MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsmsymgrfix Structured version   Visualization version   GIF version

Theorem gsmsymgrfix 19295
Description: The composition of permutations fixing one element also fixes this element. (Contributed by AV, 20-Jan-2019.)
Hypotheses
Ref Expression
gsmsymgrfix.s 𝑆 = (SymGrp‘𝑁)
gsmsymgrfix.b 𝐵 = (Base‘𝑆)
Assertion
Ref Expression
gsmsymgrfix ((𝑁 ∈ Fin ∧ 𝐾𝑁𝑊 ∈ Word 𝐵) → (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾))
Distinct variable groups:   𝐵,𝑖   𝑖,𝐾   𝑖,𝑁   𝑖,𝑊
Allowed substitution hint:   𝑆(𝑖)

Proof of Theorem gsmsymgrfix
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hasheq0 14322 . . . . . . . . . . 11 (𝑤 ∈ V → ((♯‘𝑤) = 0 ↔ 𝑤 = ∅))
21elv 3480 . . . . . . . . . 10 ((♯‘𝑤) = 0 ↔ 𝑤 = ∅)
32biimpri 227 . . . . . . . . 9 (𝑤 = ∅ → (♯‘𝑤) = 0)
43oveq2d 7424 . . . . . . . 8 (𝑤 = ∅ → (0..^(♯‘𝑤)) = (0..^0))
5 fzo0 13655 . . . . . . . 8 (0..^0) = ∅
64, 5eqtrdi 2788 . . . . . . 7 (𝑤 = ∅ → (0..^(♯‘𝑤)) = ∅)
7 fveq1 6890 . . . . . . . . 9 (𝑤 = ∅ → (𝑤𝑖) = (∅‘𝑖))
87fveq1d 6893 . . . . . . . 8 (𝑤 = ∅ → ((𝑤𝑖)‘𝐾) = ((∅‘𝑖)‘𝐾))
98eqeq1d 2734 . . . . . . 7 (𝑤 = ∅ → (((𝑤𝑖)‘𝐾) = 𝐾 ↔ ((∅‘𝑖)‘𝐾) = 𝐾))
106, 9raleqbidv 3342 . . . . . 6 (𝑤 = ∅ → (∀𝑖 ∈ (0..^(♯‘𝑤))((𝑤𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ ∅ ((∅‘𝑖)‘𝐾) = 𝐾))
11 oveq2 7416 . . . . . . . 8 (𝑤 = ∅ → (𝑆 Σg 𝑤) = (𝑆 Σg ∅))
1211fveq1d 6893 . . . . . . 7 (𝑤 = ∅ → ((𝑆 Σg 𝑤)‘𝐾) = ((𝑆 Σg ∅)‘𝐾))
1312eqeq1d 2734 . . . . . 6 (𝑤 = ∅ → (((𝑆 Σg 𝑤)‘𝐾) = 𝐾 ↔ ((𝑆 Σg ∅)‘𝐾) = 𝐾))
1410, 13imbi12d 344 . . . . 5 (𝑤 = ∅ → ((∀𝑖 ∈ (0..^(♯‘𝑤))((𝑤𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑤)‘𝐾) = 𝐾) ↔ (∀𝑖 ∈ ∅ ((∅‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg ∅)‘𝐾) = 𝐾)))
1514imbi2d 340 . . . 4 (𝑤 = ∅ → (((𝑁 ∈ Fin ∧ 𝐾𝑁) → (∀𝑖 ∈ (0..^(♯‘𝑤))((𝑤𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑤)‘𝐾) = 𝐾)) ↔ ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (∀𝑖 ∈ ∅ ((∅‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg ∅)‘𝐾) = 𝐾))))
16 fveq2 6891 . . . . . . . 8 (𝑤 = 𝑦 → (♯‘𝑤) = (♯‘𝑦))
1716oveq2d 7424 . . . . . . 7 (𝑤 = 𝑦 → (0..^(♯‘𝑤)) = (0..^(♯‘𝑦)))
18 fveq1 6890 . . . . . . . . 9 (𝑤 = 𝑦 → (𝑤𝑖) = (𝑦𝑖))
1918fveq1d 6893 . . . . . . . 8 (𝑤 = 𝑦 → ((𝑤𝑖)‘𝐾) = ((𝑦𝑖)‘𝐾))
2019eqeq1d 2734 . . . . . . 7 (𝑤 = 𝑦 → (((𝑤𝑖)‘𝐾) = 𝐾 ↔ ((𝑦𝑖)‘𝐾) = 𝐾))
2117, 20raleqbidv 3342 . . . . . 6 (𝑤 = 𝑦 → (∀𝑖 ∈ (0..^(♯‘𝑤))((𝑤𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ (0..^(♯‘𝑦))((𝑦𝑖)‘𝐾) = 𝐾))
22 oveq2 7416 . . . . . . . 8 (𝑤 = 𝑦 → (𝑆 Σg 𝑤) = (𝑆 Σg 𝑦))
2322fveq1d 6893 . . . . . . 7 (𝑤 = 𝑦 → ((𝑆 Σg 𝑤)‘𝐾) = ((𝑆 Σg 𝑦)‘𝐾))
