Step | Hyp | Ref
| Expression |
1 | | hasheq0 14006 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ V →
((♯‘𝑤) = 0
↔ 𝑤 =
∅)) |
2 | 1 | elv 3428 |
. . . . . . . . . 10
⊢
((♯‘𝑤) =
0 ↔ 𝑤 =
∅) |
3 | 2 | biimpri 227 |
. . . . . . . . 9
⊢ (𝑤 = ∅ →
(♯‘𝑤) =
0) |
4 | 3 | oveq2d 7271 |
. . . . . . . 8
⊢ (𝑤 = ∅ →
(0..^(♯‘𝑤)) =
(0..^0)) |
5 | | fzo0 13339 |
. . . . . . . 8
⊢ (0..^0) =
∅ |
6 | 4, 5 | eqtrdi 2795 |
. . . . . . 7
⊢ (𝑤 = ∅ →
(0..^(♯‘𝑤)) =
∅) |
7 | | fveq1 6755 |
. . . . . . . . 9
⊢ (𝑤 = ∅ → (𝑤‘𝑖) = (∅‘𝑖)) |
8 | 7 | fveq1d 6758 |
. . . . . . . 8
⊢ (𝑤 = ∅ → ((𝑤‘𝑖)‘𝐾) = ((∅‘𝑖)‘𝐾)) |
9 | 8 | eqeq1d 2740 |
. . . . . . 7
⊢ (𝑤 = ∅ → (((𝑤‘𝑖)‘𝐾) = 𝐾 ↔ ((∅‘𝑖)‘𝐾) = 𝐾)) |
10 | 6, 9 | raleqbidv 3327 |
. . . . . 6
⊢ (𝑤 = ∅ → (∀𝑖 ∈
(0..^(♯‘𝑤))((𝑤‘𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ ∅ ((∅‘𝑖)‘𝐾) = 𝐾)) |
11 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑤 = ∅ → (𝑆 Σg
𝑤) = (𝑆 Σg
∅)) |
12 | 11 | fveq1d 6758 |
. . . . . . 7
⊢ (𝑤 = ∅ → ((𝑆 Σg
𝑤)‘𝐾) = ((𝑆 Σg
∅)‘𝐾)) |
13 | 12 | eqeq1d 2740 |
. . . . . 6
⊢ (𝑤 = ∅ → (((𝑆 Σg
𝑤)‘𝐾) = 𝐾 ↔ ((𝑆 Σg
∅)‘𝐾) = 𝐾)) |
14 | 10, 13 | imbi12d 344 |
. . . . 5
⊢ (𝑤 = ∅ →
((∀𝑖 ∈
(0..^(♯‘𝑤))((𝑤‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑤)‘𝐾) = 𝐾) ↔ (∀𝑖 ∈ ∅ ((∅‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg
∅)‘𝐾) = 𝐾))) |
15 | 14 | imbi2d 340 |
. . . 4
⊢ (𝑤 = ∅ → (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (∀𝑖 ∈ (0..^(♯‘𝑤))((𝑤‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑤)‘𝐾) = 𝐾)) ↔ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (∀𝑖 ∈ ∅ ((∅‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg
∅)‘𝐾) = 𝐾)))) |
16 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑤 = 𝑦 → (♯‘𝑤) = (♯‘𝑦)) |
17 | 16 | oveq2d 7271 |
. . . . . . 7
⊢ (𝑤 = 𝑦 → (0..^(♯‘𝑤)) = (0..^(♯‘𝑦))) |
18 | | fveq1 6755 |
. . . . . . . . 9
⊢ (𝑤 = 𝑦 → (𝑤‘𝑖) = (𝑦‘𝑖)) |
19 | 18 | fveq1d 6758 |
. . . . . . . 8
⊢ (𝑤 = 𝑦 → ((𝑤‘𝑖)‘𝐾) = ((𝑦‘𝑖)‘𝐾)) |
20 | 19 | eqeq1d 2740 |
. . . . . . 7
⊢ (𝑤 = 𝑦 → (((𝑤‘𝑖)‘𝐾) = 𝐾 ↔ ((𝑦‘𝑖)‘𝐾) = 𝐾)) |
21 | 17, 20 | raleqbidv 3327 |
. . . . . 6
⊢ (𝑤 = 𝑦 → (∀𝑖 ∈ (0..^(♯‘𝑤))((𝑤‘𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ (0..^(♯‘𝑦))((𝑦‘𝑖)‘𝐾) = 𝐾)) |
22 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑤 = 𝑦 → (𝑆 Σg 𝑤) = (𝑆 Σg 𝑦)) |
23 | 22 | fveq1d 6758 |
. . . . . . 7
⊢ (𝑤 = 𝑦 → ((𝑆 Σg 𝑤)‘𝐾) = ((𝑆 Σg 𝑦)‘𝐾)) |
24 | 23 | eqeq1d 2740 |
. . . . . 6
⊢ (𝑤 = 𝑦 → (((𝑆 Σg 𝑤)‘𝐾) = 𝐾 ↔ ((𝑆 Σg 𝑦)‘𝐾) = 𝐾)) |
25 | 21, 24 | imbi12d 344 |
. . . . 5
