MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg1lea Structured version   Visualization version   GIF version

Theorem itg1lea 23820
Description: Approximate version of itg1le 23821. If 𝐹𝐺 for almost all 𝑥, then 1𝐹 ≤ ∫1𝐺. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 6-Aug-2014.)
Hypotheses
Ref Expression
itg10a.1 (𝜑𝐹 ∈ dom ∫1)
itg10a.2 (𝜑𝐴 ⊆ ℝ)
itg10a.3 (𝜑 → (vol*‘𝐴) = 0)
itg1lea.4 (𝜑𝐺 ∈ dom ∫1)
itg1lea.5 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹𝑥) ≤ (𝐺𝑥))
Assertion
Ref Expression
itg1lea (𝜑 → (∫1𝐹) ≤ (∫1𝐺))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥

Proof of Theorem itg1lea
StepHypRef Expression
1 itg1lea.4 . . . . 5 (𝜑𝐺 ∈ dom ∫1)
2 itg10a.1 . . . . 5 (𝜑𝐹 ∈ dom ∫1)
3 i1fsub 23816 . . . . 5 ((𝐺 ∈ dom ∫1𝐹 ∈ dom ∫1) → (𝐺𝑓𝐹) ∈ dom ∫1)
41, 2, 3syl2anc 580 . . . 4 (𝜑 → (𝐺𝑓𝐹) ∈ dom ∫1)
5 itg10a.2 . . . 4 (𝜑𝐴 ⊆ ℝ)
6 itg10a.3 . . . 4 (𝜑 → (vol*‘𝐴) = 0)
7 itg1lea.5 . . . . . 6 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹𝑥) ≤ (𝐺𝑥))
8 eldifi 3930 . . . . . . 7 (𝑥 ∈ (ℝ ∖ 𝐴) → 𝑥 ∈ ℝ)
9 i1ff 23784 . . . . . . . . . 10 (𝐺 ∈ dom ∫1𝐺:ℝ⟶ℝ)
101, 9syl 17 . . . . . . . . 9 (𝜑𝐺:ℝ⟶ℝ)
1110ffvelrnda 6585 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝐺𝑥) ∈ ℝ)
12 i1ff 23784 . . . . . . . . . 10 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
132, 12syl 17 . . . . . . . . 9 (𝜑𝐹:ℝ⟶ℝ)
1413ffvelrnda 6585 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
1511, 14subge0d 10909 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (0 ≤ ((𝐺𝑥) − (𝐹𝑥)) ↔ (𝐹𝑥) ≤ (𝐺𝑥)))
168, 15sylan2 587 . . . . . 6 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → (0 ≤ ((𝐺𝑥) − (𝐹𝑥)) ↔ (𝐹𝑥) ≤ (𝐺𝑥)))
177, 16mpbird 249 . . . . 5 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → 0 ≤ ((𝐺𝑥) − (𝐹𝑥)))
1810ffnd 6257 . . . . . . 7 (𝜑𝐺 Fn ℝ)
1913ffnd 6257 . . . . . . 7 (𝜑𝐹 Fn ℝ)
20 reex 10315 . . . . . . . 8 ℝ ∈ V
2120a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ V)
22 inidm 4018 . . . . . . 7 (ℝ ∩ ℝ) = ℝ
23 eqidd 2800 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝐺𝑥) = (𝐺𝑥))
24 eqidd 2800 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) = (𝐹𝑥))
2518, 19, 21, 21, 22, 23, 24ofval 7140 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → ((𝐺𝑓𝐹)‘𝑥) = ((𝐺𝑥) − (𝐹𝑥)))
268, 25sylan2 587 . . . . 5 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → ((𝐺𝑓𝐹)‘𝑥) = ((𝐺𝑥) − (𝐹𝑥)))
2717, 26breqtrrd 4871 . . . 4 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → 0 ≤ ((𝐺𝑓𝐹)‘𝑥))
284, 5, 6, 27itg1ge0a 23819 . . 3 (𝜑 → 0 ≤ (∫1‘(𝐺𝑓𝐹)))
29 itg1sub 23817 . . . 4 ((𝐺 ∈ dom ∫1𝐹 ∈ dom ∫1) → (∫1‘(𝐺𝑓𝐹)) = ((∫1𝐺) − (∫1𝐹)))
301, 2, 29syl2anc 580 . . 3 (𝜑 → (∫1‘(𝐺𝑓𝐹)) = ((∫1𝐺) − (∫1𝐹)))
3128, 30breqtrd 4869 . 2 (𝜑 → 0 ≤ ((∫1𝐺) − (∫1𝐹)))
32 itg1cl 23793 . . . 4 (𝐺 ∈ dom ∫1 → (∫1𝐺) ∈ ℝ)
331, 32syl 17 . . 3 (𝜑 → (∫1𝐺) ∈ ℝ)
34 itg1cl 23793 . . . 4 (𝐹 ∈ dom ∫1 → (∫1𝐹) ∈ ℝ)
352, 34syl 17 . . 3 (𝜑 → (∫1𝐹) ∈ ℝ)
3633, 35subge0d 10909 . 2 (𝜑 → (0 ≤ ((∫1𝐺) − (∫1𝐹)) ↔ (∫1𝐹) ≤ (∫1𝐺)))
3731, 36mpbid 224 1 (𝜑 → (∫1𝐹) ≤ (∫1𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385   = wceq 1653  wcel 2157  Vcvv 3385  cdif 3766  wss 3769   class class class wbr 4843  dom cdm 5312  wf 6097  cfv 6101  (class class class)co 6878  𝑓 cof 7129  cr 10223  0cc0 10224  cle 10364  cmin 10556  vol*covol 23570  1citg1 23723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-inf2 8788  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-pre-sup 10302  ax-addf 10303
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-disj 4812  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-se 5272  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-isom 6110  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-of 7131  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-2o 7800  df-oadd 7803  df-er 7982  df-map 8097  df-pm 8098  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-sup 8590  df-inf 8591  df-oi 8657  df-card 9051  df-cda 9278  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-div 10977  df-nn 11313  df-2 11376  df-3 11377  df-n0 11581  df-z 11667  df-uz 11931  df-q 12034  df-rp 12075  df-xadd 12194  df-ioo 12428  df-ico 12430  df-icc 12431  df-fz 12581  df-fzo 12721  df-fl 12848  df-seq 13056  df-exp 13115  df-hash 13371  df-cj 14180  df-re 14181  df-im 14182  df-sqrt 14316  df-abs 14317  df-clim 14560  df-sum 14758  df-xmet 20061  df-met 20062  df-ovol 23572  df-vol 23573  df-mbf 23727  df-itg1 23728
This theorem is referenced by:  itg1le  23821  itg2uba  23851  itg2splitlem  23856
  Copyright terms: Public domain W3C validator