MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsmsymgrfix Structured version   Visualization version   GIF version

Theorem gsmsymgrfix 19036
Description: The composition of permutations fixing one element also fixes this element. (Contributed by AV, 20-Jan-2019.)
Hypotheses
Ref Expression
gsmsymgrfix.s 𝑆 = (SymGrp‘𝑁)
gsmsymgrfix.b 𝐵 = (Base‘𝑆)
Assertion
Ref Expression
gsmsymgrfix ((𝑁 ∈ Fin ∧ 𝐾𝑁𝑊 ∈ Word 𝐵) → (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾))
Distinct variable groups:   𝐵,𝑖   𝑖,𝐾   𝑖,𝑁   𝑖,𝑊
Allowed substitution hint:   𝑆(𝑖)

Proof of Theorem gsmsymgrfix
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hasheq0 14078 . . . . . . . . . . 11 (𝑤 ∈ V → ((♯‘𝑤) = 0 ↔ 𝑤 = ∅))
21elv 3438 . . . . . . . . . 10 ((♯‘𝑤) = 0 ↔ 𝑤 = ∅)
32biimpri 227 . . . . . . . . 9 (𝑤 = ∅ → (♯‘𝑤) = 0)
43oveq2d 7291 . . . . . . . 8 (𝑤 = ∅ → (0..^(♯‘𝑤)) = (0..^0))
5 fzo0 13411 . . . . . . . 8 (0..^0) = ∅
64, 5eqtrdi 2794 . . . . . . 7 (𝑤 = ∅ → (0..^(♯‘𝑤)) = ∅)
7 fveq1 6773 . . . . . . . . 9 (𝑤 = ∅ → (𝑤𝑖) = (∅‘𝑖))
87fveq1d 6776 . . . . . . . 8 (𝑤 = ∅ → ((𝑤𝑖)‘𝐾) = ((∅‘𝑖)‘𝐾))
98eqeq1d 2740 . . . . . . 7 (𝑤 = ∅ → (((𝑤𝑖)‘𝐾) = 𝐾 ↔ ((∅‘𝑖)‘𝐾) = 𝐾))
106, 9raleqbidv 3336 . . . . . 6 (𝑤 = ∅ → (∀𝑖 ∈ (0..^(♯‘𝑤))((𝑤𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ ∅ ((∅‘𝑖)‘𝐾) = 𝐾))
11 oveq2 7283 . . . . . . . 8 (𝑤 = ∅ → (𝑆 Σg 𝑤) = (𝑆 Σg ∅))
1211fveq1d 6776 . . . . . . 7 (𝑤 = ∅ → ((𝑆 Σg 𝑤)‘𝐾) = ((𝑆 Σg ∅)‘𝐾))
1312eqeq1d 2740 . . . . . 6 (𝑤 = ∅ → (((𝑆 Σg 𝑤)‘𝐾) = 𝐾 ↔ ((𝑆 Σg ∅)‘𝐾) = 𝐾))
1410, 13imbi12d 345 . . . . 5 (𝑤 = ∅ → ((∀𝑖 ∈ (0..^(♯‘𝑤))((𝑤𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑤)‘𝐾) = 𝐾) ↔ (∀𝑖 ∈ ∅ ((∅‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg ∅)‘𝐾) = 𝐾)))
1514imbi2d 341 . . . 4 (𝑤 = ∅ → (((𝑁 ∈ Fin ∧ 𝐾𝑁) → (∀𝑖 ∈ (0..^(♯‘𝑤))((𝑤𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑤)‘𝐾) = 𝐾)) ↔ ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (∀𝑖 ∈ ∅ ((∅‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg ∅)‘𝐾) = 𝐾))))
16 fveq2 6774 . . . . . . . 8 (𝑤 = 𝑦 → (♯‘𝑤) = (♯‘𝑦))
1716oveq2d 7291 . . . . . . 7 (𝑤 = 𝑦 → (0..^(♯‘𝑤)) = (0..^(♯‘𝑦)))
18 fveq1 6773 . . . . . . . . 9 (𝑤 = 𝑦 → (𝑤𝑖) = (𝑦𝑖))
1918fveq1d 6776 . . . . . . . 8 (𝑤 = 𝑦 → ((𝑤𝑖)‘𝐾) = ((𝑦𝑖)‘𝐾))
2019eqeq1d 2740 . . . . . . 7 (𝑤 = 𝑦 → (((𝑤𝑖)‘𝐾) = 𝐾 ↔ ((𝑦𝑖)‘𝐾) = 𝐾))
2117, 20raleqbidv 3336 . . . . . 6 (𝑤 = 𝑦 → (∀𝑖 ∈ (0..^(♯‘𝑤))((𝑤𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ (0..^(♯‘𝑦))((𝑦𝑖)‘𝐾) = 𝐾))
22 oveq2 7283 . . . . . . . 8 (𝑤 = 𝑦 → (𝑆 Σg 𝑤) = (𝑆 Σg 𝑦))