⊢ (𝑤 = 𝑦 → ((∀𝑖 ∈ (0..^(♯‘𝑤))((𝑤‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑤)‘𝐾) = 𝐾) ↔ (∀𝑖 ∈ (0..^(♯‘𝑦))((𝑦‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑦)‘𝐾) = 𝐾))) |
26 | 25 | imbi2d 340 |
. . . 4
⊢ (𝑤 = 𝑦 → (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (∀𝑖 ∈ (0..^(♯‘𝑤))((𝑤‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑤)‘𝐾) = 𝐾)) ↔ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (∀𝑖 ∈ (0..^(♯‘𝑦))((𝑦‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑦)‘𝐾) = 𝐾)))) |
27 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑤 = (𝑦 ++ 〈“𝑧”〉) → (♯‘𝑤) = (♯‘(𝑦 ++ 〈“𝑧”〉))) |
28 | 27 | oveq2d 7271 |
. . . . . . 7
⊢ (𝑤 = (𝑦 ++ 〈“𝑧”〉) →
(0..^(♯‘𝑤)) =
(0..^(♯‘(𝑦 ++
〈“𝑧”〉)))) |
29 | | fveq1 6755 |
. . . . . . . . 9
⊢ (𝑤 = (𝑦 ++ 〈“𝑧”〉) → (𝑤‘𝑖) = ((𝑦 ++ 〈“𝑧”〉)‘𝑖)) |
30 | 29 | fveq1d 6758 |
. . . . . . . 8
⊢ (𝑤 = (𝑦 ++ 〈“𝑧”〉) → ((𝑤‘𝑖)‘𝐾) = (((𝑦 ++ 〈“𝑧”〉)‘𝑖)‘𝐾)) |
31 | 30 | eqeq1d 2740 |
. . . . . . 7
⊢ (𝑤 = (𝑦 ++ 〈“𝑧”〉) → (((𝑤‘𝑖)‘𝐾) = 𝐾 ↔ (((𝑦 ++ 〈“𝑧”〉)‘𝑖)‘𝐾) = 𝐾)) |
32 | 28, 31 | raleqbidv 3327 |
. . . . . 6
⊢ (𝑤 = (𝑦 ++ 〈“𝑧”〉) → (∀𝑖 ∈
(0..^(♯‘𝑤))((𝑤‘𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ (0..^(♯‘(𝑦 ++ 〈“𝑧”〉)))(((𝑦 ++ 〈“𝑧”〉)‘𝑖)‘𝐾) = 𝐾)) |
33 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑤 = (𝑦 ++ 〈“𝑧”〉) → (𝑆 Σg 𝑤) = (𝑆 Σg (𝑦 ++ 〈“𝑧”〉))) |
34 | 33 | fveq1d 6758 |
. . . . . . 7
⊢ (𝑤 = (𝑦 ++ 〈“𝑧”〉) → ((𝑆 Σg 𝑤)‘𝐾) = ((𝑆 Σg (𝑦 ++ 〈“𝑧”〉))‘𝐾)) |
35 | 34 | eqeq1d 2740 |
. . . . . 6
⊢ (𝑤 = (𝑦 ++ 〈“𝑧”〉) → (((𝑆 Σg 𝑤)‘𝐾) = 𝐾 ↔ ((𝑆 Σg (𝑦 ++ 〈“𝑧”〉))‘𝐾) = 𝐾)) |
36 | 32, 35 | imbi12d 344 |
. . . . 5
⊢ (𝑤 = (𝑦 ++ 〈“𝑧”〉) → ((∀𝑖 ∈
(0..^(♯‘𝑤))((𝑤‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑤)‘𝐾) = 𝐾) ↔ (∀𝑖 ∈ (0..^(♯‘(𝑦 ++ 〈“𝑧”〉)))(((𝑦 ++ 〈“𝑧”〉)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑦 ++ 〈“𝑧”〉))‘𝐾) = 𝐾))) |
37 | 36 | imbi2d 340 |
. . . 4
⊢ (𝑤 = (𝑦 ++ 〈“𝑧”〉) → (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (∀𝑖 ∈ (0..^(♯‘𝑤))((𝑤‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑤)‘𝐾) = 𝐾)) ↔ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (∀𝑖 ∈ (0..^(♯‘(𝑦 ++ 〈“𝑧”〉)))(((𝑦 ++ 〈“𝑧”〉)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑦 ++ 〈“𝑧”〉))‘𝐾) = 𝐾)))) |
38 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → (♯‘𝑤) = (♯‘𝑊)) |
39 | 38 | oveq2d 7271 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (0..^(♯‘𝑤)) = (0..^(♯‘𝑊))) |
40 | | fveq1 6755 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → (𝑤‘𝑖) = (𝑊‘𝑖)) |
41 | 40 | fveq1d 6758 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → ((𝑤‘𝑖)‘𝐾) = ((𝑊‘𝑖)‘𝐾)) |
42 | 41 | eqeq1d 2740 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (((𝑤‘𝑖)‘𝐾) = 𝐾 ↔ ((𝑊‘𝑖)‘𝐾) = 𝐾)) |
