ 𝑁)‘𝑛) = (( I ↾ 𝑀)‘𝑛))
97 eqid 2733 . . . . . . . . . 10 (0g𝑆) = (0g𝑆)
9897gsum0 18596 . . . . . . . . 9 (𝑆 Σg ∅) = (0g𝑆)
99 gsmsymgrfix.s . . . . . . . . . . 11 𝑆 = (SymGrp‘𝑁)
10099symgid 19317 . . . . . . . . . 10 (𝑁 ∈ Fin → ( I ↾ 𝑁) = (0g𝑆))
101100adantr 480 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → ( I ↾ 𝑁) = (0g𝑆))
10298, 101eqtr4id 2787 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (𝑆 Σg ∅) = ( I ↾ 𝑁))
103102fveq1d 6832 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → ((𝑆 Σg ∅)‘𝑛) = (( I ↾ 𝑁)‘𝑛))
104 eqid 2733 . . . . . . . . . 10 (0g𝑍) = (0g𝑍)
105104gsum0 18596 . . . . . . . . 9 (𝑍 Σg ∅) = (0g𝑍)
106 gsmsymgreq.z . . . . . . . . . . 11 𝑍 = (SymGrp‘𝑀)
107106symgid 19317 . . . . . . . . . 10 (𝑀 ∈ Fin → ( I ↾ 𝑀) = (0g𝑍))
108107adantl 481 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → ( I ↾ 𝑀) = (0g𝑍))
109105, 108eqtr4id 2787 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (𝑍 Σg ∅) = ( I ↾ 𝑀))
110109fveq1d 6832 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → ((𝑍 Σg ∅)‘𝑛) = (( I ↾ 𝑀)‘𝑛))
111103, 110eqeq12d 2749 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (((𝑆 Σg ∅)‘𝑛) = ((𝑍 Σg ∅)‘𝑛) ↔ (( I ↾ 𝑁)‘𝑛) = (( I ↾ 𝑀)‘𝑛)))
112111ralbidv 3156 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑛𝐼 ((𝑆 Σg ∅)‘𝑛) = ((𝑍 Σg ∅)‘𝑛) ↔ ∀𝑛𝐼 (( I ↾ 𝑁)‘𝑛) = (( I ↾ 𝑀)‘𝑛)))
11396, 112mpbird 257 . . . 4 ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → ∀𝑛𝐼 ((𝑆 Σg ∅)‘𝑛) = ((𝑍 Σg ∅)‘𝑛))
114113a1d 25 . . 3 ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘∅))∀𝑛𝐼 ((∅‘𝑖)‘𝑛) = ((∅‘𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg ∅)‘𝑛) = ((𝑍 Σg ∅)‘𝑛)))
115 gsmsymgrfix.b . . . . . 6 𝐵 = (Base‘𝑆)
116 gsmsymgreq.p . . . . . 6 𝑃 = (Base‘𝑍)
11799, 115, 106, 116, 79gsmsymgreqlem2 19347 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑥 ∈ Word 𝐵𝑏𝐵) ∧ (𝑦 ∈ Word 𝑃𝑝𝑃) ∧ (♯‘𝑥) = (♯‘𝑦))) → ((∀𝑖 ∈ (0..^(♯‘𝑥))∀𝑛𝐼 ((𝑥𝑖)‘𝑛) = ((𝑦𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑥)‘𝑛) = ((𝑍 Σg 𝑦)‘𝑛)) → (∀𝑖 ∈ (0..^(♯‘(𝑥 ++ ⟨“𝑏”⟩)))∀𝑛𝐼 (((𝑥 ++ ⟨“𝑏”⟩)‘𝑖)‘𝑛) = (((𝑦 ++ ⟨“𝑝”⟩)‘𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg (𝑥 ++ ⟨“𝑏”⟩))‘𝑛) = ((𝑍 Σg (𝑦 ++ ⟨“𝑝”⟩))‘𝑛))))
118117expcom 413 . . . 4 (((𝑥 ∈ Word 𝐵𝑏𝐵) ∧ (𝑦 ∈ Word 𝑃𝑝𝑃) ∧ (♯‘𝑥) = (♯‘𝑦)) → ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → ((∀𝑖 ∈ (0..^(♯‘𝑥))∀𝑛𝐼 ((𝑥𝑖)‘𝑛) = ((𝑦𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑥)‘𝑛) = ((𝑍 Σg 𝑦)‘𝑛)) → (∀𝑖 ∈ (0..^(♯‘(𝑥 ++ ⟨“𝑏”⟩)))∀𝑛𝐼 (((𝑥 ++ ⟨“𝑏”⟩)‘𝑖)‘𝑛) = (((𝑦 ++ ⟨“𝑝”⟩)‘𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg (𝑥 ++ ⟨“𝑏”⟩))‘𝑛) = ((𝑍 Σg (𝑦 ++ ⟨“𝑝”⟩))‘𝑛)))))
119118a2d 29 . . 3 (((𝑥 ∈ Word 𝐵𝑏𝐵) ∧ (𝑦 ∈ Word 𝑃𝑝𝑃) ∧ (♯‘𝑥) = (♯‘𝑦)) → (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘𝑥))∀𝑛𝐼 ((𝑥𝑖)‘𝑛) = ((𝑦𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑥)‘𝑛) = ((𝑍 Σg 𝑦)‘𝑛))) → ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘(𝑥 ++ ⟨“𝑏”⟩)))∀𝑛𝐼 (((𝑥 ++ ⟨“𝑏”⟩)‘𝑖)‘𝑛) = (((𝑦 ++ ⟨“𝑝”⟩)‘𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg (𝑥 ++ ⟨“𝑏”⟩))‘𝑛) = ((𝑍 Σg (𝑦 ++ ⟨“𝑝”⟩))‘𝑛)))))
12018, 36, 54, 67, 78, 114, 119wrd2ind 14634 . 2 ((𝑊 ∈ Word 𝐵𝑈 ∈ Word 𝑃 ∧ (♯‘𝑊) = (♯‘𝑈)) → ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛𝐼 ((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑊)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛))))
121120impcom 407 1 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ (𝑊 ∈ Word 𝐵𝑈 ∈ Word 𝑃 ∧ (♯‘𝑊) = (♯‘𝑈))) → (∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛𝐼 ((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑊)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  cin 3897  c0 4282   I cid 5515  cres 5623  cfv 6488  (class class class)co 7354  Fincfn 8877  0cc0 11015  ..^cfzo 13558  chash 14241  Word cword 14424   ++ cconcat 14481  ⟨“cs1 14507  Basecbs 17124  0gc0g 17347   Σg cgsu 17348  SymGrpcsymg 19285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-er 8630  df-map 8760  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-card 9841  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-2 12197  df-3 12198  df-4 12199  df-5 12200  df-6 12201  df-7 12202  df-8 12203  df-9 12204  df-n0 12391  df-xnn0 12464  df-z 12478  df-uz 12741  df-fz 13412  df-fzo 13559  df-seq 13913  df-hash 14242  df-word 14425  df-lsw 14474  df-concat 14482  df-s1 14508  df-substr 14553  df-pfx 14583  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-ress 17146  df-plusg 17178  df-tset 17184  df-0g 17349  df-gsum 17350  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-submnd 18696  df-efmnd 18781  df-grp 18853  df-symg 19286
This theorem is referenced by:  psgndiflemB  21541
  Copyright terms: Public domain W3C validator