2322fveq1d 6776 . . . . . . 7 (𝑤 = 𝑦 → ((𝑆 Σg 𝑤)‘𝐾) = ((𝑆 Σg 𝑦)‘𝐾))
2423eqeq1d 2740 . . . . . 6 (𝑤 = 𝑦 → (((𝑆 Σg 𝑤)‘𝐾) = 𝐾 ↔ ((𝑆 Σg 𝑦)‘𝐾) = 𝐾))
2521, 24imbi12d 345 . . . . 5 (𝑤 = 𝑦 → ((∀𝑖 ∈ (0..^(♯‘𝑤))((𝑤𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑤)‘𝐾) = 𝐾) ↔ (∀𝑖 ∈ (0..^(♯‘𝑦))((𝑦𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑦)‘𝐾) = 𝐾)))
2625imbi2d 341 . . . 4 (𝑤 = 𝑦 → (((𝑁 ∈ Fin ∧ 𝐾𝑁) → (∀𝑖 ∈ (0..^(♯‘𝑤))((𝑤𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑤)‘𝐾) = 𝐾)) ↔ ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (∀𝑖 ∈ (0..^(♯‘𝑦))((𝑦𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑦)‘𝐾) = 𝐾))))
27 fveq2 6774 . . . . . . . 8 (𝑤 = (𝑦 ++ ⟨“𝑧”⟩) → (♯‘𝑤) = (♯‘(𝑦 ++ ⟨“𝑧”⟩)))
2827oveq2d 7291 . . . . . . 7 (𝑤 = (𝑦 ++ ⟨“𝑧”⟩) → (0..^(♯‘𝑤)) = (0..^(♯‘(𝑦 ++ ⟨“𝑧”⟩))))
29 fveq1 6773 . . . . . . . . 9 (𝑤 = (𝑦 ++ ⟨“𝑧”⟩) → (𝑤𝑖) = ((𝑦 ++ ⟨“𝑧”⟩)‘𝑖))
3029fveq1d 6776 . . . . . . . 8 (𝑤 = (𝑦 ++ ⟨“𝑧”⟩) → ((𝑤𝑖)‘𝐾) = (((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾))
3130eqeq1d 2740 . . . . . . 7 (𝑤 = (𝑦 ++ ⟨“𝑧”⟩) → (((𝑤𝑖)‘𝐾) = 𝐾 ↔ (((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾))
3228, 31raleqbidv 3336 . . . . . 6 (𝑤 = (𝑦 ++ ⟨“𝑧”⟩) → (∀𝑖 ∈ (0..^(♯‘𝑤))((𝑤𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ (0..^(♯‘(𝑦 ++ ⟨“𝑧”⟩)))(((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾))
33 oveq2 7283 . . . . . . . 8 (𝑤 = (𝑦 ++ ⟨“𝑧”⟩) → (𝑆 Σg 𝑤) = (𝑆 Σg (𝑦 ++ ⟨“𝑧”⟩)))
3433fveq1d 6776 . . . . . . 7 (𝑤 = (𝑦 ++ ⟨“𝑧”⟩) → ((𝑆 Σg 𝑤)‘𝐾) = ((𝑆 Σg (𝑦 ++ ⟨“𝑧”⟩))‘𝐾))
3534eqeq1d 2740 . . . . . 6 (𝑤 = (𝑦 ++ ⟨“𝑧”⟩) → (((𝑆 Σg 𝑤)‘𝐾) = 𝐾 ↔ ((𝑆 Σg (𝑦 ++ ⟨“𝑧”⟩))‘𝐾) = 𝐾))
3632, 35imbi12d 345 . . . . 5 (𝑤 = (𝑦 ++ ⟨“𝑧”⟩) → ((∀𝑖 ∈ (0..^(♯‘𝑤))((𝑤𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑤)‘𝐾) = 𝐾) ↔ (∀𝑖 ∈ (0..^(♯‘(𝑦 ++ ⟨“𝑧”⟩)))(((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑦 ++ ⟨“𝑧”⟩))‘𝐾) = 𝐾)))
3736imbi2d 341 . . . 4 (𝑤 = (𝑦 ++ ⟨“𝑧”⟩) → (((𝑁 ∈ Fin ∧ 𝐾𝑁) → (∀𝑖 ∈ (0..^(♯‘𝑤))((𝑤𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑤)‘𝐾) = 𝐾)) ↔ ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (∀𝑖 ∈ (0..^(♯‘(𝑦 ++ ⟨“𝑧”⟩)))(((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑦 ++ ⟨“𝑧”⟩))‘𝐾) = 𝐾))))
38 fveq2 6774 . . . . . . . 8 (𝑤 = 𝑊 → (♯‘𝑤) = (♯‘𝑊))
3938oveq2d 7291 . . . . . . 7 (𝑤 = 𝑊 → (0..^(♯‘𝑤)) = (0..^(♯‘𝑊)))
40 fveq1 6773 . . . . . . . . 9 (𝑤 = 𝑊 → (𝑤𝑖) = (𝑊𝑖))
4140fveq1d 6776 . . . . . . . 8 (𝑤 = 𝑊 → ((𝑤𝑖)‘𝐾) = ((𝑊𝑖)‘𝐾))
4241eqeq1d 2740 . . . . . . 7 (𝑤 = 𝑊 → (((𝑤𝑖)‘𝐾) = 𝐾 ↔ ((𝑊𝑖)‘𝐾) = 𝐾))