43 | 39, 42 | raleqbidv 3327 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (∀𝑖 ∈ (0..^(♯‘𝑤))((𝑤‘𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊‘𝑖)‘𝐾) = 𝐾)) |
44 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → (𝑆 Σg 𝑤) = (𝑆 Σg 𝑊)) |
45 | 44 | fveq1d 6758 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → ((𝑆 Σg 𝑤)‘𝐾) = ((𝑆 Σg 𝑊)‘𝐾)) |
46 | 45 | eqeq1d 2740 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (((𝑆 Σg 𝑤)‘𝐾) = 𝐾 ↔ ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) |
47 | 43, 46 | imbi12d 344 |
. . . . 5
⊢ (𝑤 = 𝑊 → ((∀𝑖 ∈ (0..^(♯‘𝑤))((𝑤‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑤)‘𝐾) = 𝐾) ↔ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾))) |
48 | 47 | imbi2d 340 |
. . . 4
⊢ (𝑤 = 𝑊 → (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (∀𝑖 ∈ (0..^(♯‘𝑤))((𝑤‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑤)‘𝐾) = 𝐾)) ↔ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)))) |
49 | | eqid 2738 |
. . . . . . . . 9
⊢
(0g‘𝑆) = (0g‘𝑆) |
50 | 49 | gsum0 18283 |
. . . . . . . 8
⊢ (𝑆 Σg
∅) = (0g‘𝑆) |
51 | | gsmsymgrfix.s |
. . . . . . . . . 10
⊢ 𝑆 = (SymGrp‘𝑁) |
52 | 51 | symgid 18924 |
. . . . . . . . 9
⊢ (𝑁 ∈ Fin → ( I ↾
𝑁) =
(0g‘𝑆)) |
53 | 52 | adantr 480 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → ( I ↾ 𝑁) = (0g‘𝑆)) |
54 | 50, 53 | eqtr4id 2798 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (𝑆 Σg ∅) = ( I
↾ 𝑁)) |
55 | 54 | fveq1d 6758 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → ((𝑆 Σg
∅)‘𝐾) = (( I
↾ 𝑁)‘𝐾)) |
56 | | fvresi 7027 |
. . . . . . 7
⊢ (𝐾 ∈ 𝑁 → (( I ↾ 𝑁)‘𝐾) = 𝐾) |
57 | 56 | adantl 481 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (( I ↾ 𝑁)‘𝐾) = 𝐾) |
58 | 55, 57 | eqtrd 2778 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → ((𝑆 Σg
∅)‘𝐾) = 𝐾) |
59 | 58 | a1d 25 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (∀𝑖 ∈ ∅ ((∅‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg
∅)‘𝐾) = 𝐾)) |
60 | | ccatws1len 14253 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ Word 𝐵 → (♯‘(𝑦 ++ 〈“𝑧”〉)) = ((♯‘𝑦) + 1)) |
61 | 60 | oveq2d 7271 |
. . . . . . . . . 10
⊢ (𝑦 ∈ Word 𝐵 → (0..^(♯‘(𝑦 ++ 〈“𝑧”〉))) =
(0..^((♯‘𝑦) +
1))) |
62 | 61 | raleqdv 3339 |
. . . . . . . . 9
⊢ (𝑦 ∈ Word 𝐵 → (∀𝑖 ∈ (0..^(♯‘(𝑦 ++ 〈“𝑧”〉)))(((𝑦 ++ 〈“𝑧”〉)‘𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ (0..^((♯‘𝑦) + 1))(((𝑦 ++ 〈“𝑧”〉)‘𝑖)‘𝐾) = 𝐾)) |
63 | 62 | adantr 480 |
. . . . . . . 8
