| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itg1lea | Structured version Visualization version GIF version | ||
| Description: Approximate version of itg1le 25666. If 𝐹 ≤ 𝐺 for almost all 𝑥, then ∫1𝐹 ≤ ∫1𝐺. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 6-Aug-2014.) |
| Ref | Expression |
|---|---|
| itg10a.1 | ⊢ (𝜑 → 𝐹 ∈ dom ∫1) |
| itg10a.2 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| itg10a.3 | ⊢ (𝜑 → (vol*‘𝐴) = 0) |
| itg1lea.4 | ⊢ (𝜑 → 𝐺 ∈ dom ∫1) |
| itg1lea.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) ≤ (𝐺‘𝑥)) |
| Ref | Expression |
|---|---|
| itg1lea | ⊢ (𝜑 → (∫1‘𝐹) ≤ (∫1‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg1lea.4 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ dom ∫1) | |
| 2 | itg10a.1 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ dom ∫1) | |
| 3 | i1fsub 25661 | . . . . 5 ⊢ ((𝐺 ∈ dom ∫1 ∧ 𝐹 ∈ dom ∫1) → (𝐺 ∘f − 𝐹) ∈ dom ∫1) | |
| 4 | 1, 2, 3 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐺 ∘f − 𝐹) ∈ dom ∫1) |
| 5 | itg10a.2 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
| 6 | itg10a.3 | . . . 4 ⊢ (𝜑 → (vol*‘𝐴) = 0) | |
| 7 | itg1lea.5 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) ≤ (𝐺‘𝑥)) | |
| 8 | eldifi 4106 | . . . . . . 7 ⊢ (𝑥 ∈ (ℝ ∖ 𝐴) → 𝑥 ∈ ℝ) | |
| 9 | i1ff 25629 | . . . . . . . . . 10 ⊢ (𝐺 ∈ dom ∫1 → 𝐺:ℝ⟶ℝ) | |
| 10 | 1, 9 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝐺:ℝ⟶ℝ) |
| 11 | 10 | ffvelcdmda 7074 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐺‘𝑥) ∈ ℝ) |
| 12 | i1ff 25629 | . . . . . . . . . 10 ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) | |
| 13 | 2, 12 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
| 14 | 13 | ffvelcdmda 7074 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ ℝ) |
| 15 | 11, 14 | subge0d 11827 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (0 ≤ ((𝐺‘𝑥) − (𝐹‘𝑥)) ↔ (𝐹‘𝑥) ≤ (𝐺‘𝑥))) |
| 16 | 8, 15 | sylan2 593 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (0 ≤ ((𝐺‘𝑥) − (𝐹‘𝑥)) ↔ (𝐹‘𝑥) ≤ (𝐺‘𝑥))) |
| 17 | 7, 16 | mpbird 257 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → 0 ≤ ((𝐺‘𝑥) − (𝐹‘𝑥))) |
| 18 | 10 | ffnd 6707 | . . . . . . 7 ⊢ (𝜑 → 𝐺 Fn ℝ) |
| 19 | 13 | ffnd 6707 | . . . . . . 7 ⊢ (𝜑 → 𝐹 Fn ℝ) |
| 20 | reex 11220 | . . . . . . . 8 ⊢ ℝ ∈ V | |
| 21 | 20 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ℝ ∈ V) |
| 22 | inidm 4202 | . . . . . . 7 ⊢ (ℝ ∩ ℝ) = ℝ | |
| 23 | eqidd 2736 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐺‘𝑥) = (𝐺‘𝑥)) | |
| 24 | eqidd 2736 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
| 25 | 18, 19, 21, 21, 22, 23, 24 | ofval 7682 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((𝐺 ∘f − 𝐹)‘𝑥) = ((𝐺‘𝑥) − (𝐹‘𝑥))) |
| 26 | 8, 25 | sylan2 593 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → ((𝐺 ∘f − 𝐹)‘𝑥) = ((𝐺‘𝑥) − (𝐹‘𝑥))) |
| 27 | 17, 26 | breqtrrd 5147 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → 0 ≤ ((𝐺 ∘f − 𝐹)‘𝑥)) |
| 28 | 4, 5, 6, 27 | itg1ge0a 25664 | . . 3 ⊢ (𝜑 → 0 ≤ (∫1‘(𝐺 ∘f − 𝐹))) |
| 29 | itg1sub 25662 | . . . 4 ⊢ ((𝐺 ∈ dom ∫1 ∧ 𝐹 ∈ dom ∫1) → (∫1‘(𝐺 ∘f − 𝐹)) = ((∫1‘𝐺) − (∫1‘𝐹))) | |
| 30 | 1, 2, 29 | syl2anc 584 | . . 3 ⊢ (𝜑 → (∫1‘(𝐺 ∘f − 𝐹)) = ((∫1‘𝐺) − (∫1‘𝐹))) |
| 31 | 28, 30 | breqtrd 5145 | . 2 ⊢ (𝜑 → 0 ≤ ((∫1‘𝐺) − (∫1‘𝐹))) |
| 32 | itg1cl 25638 | . . . 4 ⊢ (𝐺 ∈ dom ∫1 → (∫1‘𝐺) ∈ ℝ) | |
| 33 | 1, 32 | syl 17 | . . 3 ⊢ (𝜑 → (∫1‘𝐺) ∈ ℝ) |
| 34 | itg1cl 25638 | . . . 4 ⊢ (𝐹 ∈ dom ∫1 → (∫1‘𝐹) ∈ ℝ) | |
| 35 | 2, 34 | syl 17 | . . 3 ⊢ (𝜑 → (∫1‘𝐹) ∈ ℝ) |
| 36 | 33, 35 | subge0d 11827 | . 2 ⊢ (𝜑 → (0 ≤ ((∫1‘𝐺) − (∫1‘𝐹)) ↔ (∫1‘𝐹) ≤ (∫1‘𝐺))) |
| 37 | 31, 36 | mpbid 232 | 1 ⊢ (𝜑 → (∫1‘𝐹) ≤ (∫1‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∖ cdif 3923 ⊆ wss 3926 class class class wbr 5119 dom cdm 5654 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ∘f cof 7669 ℝcr 11128 0cc0 11129 ≤ cle 11270 − cmin 11466 vol*covol 25415 ∫1citg1 25568 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 ax-addf 11208 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-disj 5087 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-pm 8843 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-inf 9455 df-oi 9524 df-dju 9915 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-q 12965 df-rp 13009 df-xadd 13129 df-ioo 13366 df-ico 13368 df-icc 13369 df-fz 13525 df-fzo 13672 df-fl 13809 df-seq 14020 df-exp 14080 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-clim 15504 df-sum 15703 df-xmet 21308 df-met 21309 df-ovol 25417 df-vol 25418 df-mbf 25572 df-itg1 25573 |
| This theorem is referenced by: itg1le 25666 itg2uba 25696 itg2splitlem 25701 |
| Copyright terms: Public domain | W3C validator |