4339, 42raleqbidv 3336 . . . . . 6 (𝑤 = 𝑊 → (∀𝑖 ∈ (0..^(♯‘𝑤))((𝑤𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾))
44 oveq2 7283 . . . . . . . 8 (𝑤 = 𝑊 → (𝑆 Σg 𝑤) = (𝑆 Σg 𝑊))
4544fveq1d 6776 . . . . . . 7 (𝑤 = 𝑊 → ((𝑆 Σg 𝑤)‘𝐾) = ((𝑆 Σg 𝑊)‘𝐾))
4645eqeq1d 2740 . . . . . 6 (𝑤 = 𝑊 → (((𝑆 Σg 𝑤)‘𝐾) = 𝐾 ↔ ((𝑆 Σg 𝑊)‘𝐾) = 𝐾))
4743, 46imbi12d 345 . . . . 5 (𝑤 = 𝑊 → ((∀𝑖 ∈ (0..^(♯‘𝑤))((𝑤𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑤)‘𝐾) = 𝐾) ↔ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)))
4847imbi2d 341 . . . 4 (𝑤 = 𝑊 → (((𝑁 ∈ Fin ∧ 𝐾𝑁) → (∀𝑖 ∈ (0..^(♯‘𝑤))((𝑤𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑤)‘𝐾) = 𝐾)) ↔ ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾))))
49 eqid 2738 . . . . . . . . 9 (0g𝑆) = (0g𝑆)
5049gsum0 18368 . . . . . . . 8 (𝑆 Σg ∅) = (0g𝑆)
51 gsmsymgrfix.s . . . . . . . . . 10 𝑆 = (SymGrp‘𝑁)
5251symgid 19009 . . . . . . . . 9 (𝑁 ∈ Fin → ( I ↾ 𝑁) = (0g𝑆))
5352adantr 481 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → ( I ↾ 𝑁) = (0g𝑆))
5450, 53eqtr4id 2797 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (𝑆 Σg ∅) = ( I ↾ 𝑁))
5554fveq1d 6776 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → ((𝑆 Σg ∅)‘𝐾) = (( I ↾ 𝑁)‘𝐾))
56 fvresi 7045 . . . . . . 7 (𝐾𝑁 → (( I ↾ 𝑁)‘𝐾) = 𝐾)
5756adantl 482 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (( I ↾ 𝑁)‘𝐾) = 𝐾)
5855, 57eqtrd 2778 . . . . 5 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → ((𝑆 Σg ∅)‘𝐾) = 𝐾)
5958a1d 25 . . . 4 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (∀𝑖 ∈ ∅ ((∅‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg ∅)‘𝐾) = 𝐾))
60 ccatws1len 14325 . . . . . . . . . . 11 (𝑦 ∈ Word 𝐵 → (♯‘(𝑦 ++ ⟨“𝑧”⟩)) = ((♯‘𝑦) + 1))
6160oveq2d 7291 . . . . . . . . . 10 (𝑦 ∈ Word 𝐵 → (0..^(♯‘(𝑦 ++ ⟨“𝑧”⟩))) = (0..^((♯‘𝑦) + 1)))
6261raleqdv 3348 . . . . . . . . 9 (𝑦 ∈ Word 𝐵 → (∀𝑖 ∈ (0..^(♯‘(𝑦 ++ ⟨“𝑧”⟩)))(((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ (0..^((♯‘𝑦) + 1))(((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾))
6362adantr 481 . . . . . . . 8 ((𝑦 ∈ Word 𝐵𝑧𝐵) → (∀𝑖 ∈ (0..^(♯‘(𝑦 ++ ⟨“𝑧”⟩)))(((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ (0..^((♯‘𝑦) + 1))(((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾))
6463adantr 481 . . . . . . 7 (((𝑦 ∈ Word 𝐵𝑧𝐵) ∧ ((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑦))((𝑦𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑦)‘𝐾) = 𝐾))) → (∀𝑖 ∈ (0..^(♯‘(𝑦 ++ ⟨“𝑧”⟩)))(((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ (0..^((♯‘𝑦) + 1))(((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾))