⊢ ((𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵) → (∀𝑖 ∈ (0..^(♯‘(𝑦 ++ 〈“𝑧”〉)))(((𝑦 ++ 〈“𝑧”〉)‘𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ (0..^((♯‘𝑦) + 1))(((𝑦 ++ 〈“𝑧”〉)‘𝑖)‘𝐾) = 𝐾)) |
64 | 63 | adantr 480 |
. . . . . . 7
⊢ (((𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑦))((𝑦‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑦)‘𝐾) = 𝐾))) → (∀𝑖 ∈ (0..^(♯‘(𝑦 ++ 〈“𝑧”〉)))(((𝑦 ++ 〈“𝑧”〉)‘𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ (0..^((♯‘𝑦) + 1))(((𝑦 ++ 〈“𝑧”〉)‘𝑖)‘𝐾) = 𝐾)) |
65 | | gsmsymgrfix.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝑆) |
66 | 51, 65 | gsmsymgrfixlem1 18950 |
. . . . . . . 8
⊢ (((𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑦))((𝑦‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑦)‘𝐾) = 𝐾)) → (∀𝑖 ∈ (0..^((♯‘𝑦) + 1))(((𝑦 ++ 〈“𝑧”〉)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑦 ++ 〈“𝑧”〉))‘𝐾) = 𝐾)) |
67 | 66 | 3expb 1118 |
. . . . . . 7
⊢ (((𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑦))((𝑦‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑦)‘𝐾) = 𝐾))) → (∀𝑖 ∈ (0..^((♯‘𝑦) + 1))(((𝑦 ++ 〈“𝑧”〉)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑦 ++ 〈“𝑧”〉))‘𝐾) = 𝐾)) |
68 | 64, 67 | sylbid 239 |
. . . . . 6
⊢ (((𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑦))((𝑦‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑦)‘𝐾) = 𝐾))) → (∀𝑖 ∈ (0..^(♯‘(𝑦 ++ 〈“𝑧”〉)))(((𝑦 ++ 〈“𝑧”〉)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑦 ++ 〈“𝑧”〉))‘𝐾) = 𝐾)) |
69 | 68 | exp32 420 |
. . . . 5
⊢ ((𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → ((∀𝑖 ∈ (0..^(♯‘𝑦))((𝑦‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑦)‘𝐾) = 𝐾) → (∀𝑖 ∈ (0..^(♯‘(𝑦 ++ 〈“𝑧”〉)))(((𝑦 ++ 〈“𝑧”〉)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑦 ++ 〈“𝑧”〉))‘𝐾) = 𝐾)))) |
70 | 69 | a2d 29 |
. . . 4
⊢ ((𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵) → (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (∀𝑖 ∈ (0..^(♯‘𝑦))((𝑦‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑦)‘𝐾) = 𝐾)) → ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (∀𝑖 ∈ (0..^(♯‘(𝑦 ++ 〈“𝑧”〉)))(((𝑦 ++ 〈“𝑧”〉)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑦 ++ 〈“𝑧”〉))‘𝐾) = 𝐾)))) |
71 | 15, 26, 37, 48, 59, 70 | wrdind 14363 |
. . 3
⊢ (𝑊 ∈ Word 𝐵 → ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾))) |
72 | 71 | com12 32 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (𝑊 ∈ Word 𝐵 → (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾))) |
73 | 72 | 3impia 1115 |
1
⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ∧ 𝑊 ∈ Word 𝐵) → (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) |