| Step | Hyp | Ref
| Expression |
| 1 | | hasheq0 14381 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ V →
((♯‘𝑤) = 0
↔ 𝑤 =
∅)) |
| 2 | 1 | elv 3464 |
. . . . . . . . . 10
⊢
((♯‘𝑤) =
0 ↔ 𝑤 =
∅) |
| 3 | 2 | biimpri 228 |
. . . . . . . . 9
⊢ (𝑤 = ∅ →
(♯‘𝑤) =
0) |
| 4 | 3 | oveq2d 7421 |
. . . . . . . 8
⊢ (𝑤 = ∅ →
(0..^(♯‘𝑤)) =
(0..^0)) |
| 5 | | fzo0 13700 |
. . . . . . . 8
⊢ (0..^0) =
∅ |
| 6 | 4, 5 | eqtrdi 2786 |
. . . . . . 7
⊢ (𝑤 = ∅ →
(0..^(♯‘𝑤)) =
∅) |
| 7 | | fveq1 6875 |
. . . . . . . . 9
⊢ (𝑤 = ∅ → (𝑤‘𝑖) = (∅‘𝑖)) |
| 8 | 7 | fveq1d 6878 |
. . . . . . . 8
⊢ (𝑤 = ∅ → ((𝑤‘𝑖)‘𝐾) = ((∅‘𝑖)‘𝐾)) |
| 9 | 8 | eqeq1d 2737 |
. . . . . . 7
⊢ (𝑤 = ∅ → (((𝑤‘𝑖)‘𝐾) = 𝐾 ↔ ((∅‘𝑖)‘𝐾) = 𝐾)) |
| 10 | 6, 9 | raleqbidv 3325 |
. . . . . 6
⊢ (𝑤 = ∅ → (∀𝑖 ∈
(0..^(♯‘𝑤))((𝑤‘𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ ∅ ((∅‘𝑖)‘𝐾) = 𝐾)) |
| 11 | | oveq2 7413 |
. . . . . . . 8
⊢ (𝑤 = ∅ → (𝑆 Σg
𝑤) = (𝑆 Σg
∅)) |
| 12 | 11 | fveq1d 6878 |
. . . . . . 7
⊢ (𝑤 = ∅ → ((𝑆 Σg
𝑤)‘𝐾) = ((𝑆 Σg
∅)‘𝐾)) |
| 13 | 12 | eqeq1d 2737 |
. . . . . 6
⊢ (𝑤 = ∅ → (((𝑆 Σg
𝑤)‘𝐾) = 𝐾 ↔ ((𝑆 Σg
∅)‘𝐾) = 𝐾)) |
| 14 | 10, 13 | imbi12d 344 |
. . . . 5
⊢ (𝑤 = ∅ →
((∀𝑖 ∈
(0..^(♯‘𝑤))((𝑤‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑤)‘𝐾) = 𝐾) ↔ (∀𝑖 ∈ ∅ ((∅‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg
∅)‘𝐾) = 𝐾))) |
| 15 | 14 | imbi2d 340 |
. . . 4
⊢ (𝑤 = ∅ → (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (∀𝑖 ∈ (0..^(♯‘𝑤))((𝑤‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑤)‘𝐾) = 𝐾)) ↔ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (∀𝑖 ∈ ∅ ((∅‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg
∅)‘𝐾) = 𝐾)))) |
| 16 | | fveq2 6876 |
. . . . . . . 8
⊢ (𝑤 = 𝑦 → (♯‘𝑤) = (♯‘𝑦)) |
| 17 | 16 | oveq2d 7421 |
. . . . . . 7
⊢ (𝑤 = 𝑦 → (0..^(♯‘𝑤)) = (0..^(♯‘𝑦))) |
| 18 | | fveq1 6875 |
. . . . . . . . 9
⊢ (𝑤 = 𝑦 → (𝑤‘𝑖) = (𝑦‘𝑖)) |
| 19 | 18 | fveq1d 6878 |
. . . . . . . 8
⊢ (𝑤 = 𝑦 → ((𝑤‘𝑖)‘𝐾) = ((𝑦‘𝑖)‘𝐾)) |
| 20 | 19 | eqeq1d 2737 |
. . . . . . 7
⊢ (𝑤 = 𝑦 → (((𝑤‘𝑖)‘𝐾) = 𝐾 ↔ ((𝑦‘𝑖)‘𝐾) = 𝐾)) |
| 21 | 17, 20 | raleqbidv 3325 |
. . . . . 6
⊢ (𝑤 = 𝑦 → (∀𝑖 ∈ (0..^(♯‘𝑤))((𝑤‘𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ (0..^(♯‘𝑦))((𝑦‘𝑖)‘𝐾) = 𝐾)) |
| 22 | | oveq2 7413 |
. . . . . . . 8
⊢ (𝑤 = 𝑦 → (𝑆 Σg 𝑤) = (𝑆 Σg 𝑦)) |
| 23 | 22 | fveq1d 6878 |
. . . . . . 7
⊢ (𝑤 = 𝑦 → ((𝑆 Σg 𝑤)‘𝐾) = ((𝑆 Σg 𝑦)‘𝐾)) |
| 24 | 23 | eqeq1d 2737 |
. . . . . 6
⊢ (𝑤 = 𝑦 → (((𝑆 Σg 𝑤)‘𝐾) = 𝐾 ↔ ((𝑆 Σg 𝑦)‘𝐾) = 𝐾)) |
| 25 | 21, 24 | imbi12d 344 |
. . . . 5
⊢ (𝑤 = 𝑦 → ((∀𝑖 ∈ (0..^(♯‘𝑤))((𝑤‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑤)‘𝐾) = 𝐾) ↔ (∀𝑖 ∈ (0..^(♯‘𝑦))((𝑦‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑦)‘𝐾) = 𝐾))) |
