MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsmsymgrfix Structured version   Visualization version   GIF version

Theorem gsmsymgrfix 19426
Description: The composition of permutations fixing one element also fixes this element. (Contributed by AV, 20-Jan-2019.)
Hypotheses
Ref Expression
gsmsymgrfix.s 𝑆 = (SymGrp‘𝑁)
gsmsymgrfix.b 𝐵 = (Base‘𝑆)
Assertion
Ref Expression
gsmsymgrfix ((𝑁 ∈ Fin ∧ 𝐾𝑁𝑊 ∈ Word 𝐵) → (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾))
Distinct variable groups:   𝐵,𝑖   𝑖,𝐾   𝑖,𝑁   𝑖,𝑊
Allowed substitution hint:   𝑆(𝑖)

Proof of Theorem gsmsymgrfix
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hasheq0 14380 . . . . . . . . . . 11 (𝑤 ∈ V → ((♯‘𝑤) = 0 ↔ 𝑤 = ∅))
21elv 3468 . . . . . . . . . 10 ((♯‘𝑤) = 0 ↔ 𝑤 = ∅)
32biimpri 227 . . . . . . . . 9 (𝑤 = ∅ → (♯‘𝑤) = 0)
43oveq2d 7440 . . . . . . . 8 (𝑤 = ∅ → (0..^(♯‘𝑤)) = (0..^0))
5 fzo0 13710 . . . . . . . 8 (0..^0) = ∅
64, 5eqtrdi 2782 . . . . . . 7 (𝑤 = ∅ → (0..^(♯‘𝑤)) = ∅)
7 fveq1 6900 . . . . . . . . 9 (𝑤 = ∅ → (𝑤𝑖) = (∅‘𝑖))
87fveq1d 6903 . . . . . . . 8 (𝑤 = ∅ → ((𝑤𝑖)‘𝐾) = ((∅‘𝑖)‘𝐾))
98eqeq1d 2728 . . . . . . 7 (𝑤 = ∅ → (((𝑤𝑖)‘𝐾) = 𝐾 ↔ ((∅‘𝑖)‘𝐾) = 𝐾))
106, 9raleqbidv 3330 . . . . . 6 (𝑤 = ∅ → (∀𝑖 ∈ (0..^(♯‘𝑤))((𝑤𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ ∅ ((∅‘𝑖)‘𝐾) = 𝐾))
11 oveq2 7432 . . . . . . . 8 (𝑤 = ∅ → (𝑆 Σg 𝑤) = (𝑆 Σg ∅))
1211fveq1d 6903 . . . . . . 7 (𝑤 = ∅ → ((𝑆 Σg 𝑤)‘𝐾) = ((𝑆 Σg ∅)‘𝐾))
1312eqeq1d 2728 . . . . . 6 (𝑤 = ∅ → (((𝑆 Σg 𝑤)‘𝐾) = 𝐾 ↔ ((𝑆 Σg ∅)‘𝐾) = 𝐾))
1410, 13imbi12d 343 . . . . 5 (𝑤 = ∅ → ((∀𝑖 ∈ (0..^(♯‘𝑤))((𝑤𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑤)‘𝐾) = 𝐾) ↔ (∀𝑖 ∈ ∅ ((∅‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg ∅)‘𝐾) = 𝐾)))
1514imbi2d 339 . . . 4 (𝑤 = ∅ → (((𝑁 ∈ Fin ∧ 𝐾𝑁) → (∀𝑖 ∈ (0..^(♯‘𝑤))((𝑤𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑤)‘𝐾) = 𝐾)) ↔ ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (∀𝑖 ∈ ∅ ((∅‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg ∅)‘𝐾) = 𝐾))))
16 fveq2 6901 . . . . . . . 8 (𝑤 = 𝑦 → (♯‘𝑤) = (♯‘𝑦))
1716oveq2d 7440 . . . . . . 7 (𝑤 = 𝑦 → (0..^(♯‘𝑤)) = (0..^(♯‘𝑦)))
18 fveq1 6900 . . . . . . . . 9 (𝑤 = 𝑦 → (𝑤𝑖) = (𝑦𝑖))
1918fveq1d 6903 . . . . . . . 8 (𝑤 = 𝑦 → ((𝑤𝑖)‘𝐾) = ((𝑦𝑖)‘𝐾))
2019eqeq1d 2728 . . . . . . 7 (𝑤 = 𝑦 → (((𝑤𝑖)‘𝐾) = 𝐾 ↔ ((𝑦𝑖)‘𝐾) = 𝐾))
2117, 20raleqbidv 3330 . . . . . 6 (𝑤 = 𝑦 → (∀𝑖 ∈ (0..^(♯‘𝑤))((𝑤𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ (0..^(♯‘𝑦))((𝑦𝑖)‘𝐾) = 𝐾))
22 oveq2 7432 . . . . . . . 8 (𝑤 = 𝑦 → (𝑆 Σg 𝑤) = (𝑆 Σg 𝑦))
2322fveq1d 6903 . . . . . . 7 (𝑤 = 𝑦 → ((𝑆 Σg 𝑤)‘𝐾) = ((𝑆 Σg 𝑦)‘𝐾))