2423eqeq1d 2734 . . . . . 6 (𝑤 = 𝑦 → (((𝑆 Σg 𝑤)‘𝐾) = 𝐾 ↔ ((𝑆 Σg 𝑦)‘𝐾) = 𝐾))
2521, 24imbi12d 344 . . . . 5 (𝑤 = 𝑦 → ((∀𝑖 ∈ (0..^(♯‘𝑤))((𝑤𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑤)‘𝐾) = 𝐾) ↔ (∀𝑖 ∈ (0..^(♯‘𝑦))((𝑦𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑦)‘𝐾) = 𝐾)))
2625imbi2d 340 . . . 4 (𝑤 = 𝑦 → (((𝑁 ∈ Fin ∧ 𝐾𝑁) → (∀𝑖 ∈ (0..^(♯‘𝑤))((𝑤𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑤)‘𝐾) = 𝐾)) ↔ ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (∀𝑖 ∈ (0..^(♯‘𝑦))((𝑦𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑦)‘𝐾) = 𝐾))))
27 fveq2 6891 . . . . . . . 8 (𝑤 = (𝑦 ++ ⟨“𝑧”⟩) → (♯‘𝑤) = (♯‘(𝑦 ++ ⟨“𝑧”⟩)))
2827oveq2d 7424 . . . . . . 7 (𝑤 = (𝑦 ++ ⟨“𝑧”⟩) → (0..^(♯‘𝑤)) = (0..^(♯‘(𝑦 ++ ⟨“𝑧”⟩))))
29 fveq1 6890 . . . . . . . . 9 (𝑤 = (𝑦 ++ ⟨“𝑧”⟩) → (𝑤𝑖) = ((𝑦 ++ ⟨“𝑧”⟩)‘𝑖))
3029fveq1d 6893 . . . . . . . 8 (𝑤 = (𝑦 ++ ⟨“𝑧”⟩) → ((𝑤𝑖)‘𝐾) = (((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾))
3130eqeq1d 2734 . . . . . . 7 (𝑤 = (𝑦 ++ ⟨“𝑧”⟩) → (((𝑤𝑖)‘𝐾) = 𝐾 ↔ (((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾))
3228, 31raleqbidv 3342 . . . . . 6 (𝑤 = (𝑦 ++ ⟨“𝑧”⟩) → (∀𝑖 ∈ (0..^(♯‘𝑤))((𝑤𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ (0..^(♯‘(𝑦 ++ ⟨“𝑧”⟩)))(((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾))
33 oveq2 7416 . . . . . . . 8 (𝑤 = (𝑦 ++ ⟨“𝑧”⟩) → (𝑆 Σg 𝑤) = (𝑆 Σg (𝑦 ++ ⟨“𝑧”⟩)))
3433fveq1d 6893 . . . . . . 7 (𝑤 = (𝑦 ++ ⟨“𝑧”⟩) → ((𝑆 Σg 𝑤)‘𝐾) = ((𝑆 Σg (𝑦 ++ ⟨“𝑧”⟩))‘𝐾))
3534eqeq1d 2734 . . . . . 6 (𝑤 = (𝑦 ++ ⟨“𝑧”⟩) → (((𝑆 Σg 𝑤)‘𝐾) = 𝐾 ↔ ((𝑆 Σg (𝑦 ++ ⟨“𝑧”⟩))‘𝐾) = 𝐾))
3632, 35imbi12d 344 . . . . 5 (𝑤 = (𝑦 ++ ⟨“𝑧”⟩) → ((∀𝑖 ∈ (0..^(♯‘𝑤))((𝑤𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑤)‘𝐾) = 𝐾) ↔ (∀𝑖 ∈ (0..^(♯‘(𝑦 ++ ⟨“𝑧”⟩)))(((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑦 ++ ⟨“𝑧”⟩))‘𝐾) = 𝐾)))
3736imbi2d 340 . . . 4 (𝑤 = (𝑦 ++ ⟨“𝑧”⟩) → (((𝑁 ∈ Fin ∧ 𝐾𝑁) → (∀𝑖 ∈ (0..^(♯‘𝑤))((𝑤𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑤)‘𝐾) = 𝐾)) ↔ ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (∀𝑖 ∈ (0..^(♯‘(𝑦 ++ ⟨“𝑧”⟩)))(((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑦 ++ ⟨“𝑧”⟩))‘𝐾) = 𝐾))))
38 fveq2 6891 . . . . . . . 8 (𝑤 = 𝑊 → (♯‘𝑤) = (♯‘𝑊))
3938oveq2d 7424 . . . . . . 7 (𝑤 = 𝑊 → (0..^(♯‘𝑤)) = (0..^(♯‘𝑊)))
40 fveq1 6890 . . . . . . . . 9 (𝑤 = 𝑊 → (𝑤𝑖) = (𝑊𝑖))
4140fveq1d 6893 . . . . . . . 8 (𝑤 = 𝑊 → ((𝑤𝑖)‘𝐾) = ((𝑊𝑖)‘𝐾))
4241eqeq1d 2734 . . . . . . 7 (𝑤 = 𝑊 → (((𝑤𝑖)‘𝐾) = 𝐾 ↔ ((𝑊𝑖)‘𝐾) = 𝐾))
4339, 42raleqbidv 3342 . . . . . 6 (𝑤 = 𝑊 → (∀𝑖 ∈ (0..^(♯‘𝑤))((𝑤𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾))
44 oveq2 7416 . . . . . . . 8 (𝑤 = 𝑊 → (𝑆 Σg 𝑤) = (𝑆 Σg 𝑊))