65 gsmsymgrfix.b . . . . . . . . 9 𝐵 = (Base‘𝑆)
6651, 65gsmsymgrfixlem1 19035 . . . . . . . 8 (((𝑦 ∈ Word 𝐵𝑧𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑦))((𝑦𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑦)‘𝐾) = 𝐾)) → (∀𝑖 ∈ (0..^((♯‘𝑦) + 1))(((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑦 ++ ⟨“𝑧”⟩))‘𝐾) = 𝐾))
67663expb 1119 . . . . . . 7 (((𝑦 ∈ Word 𝐵𝑧𝐵) ∧ ((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑦))((𝑦𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑦)‘𝐾) = 𝐾))) → (∀𝑖 ∈ (0..^((♯‘𝑦) + 1))(((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑦 ++ ⟨“𝑧”⟩))‘𝐾) = 𝐾))
6864, 67sylbid 239 . . . . . 6 (((𝑦 ∈ Word 𝐵𝑧𝐵) ∧ ((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑦))((𝑦𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑦)‘𝐾) = 𝐾))) → (∀𝑖 ∈ (0..^(♯‘(𝑦 ++ ⟨“𝑧”⟩)))(((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑦 ++ ⟨“𝑧”⟩))‘𝐾) = 𝐾))
6968exp32 421 . . . . 5 ((𝑦 ∈ Word 𝐵𝑧𝐵) → ((𝑁 ∈ Fin ∧ 𝐾𝑁) → ((∀𝑖 ∈ (0..^(♯‘𝑦))((𝑦𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑦)‘𝐾) = 𝐾) → (∀𝑖 ∈ (0..^(♯‘(𝑦 ++ ⟨“𝑧”⟩)))(((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑦 ++ ⟨“𝑧”⟩))‘𝐾) = 𝐾))))
7069a2d 29 . . . 4 ((𝑦 ∈ Word 𝐵𝑧𝐵) → (((𝑁 ∈ Fin ∧ 𝐾𝑁) → (∀𝑖 ∈ (0..^(♯‘𝑦))((𝑦𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑦)‘𝐾) = 𝐾)) → ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (∀𝑖 ∈ (0..^(♯‘(𝑦 ++ ⟨“𝑧”⟩)))(((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑦 ++ ⟨“𝑧”⟩))‘𝐾) = 𝐾))))
7115, 26, 37, 48, 59, 70wrdind 14435 . . 3 (𝑊 ∈ Word 𝐵 → ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)))
7271com12 32 . 2 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (𝑊 ∈ Word 𝐵 → (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)))
73723impia 1116 1 ((𝑁 ∈ Fin ∧ 𝐾𝑁𝑊 ∈ Word 𝐵) → (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  c0 4256   I cid 5488  cres 5591  cfv 6433  (class class class)co 7275  Fincfn 8733  0cc0 10871  1c1 10872   + caddc 10874  ..^cfzo 13382  chash 14044  Word cword 14217   ++ cconcat 14273  ⟨“cs1 14300  Basecbs 16912  0gc0g 17150   Σg cgsu 17151  SymGrpcsymg 18974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-word 14218  df-lsw 14266  df-concat 14274  df-s1 14301  df-substr 14354  df-pfx 14384  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-tset 16981  df-0g 17152  df-gsum 17153  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-efmnd 18508  df-grp 18580  df-symg 18975
This theorem is referenced by:  psgndiflemB  20805
  Copyright terms: Public domain W3C validator