| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itg1lea | Structured version Visualization version GIF version | ||
| Description: Approximate version of itg1le 25621. If 𝐹 ≤ 𝐺 for almost all 𝑥, then ∫1𝐹 ≤ ∫1𝐺. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 6-Aug-2014.) |
| Ref | Expression |
|---|---|
| itg10a.1 | ⊢ (𝜑 → 𝐹 ∈ dom ∫1) |
| itg10a.2 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| itg10a.3 | ⊢ (𝜑 → (vol*‘𝐴) = 0) |
| itg1lea.4 | ⊢ (𝜑 → 𝐺 ∈ dom ∫1) |
| itg1lea.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) ≤ (𝐺‘𝑥)) |
| Ref | Expression |
|---|---|
| itg1lea | ⊢ (𝜑 → (∫1‘𝐹) ≤ (∫1‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg1lea.4 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ dom ∫1) | |
| 2 | itg10a.1 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ dom ∫1) | |
| 3 | i1fsub 25616 | . . . . 5 ⊢ ((𝐺 ∈ dom ∫1 ∧ 𝐹 ∈ dom ∫1) → (𝐺 ∘f − 𝐹) ∈ dom ∫1) | |
| 4 | 1, 2, 3 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐺 ∘f − 𝐹) ∈ dom ∫1) |
| 5 | itg10a.2 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
| 6 | itg10a.3 | . . . 4 ⊢ (𝜑 → (vol*‘𝐴) = 0) | |
| 7 | itg1lea.5 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) ≤ (𝐺‘𝑥)) | |
| 8 | eldifi 4097 | . . . . . . 7 ⊢ (𝑥 ∈ (ℝ ∖ 𝐴) → 𝑥 ∈ ℝ) | |
| 9 | i1ff 25584 | . . . . . . . . . 10 ⊢ (𝐺 ∈ dom ∫1 → 𝐺:ℝ⟶ℝ) | |
| 10 | 1, 9 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝐺:ℝ⟶ℝ) |
| 11 | 10 | ffvelcdmda 7059 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐺‘𝑥) ∈ ℝ) |
| 12 | i1ff 25584 | . . . . . . . . . 10 ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) | |
| 13 | 2, 12 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
| 14 | 13 | ffvelcdmda 7059 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ ℝ) |
| 15 | 11, 14 | subge0d 11775 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (0 ≤ ((𝐺‘𝑥) − (𝐹‘𝑥)) ↔ (𝐹‘𝑥) ≤ (𝐺‘𝑥))) |
| 16 | 8, 15 | sylan2 593 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (0 ≤ ((𝐺‘𝑥) − (𝐹‘𝑥)) ↔ (𝐹‘𝑥) ≤ (𝐺‘𝑥))) |
| 17 | 7, 16 | mpbird 257 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → 0 ≤ ((𝐺‘𝑥) − (𝐹‘𝑥))) |
| 18 | 10 | ffnd 6692 | . . . . . . 7 ⊢ (𝜑 → 𝐺 Fn ℝ) |
| 19 | 13 | ffnd 6692 | . . . . . . 7 ⊢ (𝜑 → 𝐹 Fn ℝ) |
| 20 | reex 11166 | . . . . . . . 8 ⊢ ℝ ∈ V | |
| 21 | 20 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ℝ ∈ V) |
| 22 | inidm 4193 | . . . . . . 7 ⊢ (ℝ ∩ ℝ) = ℝ | |
| 23 | eqidd 2731 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐺‘𝑥) = (𝐺‘𝑥)) | |
| 24 | eqidd 2731 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
| 25 | 18, 19, 21, 21, 22, 23, 24 | ofval 7667 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((𝐺 ∘f − 𝐹)‘𝑥) = ((𝐺‘𝑥) − (𝐹‘𝑥))) |
| 26 | 8, 25 | sylan2 593 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → ((𝐺 ∘f − 𝐹)‘𝑥) = ((𝐺‘𝑥) − (𝐹‘𝑥))) |
| 27 | 17, 26 | breqtrrd 5138 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → 0 ≤ ((𝐺 ∘f − 𝐹)‘𝑥)) |
| 28 | 4, 5, 6, 27 | itg1ge0a 25619 | . . 3 ⊢ (𝜑 → 0 ≤ (∫1‘(𝐺 ∘f − 𝐹))) |
| 29 | itg1sub 25617 | . . . 4 ⊢ ((𝐺 ∈ dom ∫1 ∧ 𝐹 ∈ dom ∫1) → (∫1‘(𝐺 ∘f − 𝐹)) = ((∫1‘𝐺) − (∫1‘𝐹))) | |
| 30 | 1, 2, 29 | syl2anc 584 | . . 3 ⊢ (𝜑 → (∫1‘(𝐺 ∘f − 𝐹)) = ((∫1‘𝐺) − (∫1‘𝐹))) |
| 31 | 28, 30 | breqtrd 5136 | . 2 ⊢ (𝜑 → 0 ≤ ((∫1‘𝐺) − (∫1‘𝐹))) |
| 32 | itg1cl 25593 | . . . 4 ⊢ (𝐺 ∈ dom ∫1 → (∫1‘𝐺) ∈ ℝ) | |
| 33 | 1, 32 | syl 17 | . . 3 ⊢ (𝜑 → (∫1‘𝐺) ∈ ℝ) |
| 34 | itg1cl 25593 | . . . 4 ⊢ (𝐹 ∈ dom ∫1 → (∫1‘𝐹) ∈ ℝ) | |
| 35 | 2, 34 | syl 17 | . . 3 ⊢ (𝜑 → (∫1‘𝐹) ∈ ℝ) |
| 36 | 33, 35 | subge0d 11775 | . 2 ⊢ (𝜑 → (0 ≤ ((∫1‘𝐺) − (∫1‘𝐹)) ↔ (∫1‘𝐹) ≤ (∫1‘𝐺))) |
| 37 | 31, 36 | mpbid 232 | 1 ⊢ (𝜑 → (∫1‘𝐹) ≤ (∫1‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∖ cdif 3914 ⊆ wss 3917 class class class wbr 5110 dom cdm 5641 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ∘f cof 7654 ℝcr 11074 0cc0 11075 ≤ cle 11216 − cmin 11412 vol*covol 25370 ∫1citg1 25523 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-disj 5078 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-oi 9470 df-dju 9861 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-q 12915 df-rp 12959 df-xadd 13080 df-ioo 13317 df-ico 13319 df-icc 13320 df-fz 13476 df-fzo 13623 df-fl 13761 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-sum 15660 df-xmet 21264 df-met 21265 df-ovol 25372 df-vol 25373 df-mbf 25527 df-itg1 25528 |
| This theorem is referenced by: itg1le 25621 itg2uba 25651 itg2splitlem 25656 |
| Copyright terms: Public domain | W3C validator |