2423eqeq1d 2728 . . . . . 6 (𝑤 = 𝑦 → (((𝑆 Σg 𝑤)‘𝐾) = 𝐾 ↔ ((𝑆 Σg 𝑦)‘𝐾) = 𝐾))
2521, 24imbi12d 343 . . . . 5 (𝑤 = 𝑦 → ((∀𝑖 ∈ (0..^(♯‘𝑤))((𝑤𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑤)‘𝐾) = 𝐾) ↔ (∀𝑖 ∈ (0..^(♯‘𝑦))((𝑦𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑦)‘𝐾) = 𝐾)))
2625imbi2d 339 . . . 4 (𝑤 = 𝑦 → (((𝑁 ∈ Fin ∧ 𝐾𝑁) → (∀𝑖 ∈ (0..^(♯‘𝑤))((𝑤𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑤)‘𝐾) = 𝐾)) ↔ ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (∀𝑖 ∈ (0..^(♯‘𝑦))((𝑦𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑦)‘𝐾) = 𝐾))))
27 fveq2 6901 . . . . . . . 8 (𝑤 = (𝑦 ++ ⟨“𝑧”⟩) → (♯‘𝑤) = (♯‘(𝑦 ++ ⟨“𝑧”⟩)))
2827oveq2d 7440 . . . . . . 7 (𝑤 = (𝑦 ++ ⟨“𝑧”⟩) → (0..^(♯‘𝑤)) = (0..^(♯‘(𝑦 ++ ⟨“𝑧”⟩))))
29 fveq1 6900 . . . . . . . . 9 (𝑤 = (𝑦 ++ ⟨“𝑧”⟩) → (𝑤𝑖) = ((𝑦 ++ ⟨“𝑧”⟩)‘𝑖))
3029fveq1d 6903 . . . . . . . 8 (𝑤 = (𝑦 ++ ⟨“𝑧”⟩) → ((𝑤𝑖)‘𝐾) = (((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾))
3130eqeq1d 2728 . . . . . . 7 (𝑤 = (𝑦 ++ ⟨“𝑧”⟩) → (((𝑤𝑖)‘𝐾) = 𝐾 ↔ (((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾))
3228, 31raleqbidv 3330 . . . . . 6 (𝑤 = (𝑦 ++ ⟨“𝑧”⟩) → (∀𝑖 ∈ (0..^(♯‘𝑤))((𝑤𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ (0..^(♯‘(𝑦 ++ ⟨“𝑧”⟩)))(((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾))
33 oveq2 7432 . . . . . . . 8 (𝑤 = (𝑦 ++ ⟨“𝑧”⟩) → (𝑆 Σg 𝑤) = (𝑆 Σg (𝑦 ++ ⟨“𝑧”⟩)))
3433fveq1d 6903 . . . . . . 7 (𝑤 = (𝑦 ++ ⟨“𝑧”⟩) → ((𝑆 Σg 𝑤)‘𝐾) = ((𝑆 Σg (𝑦 ++ ⟨“𝑧”⟩))‘𝐾))
3534eqeq1d 2728 . . . . . 6 (𝑤 = (𝑦 ++ ⟨“𝑧”⟩) → (((𝑆 Σg 𝑤)‘𝐾) = 𝐾 ↔ ((𝑆 Σg (𝑦 ++ ⟨“𝑧”⟩))‘𝐾) = 𝐾))
3632, 35imbi12d 343 . . . . 5 (𝑤 = (𝑦 ++ ⟨“𝑧”⟩) → ((∀𝑖 ∈ (0..^(♯‘𝑤))((𝑤𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑤)‘𝐾) = 𝐾) ↔ (∀𝑖 ∈ (0..^(♯‘(𝑦 ++ ⟨“𝑧”⟩)))(((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑦 ++ ⟨“𝑧”⟩))‘𝐾) = 𝐾)))
3736imbi2d 339 . . . 4 (𝑤 = (𝑦 ++ ⟨“𝑧”⟩) → (((𝑁 ∈ Fin ∧ 𝐾𝑁) → (∀𝑖 ∈ (0..^(♯‘𝑤))((𝑤𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑤)‘𝐾) = 𝐾)) ↔ ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (∀𝑖 ∈ (0..^(♯‘(𝑦 ++ ⟨“𝑧”⟩)))(((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑦 ++ ⟨“𝑧”⟩))‘𝐾) = 𝐾))))
38 fveq2 6901 . . . . . . . 8 (𝑤 = 𝑊 → (♯‘𝑤) = (♯‘𝑊))
3938oveq2d 7440 . . . . . . 7 (𝑤 = 𝑊 → (0..^(♯‘𝑤)) = (0..^(♯‘𝑊)))
40 fveq1 6900 . . . . . . . . 9 (𝑤 = 𝑊 → (𝑤𝑖) = (𝑊𝑖))
4140fveq1d 6903 . . . . . . . 8 (𝑤 = 𝑊 → ((𝑤𝑖)‘𝐾) = ((𝑊𝑖)‘𝐾))
4241eqeq1d 2728 . . . . . . 7 (𝑤 = 𝑊 → (((𝑤𝑖)‘𝐾) = 𝐾 ↔ ((𝑊𝑖)‘𝐾) = 𝐾))
4339, 42raleqbidv 3330 . . . . . 6 (𝑤 = 𝑊 → (∀𝑖 ∈ (0..^(♯‘𝑤))((𝑤𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾))
44 oveq2 7432 . . . . . . . 8 (𝑤 = 𝑊 → (𝑆 Σg 𝑤) = (𝑆 Σg 𝑊))