| 26 | 25 | imbi2d 340 |
. . . 4
⊢ (𝑤 = 𝑦 → (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (∀𝑖 ∈ (0..^(♯‘𝑤))((𝑤‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑤)‘𝐾) = 𝐾)) ↔ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (∀𝑖 ∈ (0..^(♯‘𝑦))((𝑦‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑦)‘𝐾) = 𝐾)))) |
| 27 | | fveq2 6876 |
. . . . . . . 8
⊢ (𝑤 = (𝑦 ++ 〈“𝑧”〉) → (♯‘𝑤) = (♯‘(𝑦 ++ 〈“𝑧”〉))) |
| 28 | 27 | oveq2d 7421 |
. . . . . . 7
⊢ (𝑤 = (𝑦 ++ 〈“𝑧”〉) →
(0..^(♯‘𝑤)) =
(0..^(♯‘(𝑦 ++
〈“𝑧”〉)))) |
| 29 | | fveq1 6875 |
. . . . . . . . 9
⊢ (𝑤 = (𝑦 ++ 〈“𝑧”〉) → (𝑤‘𝑖) = ((𝑦 ++ 〈“𝑧”〉)‘𝑖)) |
| 30 | 29 | fveq1d 6878 |
. . . . . . . 8
⊢ (𝑤 = (𝑦 ++ 〈“𝑧”〉) → ((𝑤‘𝑖)‘𝐾) = (((𝑦 ++ 〈“𝑧”〉)‘𝑖)‘𝐾)) |
| 31 | 30 | eqeq1d 2737 |
. . . . . . 7
⊢ (𝑤 = (𝑦 ++ 〈“𝑧”〉) → (((𝑤‘𝑖)‘𝐾) = 𝐾 ↔ (((𝑦 ++ 〈“𝑧”〉)‘𝑖)‘𝐾) = 𝐾)) |
| 32 | 28, 31 | raleqbidv 3325 |
. . . . . 6
⊢ (𝑤 = (𝑦 ++ 〈“𝑧”〉) → (∀𝑖 ∈
(0..^(♯‘𝑤))((𝑤‘𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ (0..^(♯‘(𝑦 ++ 〈“𝑧”〉)))(((𝑦 ++ 〈“𝑧”〉)‘𝑖)‘𝐾) = 𝐾)) |
| 33 | | oveq2 7413 |
. . . . . . . 8
⊢ (𝑤 = (𝑦 ++ 〈“𝑧”〉) → (𝑆 Σg 𝑤) = (𝑆 Σg (𝑦 ++ 〈“𝑧”〉))) |
| 34 | 33 | fveq1d 6878 |
. . . . . . 7
⊢ (𝑤 = (𝑦 ++ 〈“𝑧”〉) → ((𝑆 Σg 𝑤)‘𝐾) = ((𝑆 Σg (𝑦 ++ 〈“𝑧”〉))‘𝐾)) |
| 35 | 34 | eqeq1d 2737 |
. . . . . 6
⊢ (𝑤 = (𝑦 ++ 〈“𝑧”〉) → (((𝑆 Σg 𝑤)‘𝐾) = 𝐾 ↔ ((𝑆 Σg (𝑦 ++ 〈“𝑧”〉))‘𝐾) = 𝐾)) |
| 36 | 32, 35 | imbi12d 344 |
. . . . 5
⊢ (𝑤 = (𝑦 ++ 〈“𝑧”〉) → ((∀𝑖 ∈
(0..^(♯‘𝑤))((𝑤‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑤)‘𝐾) = 𝐾) ↔ (∀𝑖 ∈ (0..^(♯‘(𝑦 ++ 〈“𝑧”〉)))(((𝑦 ++ 〈“𝑧”〉)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑦 ++ 〈“𝑧”〉))‘𝐾) = 𝐾))) |
| 37 | 36 | imbi2d 340 |
. . . 4
⊢ (𝑤 = (𝑦 ++ 〈“𝑧”〉) → (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (∀𝑖 ∈ (0..^(♯‘𝑤))((𝑤‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑤)‘𝐾) = 𝐾)) ↔ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (∀𝑖 ∈ (0..^(♯‘(𝑦 ++ 〈“𝑧”〉)))(((𝑦 ++ 〈“𝑧”〉)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑦 ++ 〈“𝑧”〉))‘𝐾) = 𝐾)))) |
| 38 | | fveq2 6876 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → (♯‘𝑤) = (♯‘𝑊)) |
| 39 | 38 | oveq2d 7421 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (0..^(♯‘𝑤)) = (0..^(♯‘𝑊))) |
| 40 | | fveq1 6875 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → (𝑤‘𝑖) = (𝑊‘𝑖)) |
| 41 | 40 | fveq1d 6878 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → ((𝑤‘𝑖)‘𝐾) = ((𝑊‘𝑖)‘𝐾)) |
| 42 | 41 | eqeq1d 2737 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (((𝑤‘𝑖)‘𝐾) = 𝐾 ↔ ((𝑊‘𝑖)‘𝐾) = 𝐾)) |