4544fveq1d 6893 . . . . . . 7 (𝑤 = 𝑊 → ((𝑆 Σg 𝑤)‘𝐾) = ((𝑆 Σg 𝑊)‘𝐾))
4645eqeq1d 2734 . . . . . 6 (𝑤 = 𝑊 → (((𝑆 Σg 𝑤)‘𝐾) = 𝐾 ↔ ((𝑆 Σg 𝑊)‘𝐾) = 𝐾))
4743, 46imbi12d 344 . . . . 5 (𝑤 = 𝑊 → ((∀𝑖 ∈ (0..^(♯‘𝑤))((𝑤𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑤)‘𝐾) = 𝐾) ↔ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)))
4847imbi2d 340 . . . 4 (𝑤 = 𝑊 → (((𝑁 ∈ Fin ∧ 𝐾𝑁) → (∀𝑖 ∈ (0..^(♯‘𝑤))((𝑤𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑤)‘𝐾) = 𝐾)) ↔ ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾))))
49 eqid 2732 . . . . . . . . 9 (0g𝑆) = (0g𝑆)
5049gsum0 18602 . . . . . . . 8 (𝑆 Σg ∅) = (0g𝑆)
51 gsmsymgrfix.s . . . . . . . . . 10 𝑆 = (SymGrp‘𝑁)
5251symgid 19268 . . . . . . . . 9 (𝑁 ∈ Fin → ( I ↾ 𝑁) = (0g𝑆))
5352adantr 481 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → ( I ↾ 𝑁) = (0g𝑆))
5450, 53eqtr4id 2791 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (𝑆 Σg ∅) = ( I ↾ 𝑁))
5554fveq1d 6893 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → ((𝑆 Σg ∅)‘𝐾) = (( I ↾ 𝑁)‘𝐾))
56 fvresi 7170 . . . . . . 7 (𝐾𝑁 → (( I ↾ 𝑁)‘𝐾) = 𝐾)
5756adantl 482 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (( I ↾ 𝑁)‘𝐾) = 𝐾)
5855, 57eqtrd 2772 . . . . 5 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → ((𝑆 Σg ∅)‘𝐾) = 𝐾)
5958a1d 25 . . . 4 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (∀𝑖 ∈ ∅ ((∅‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg ∅)‘𝐾) = 𝐾))
60 ccatws1len 14569 . . . . . . . . . . 11 (𝑦 ∈ Word 𝐵 → (♯‘(𝑦 ++ ⟨“𝑧”⟩)) = ((♯‘𝑦) + 1))
6160oveq2d 7424 . . . . . . . . . 10 (𝑦 ∈ Word 𝐵 → (0..^(♯‘(𝑦 ++ ⟨“𝑧”⟩))) = (0..^((♯‘𝑦) + 1)))
6261raleqdv 3325 . . . . . . . . 9 (𝑦 ∈ Word 𝐵 → (∀𝑖 ∈ (0..^(♯‘(𝑦 ++ ⟨“𝑧”⟩)))(((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ (0..^((♯‘𝑦) + 1))(((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾))
6362adantr 481 . . . . . . . 8 ((𝑦 ∈ Word 𝐵𝑧𝐵) → (∀𝑖 ∈ (0..^(♯‘(𝑦 ++ ⟨“𝑧”⟩)))(((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ (0..^((♯‘𝑦) + 1))(((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾))
6463adantr 481 . . . . . . 7 (((𝑦 ∈ Word 𝐵𝑧𝐵) ∧ ((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑦))((𝑦𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑦)‘𝐾) = 𝐾))) → (∀𝑖 ∈ (0..^(♯‘(𝑦 ++ ⟨“𝑧”⟩)))(((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ (0..^((♯‘𝑦) + 1))(((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾))
65 gsmsymgrfix.b . . . . . . . . 9 𝐵 = (Base‘𝑆)