4544fveq1d 6903 . . . . . . 7 (𝑤 = 𝑊 → ((𝑆 Σg 𝑤)‘𝐾) = ((𝑆 Σg 𝑊)‘𝐾))
4645eqeq1d 2728 . . . . . 6 (𝑤 = 𝑊 → (((𝑆 Σg 𝑤)‘𝐾) = 𝐾 ↔ ((𝑆 Σg 𝑊)‘𝐾) = 𝐾))
4743, 46imbi12d 343 . . . . 5 (𝑤 = 𝑊 → ((∀𝑖 ∈ (0..^(♯‘𝑤))((𝑤𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑤)‘𝐾) = 𝐾) ↔ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)))
4847imbi2d 339 . . . 4 (𝑤 = 𝑊 → (((𝑁 ∈ Fin ∧ 𝐾𝑁) → (∀𝑖 ∈ (0..^(♯‘𝑤))((𝑤𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑤)‘𝐾) = 𝐾)) ↔ ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾))))
49 eqid 2726 . . . . . . . . 9 (0g𝑆) = (0g𝑆)
5049gsum0 18677 . . . . . . . 8 (𝑆 Σg ∅) = (0g𝑆)
51 gsmsymgrfix.s . . . . . . . . . 10 𝑆 = (SymGrp‘𝑁)
5251symgid 19399 . . . . . . . . 9 (𝑁 ∈ Fin → ( I ↾ 𝑁) = (0g𝑆))
5352adantr 479 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → ( I ↾ 𝑁) = (0g𝑆))
5450, 53eqtr4id 2785 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (𝑆 Σg ∅) = ( I ↾ 𝑁))
5554fveq1d 6903 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → ((𝑆 Σg ∅)‘𝐾) = (( I ↾ 𝑁)‘𝐾))
56 fvresi 7187 . . . . . . 7 (𝐾𝑁 → (( I ↾ 𝑁)‘𝐾) = 𝐾)
5756adantl 480 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (( I ↾ 𝑁)‘𝐾) = 𝐾)
5855, 57eqtrd 2766 . . . . 5 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → ((𝑆 Σg ∅)‘𝐾) = 𝐾)
5958a1d 25 . . . 4 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (∀𝑖 ∈ ∅ ((∅‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg ∅)‘𝐾) = 𝐾))
60 ccatws1len 14628 . . . . . . . . . . 11 (𝑦 ∈ Word 𝐵 → (♯‘(𝑦 ++ ⟨“𝑧”⟩)) = ((♯‘𝑦) + 1))
6160oveq2d 7440 . . . . . . . . . 10 (𝑦 ∈ Word 𝐵 → (0..^(♯‘(𝑦 ++ ⟨“𝑧”⟩))) = (0..^((♯‘𝑦) + 1)))
6261raleqdv 3315 . . . . . . . . 9 (𝑦 ∈ Word 𝐵 → (∀𝑖 ∈ (0..^(♯‘(𝑦 ++ ⟨“𝑧”⟩)))(((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ (0..^((♯‘𝑦) + 1))(((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾))
6362adantr 479 . . . . . . . 8 ((𝑦 ∈ Word 𝐵𝑧𝐵) → (∀𝑖 ∈ (0..^(♯‘(𝑦 ++ ⟨“𝑧”⟩)))(((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ (0..^((♯‘𝑦) + 1))(((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾))
6463adantr 479 . . . . . . 7 (((𝑦 ∈ Word 𝐵𝑧𝐵) ∧ ((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑦))((𝑦𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑦)‘𝐾) = 𝐾))) → (∀𝑖 ∈ (0..^(♯‘(𝑦 ++ ⟨“𝑧”⟩)))(((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ (0..^((♯‘𝑦) + 1))(((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾))
65 gsmsymgrfix.b . . . . . . . . 9 𝐵 = (Base‘𝑆)