| 43 | 39, 42 | raleqbidv 3325 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (∀𝑖 ∈ (0..^(♯‘𝑤))((𝑤‘𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊‘𝑖)‘𝐾) = 𝐾)) |
| 44 | | oveq2 7413 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → (𝑆 Σg 𝑤) = (𝑆 Σg 𝑊)) |
| 45 | 44 | fveq1d 6878 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → ((𝑆 Σg 𝑤)‘𝐾) = ((𝑆 Σg 𝑊)‘𝐾)) |
| 46 | 45 | eqeq1d 2737 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (((𝑆 Σg 𝑤)‘𝐾) = 𝐾 ↔ ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) |
| 47 | 43, 46 | imbi12d 344 |
. . . . 5
⊢ (𝑤 = 𝑊 → ((∀𝑖 ∈ (0..^(♯‘𝑤))((𝑤‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑤)‘𝐾) = 𝐾) ↔ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾))) |
| 48 | 47 | imbi2d 340 |
. . . 4
⊢ (𝑤 = 𝑊 → (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (∀𝑖 ∈ (0..^(♯‘𝑤))((𝑤‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑤)‘𝐾) = 𝐾)) ↔ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)))) |
| 49 | | eqid 2735 |
. . . . . . . . 9
⊢
(0g‘𝑆) = (0g‘𝑆) |
| 50 | 49 | gsum0 18662 |
. . . . . . . 8
⊢ (𝑆 Σg
∅) = (0g‘𝑆) |
| 51 | | gsmsymgrfix.s |
. . . . . . . . . 10
⊢ 𝑆 = (SymGrp‘𝑁) |
| 52 | 51 | symgid 19382 |
. . . . . . . . 9
⊢ (𝑁 ∈ Fin → ( I ↾
𝑁) =
(0g‘𝑆)) |
| 53 | 52 | adantr 480 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → ( I ↾ 𝑁) = (0g‘𝑆)) |
| 54 | 50, 53 | eqtr4id 2789 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (𝑆 Σg ∅) = ( I
↾ 𝑁)) |
| 55 | 54 | fveq1d 6878 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → ((𝑆 Σg
∅)‘𝐾) = (( I
↾ 𝑁)‘𝐾)) |
| 56 | | fvresi 7165 |
. . . . . . 7
⊢ (𝐾 ∈ 𝑁 → (( I ↾ 𝑁)‘𝐾) = 𝐾) |
| 57 | 56 | adantl 481 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (( I ↾ 𝑁)‘𝐾) = 𝐾) |
| 58 | 55, 57 | eqtrd 2770 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → ((𝑆 Σg
∅)‘𝐾) = 𝐾) |
| 59 | 58 | a1d 25 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (∀𝑖 ∈ ∅ ((∅‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg
∅)‘𝐾) = 𝐾)) |
| 60 | | ccatws1len 14638 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ Word 𝐵 → (♯‘(𝑦 ++ 〈“𝑧”〉)) = ((♯‘𝑦) + 1)) |
| 61 | 60 | oveq2d 7421 |
. . . . . . . . . 10
⊢ (𝑦 ∈ Word 𝐵 → (0..^(♯‘(𝑦 ++ 〈“𝑧”〉))) =
(0..^((♯‘𝑦) +
1))) |
| 62 | 61 | raleqdv 3305 |
. . . . . . . . 9
⊢ (𝑦 ∈ Word 𝐵 → (∀𝑖 ∈ (0..^(♯‘(𝑦 ++ 〈“𝑧”〉)))(((𝑦 ++ 〈“𝑧”〉)‘𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ (0..^((♯‘𝑦) + 1))(((𝑦 ++ 〈“𝑧”〉)‘𝑖)‘𝐾) = 𝐾)) |
| 63 | 62 | adantr 480 |
. . . . . . . 8