6651, 65gsmsymgrfixlem1 19294 . . . . . . . 8 (((𝑦 ∈ Word 𝐵𝑧𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑦))((𝑦𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑦)‘𝐾) = 𝐾)) → (∀𝑖 ∈ (0..^((♯‘𝑦) + 1))(((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑦 ++ ⟨“𝑧”⟩))‘𝐾) = 𝐾))
67663expb 1120 . . . . . . 7 (((𝑦 ∈ Word 𝐵𝑧𝐵) ∧ ((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑦))((𝑦𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑦)‘𝐾) = 𝐾))) → (∀𝑖 ∈ (0..^((♯‘𝑦) + 1))(((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑦 ++ ⟨“𝑧”⟩))‘𝐾) = 𝐾))
6864, 67sylbid 239 . . . . . 6 (((𝑦 ∈ Word 𝐵𝑧𝐵) ∧ ((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑦))((𝑦𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑦)‘𝐾) = 𝐾))) → (∀𝑖 ∈ (0..^(♯‘(𝑦 ++ ⟨“𝑧”⟩)))(((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑦 ++ ⟨“𝑧”⟩))‘𝐾) = 𝐾))
6968exp32 421 . . . . 5 ((𝑦 ∈ Word 𝐵𝑧𝐵) → ((𝑁 ∈ Fin ∧ 𝐾𝑁) → ((∀𝑖 ∈ (0..^(♯‘𝑦))((𝑦𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑦)‘𝐾) = 𝐾) → (∀𝑖 ∈ (0..^(♯‘(𝑦 ++ ⟨“𝑧”⟩)))(((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑦 ++ ⟨“𝑧”⟩))‘𝐾) = 𝐾))))
7069a2d 29 . . . 4 ((𝑦 ∈ Word 𝐵𝑧𝐵) → (((𝑁 ∈ Fin ∧ 𝐾𝑁) → (∀𝑖 ∈ (0..^(♯‘𝑦))((𝑦𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑦)‘𝐾) = 𝐾)) → ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (∀𝑖 ∈ (0..^(♯‘(𝑦 ++ ⟨“𝑧”⟩)))(((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑦 ++ ⟨“𝑧”⟩))‘𝐾) = 𝐾))))
7115, 26, 37, 48, 59, 70wrdind 14671 . . 3 (𝑊 ∈ Word 𝐵 → ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)))
7271com12 32 . 2 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (𝑊 ∈ Word 𝐵 → (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)))
73723impia 1117 1 ((𝑁 ∈ Fin ∧ 𝐾𝑁𝑊 ∈ Word 𝐵) → (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3061  Vcvv 3474  c0 4322   I cid 5573  cres 5678  cfv 6543  (class class class)co 7408  Fincfn 8938  0cc0 11109  1c1 11110   + caddc 11112  ..^cfzo 13626  chash 14289  Word cword 14463   ++ cconcat 14519  ⟨“cs1 14544  Basecbs 17143  0gc0g 17384   Σg cgsu 17385  SymGrpcsymg 19233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-card 9933  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-9 12281  df-n0 12472  df-xnn0 12544  df-z 12558  df-uz 12822  df-fz 13484  df-fzo 13627  df-seq 13966  df-hash 14290  df-word 14464  df-lsw 14512  df-concat 14520  df-s1 14545  df-substr 14590  df-pfx 14620  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-tset 17215  df-0g 17386  df-gsum 17387  df-mgm 18560  df-sgrp 18609  df-mnd 18625  df-submnd 18671  df-efmnd 18749  df-grp 18821  df-symg 19234
This theorem is referenced by:  psgndiflemB  21152
  Copyright terms: Public domain W3C validator