6651, 65gsmsymgrfixlem1 19425 . . . . . . . 8 (((𝑦 ∈ Word 𝐵𝑧𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑦))((𝑦𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑦)‘𝐾) = 𝐾)) → (∀𝑖 ∈ (0..^((♯‘𝑦) + 1))(((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑦 ++ ⟨“𝑧”⟩))‘𝐾) = 𝐾))
67663expb 1117 . . . . . . 7 (((𝑦 ∈ Word 𝐵𝑧𝐵) ∧ ((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑦))((𝑦𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑦)‘𝐾) = 𝐾))) → (∀𝑖 ∈ (0..^((♯‘𝑦) + 1))(((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑦 ++ ⟨“𝑧”⟩))‘𝐾) = 𝐾))
6864, 67sylbid 239 . . . . . 6 (((𝑦 ∈ Word 𝐵𝑧𝐵) ∧ ((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑦))((𝑦𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑦)‘𝐾) = 𝐾))) → (∀𝑖 ∈ (0..^(♯‘(𝑦 ++ ⟨“𝑧”⟩)))(((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑦 ++ ⟨“𝑧”⟩))‘𝐾) = 𝐾))
6968exp32 419 . . . . 5 ((𝑦 ∈ Word 𝐵𝑧𝐵) → ((𝑁 ∈ Fin ∧ 𝐾𝑁) → ((∀𝑖 ∈ (0..^(♯‘𝑦))((𝑦𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑦)‘𝐾) = 𝐾) → (∀𝑖 ∈ (0..^(♯‘(𝑦 ++ ⟨“𝑧”⟩)))(((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑦 ++ ⟨“𝑧”⟩))‘𝐾) = 𝐾))))
7069a2d 29 . . . 4 ((𝑦 ∈ Word 𝐵𝑧𝐵) → (((𝑁 ∈ Fin ∧ 𝐾𝑁) → (∀𝑖 ∈ (0..^(♯‘𝑦))((𝑦𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑦)‘𝐾) = 𝐾)) → ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (∀𝑖 ∈ (0..^(♯‘(𝑦 ++ ⟨“𝑧”⟩)))(((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑦 ++ ⟨“𝑧”⟩))‘𝐾) = 𝐾))))
7115, 26, 37, 48, 59, 70wrdind 14730 . . 3 (𝑊 ∈ Word 𝐵 → ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)))
7271com12 32 . 2 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (𝑊 ∈ Word 𝐵 → (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)))
73723impia 1114 1 ((𝑁 ∈ Fin ∧ 𝐾𝑁𝑊 ∈ Word 𝐵) → (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099  wral 3051  Vcvv 3462  c0 4325   I cid 5579  cres 5684  cfv 6554  (class class class)co 7424  Fincfn 8974  0cc0 11158  1c1 11159   + caddc 11161  ..^cfzo 13681  chash 14347  Word cword 14522   ++ cconcat 14578  ⟨“cs1 14603  Basecbs 17213  0gc0g 17454   Σg cgsu 17455  SymGrpcsymg 19364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-er 8734  df-map 8857  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-xnn0 12597  df-z 12611  df-uz 12875  df-fz 13539  df-fzo 13682  df-seq 14022  df-hash 14348  df-word 14523  df-lsw 14571  df-concat 14579  df-s1 14604  df-substr 14649  df-pfx 14679  df-struct 17149  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-tset 17285  df-0g 17456  df-gsum 17457  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-submnd 18774  df-efmnd 18859  df-grp 18931  df-symg 19365
This theorem is referenced by:  psgndiflemB  21596
  Copyright terms: Public domain W3C validator