⊢ ((𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵) → (∀𝑖 ∈ (0..^(♯‘(𝑦 ++ 〈“𝑧”〉)))(((𝑦 ++ 〈“𝑧”〉)‘𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ (0..^((♯‘𝑦) + 1))(((𝑦 ++ 〈“𝑧”〉)‘𝑖)‘𝐾) = 𝐾)) |
| 64 | 63 | adantr 480 |
. . . . . . 7
⊢ (((𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑦))((𝑦‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑦)‘𝐾) = 𝐾))) → (∀𝑖 ∈ (0..^(♯‘(𝑦 ++ 〈“𝑧”〉)))(((𝑦 ++ 〈“𝑧”〉)‘𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ (0..^((♯‘𝑦) + 1))(((𝑦 ++ 〈“𝑧”〉)‘𝑖)‘𝐾) = 𝐾)) |
| 65 | | gsmsymgrfix.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝑆) |
| 66 | 51, 65 | gsmsymgrfixlem1 19408 |
. . . . . . . 8
⊢ (((𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑦))((𝑦‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑦)‘𝐾) = 𝐾)) → (∀𝑖 ∈ (0..^((♯‘𝑦) + 1))(((𝑦 ++ 〈“𝑧”〉)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑦 ++ 〈“𝑧”〉))‘𝐾) = 𝐾)) |
| 67 | 66 | 3expb 1120 |
. . . . . . 7
⊢ (((𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑦))((𝑦‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑦)‘𝐾) = 𝐾))) → (∀𝑖 ∈ (0..^((♯‘𝑦) + 1))(((𝑦 ++ 〈“𝑧”〉)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑦 ++ 〈“𝑧”〉))‘𝐾) = 𝐾)) |
| 68 | 64, 67 | sylbid 240 |
. . . . . 6
⊢ (((𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑦))((𝑦‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑦)‘𝐾) = 𝐾))) → (∀𝑖 ∈ (0..^(♯‘(𝑦 ++ 〈“𝑧”〉)))(((𝑦 ++ 〈“𝑧”〉)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑦 ++ 〈“𝑧”〉))‘𝐾) = 𝐾)) |
| 69 | 68 | exp32 420 |
. . . . 5
⊢ ((𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → ((∀𝑖 ∈ (0..^(♯‘𝑦))((𝑦‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑦)‘𝐾) = 𝐾) → (∀𝑖 ∈ (0..^(♯‘(𝑦 ++ 〈“𝑧”〉)))(((𝑦 ++ 〈“𝑧”〉)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑦 ++ 〈“𝑧”〉))‘𝐾) = 𝐾)))) |
| 70 | 69 | a2d 29 |
. . . 4
⊢ ((𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵) → (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (∀𝑖 ∈ (0..^(♯‘𝑦))((𝑦‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑦)‘𝐾) = 𝐾)) → ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (∀𝑖 ∈ (0..^(♯‘(𝑦 ++ 〈“𝑧”〉)))(((𝑦 ++ 〈“𝑧”〉)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑦 ++ 〈“𝑧”〉))‘𝐾) = 𝐾)))) |
| 71 | 15, 26, 37, 48, 59, 70 | wrdind 14740 |
. . 3
⊢ (𝑊 ∈ Word 𝐵 → ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾))) |
| 72 | 71 | com12 32 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (𝑊 ∈ Word 𝐵 → (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾))) |
| 73 | 72 | 3impia 1117 |
1
⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ∧ 𝑊 ∈ Word 𝐵) → (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) |