![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > itg1lea | Structured version Visualization version GIF version |
Description: Approximate version of itg1le 25763. If 𝐹 ≤ 𝐺 for almost all 𝑥, then ∫1𝐹 ≤ ∫1𝐺. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 6-Aug-2014.) |
Ref | Expression |
---|---|
itg10a.1 | ⊢ (𝜑 → 𝐹 ∈ dom ∫1) |
itg10a.2 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
itg10a.3 | ⊢ (𝜑 → (vol*‘𝐴) = 0) |
itg1lea.4 | ⊢ (𝜑 → 𝐺 ∈ dom ∫1) |
itg1lea.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) ≤ (𝐺‘𝑥)) |
Ref | Expression |
---|---|
itg1lea | ⊢ (𝜑 → (∫1‘𝐹) ≤ (∫1‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itg1lea.4 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ dom ∫1) | |
2 | itg10a.1 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ dom ∫1) | |
3 | i1fsub 25758 | . . . . 5 ⊢ ((𝐺 ∈ dom ∫1 ∧ 𝐹 ∈ dom ∫1) → (𝐺 ∘f − 𝐹) ∈ dom ∫1) | |
4 | 1, 2, 3 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐺 ∘f − 𝐹) ∈ dom ∫1) |
5 | itg10a.2 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
6 | itg10a.3 | . . . 4 ⊢ (𝜑 → (vol*‘𝐴) = 0) | |
7 | itg1lea.5 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) ≤ (𝐺‘𝑥)) | |
8 | eldifi 4141 | . . . . . . 7 ⊢ (𝑥 ∈ (ℝ ∖ 𝐴) → 𝑥 ∈ ℝ) | |
9 | i1ff 25725 | . . . . . . . . . 10 ⊢ (𝐺 ∈ dom ∫1 → 𝐺:ℝ⟶ℝ) | |
10 | 1, 9 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝐺:ℝ⟶ℝ) |
11 | 10 | ffvelcdmda 7104 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐺‘𝑥) ∈ ℝ) |
12 | i1ff 25725 | . . . . . . . . . 10 ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) | |
13 | 2, 12 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
14 | 13 | ffvelcdmda 7104 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ ℝ) |
15 | 11, 14 | subge0d 11851 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (0 ≤ ((𝐺‘𝑥) − (𝐹‘𝑥)) ↔ (𝐹‘𝑥) ≤ (𝐺‘𝑥))) |
16 | 8, 15 | sylan2 593 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (0 ≤ ((𝐺‘𝑥) − (𝐹‘𝑥)) ↔ (𝐹‘𝑥) ≤ (𝐺‘𝑥))) |
17 | 7, 16 | mpbird 257 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → 0 ≤ ((𝐺‘𝑥) − (𝐹‘𝑥))) |
18 | 10 | ffnd 6738 | . . . . . . 7 ⊢ (𝜑 → 𝐺 Fn ℝ) |
19 | 13 | ffnd 6738 | . . . . . . 7 ⊢ (𝜑 → 𝐹 Fn ℝ) |
20 | reex 11244 | . . . . . . . 8 ⊢ ℝ ∈ V | |
21 | 20 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ℝ ∈ V) |
22 | inidm 4235 | . . . . . . 7 ⊢ (ℝ ∩ ℝ) = ℝ | |
23 | eqidd 2736 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐺‘𝑥) = (𝐺‘𝑥)) | |
24 | eqidd 2736 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
25 | 18, 19, 21, 21, 22, 23, 24 | ofval 7708 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((𝐺 ∘f − 𝐹)‘𝑥) = ((𝐺‘𝑥) − (𝐹‘𝑥))) |
26 | 8, 25 | sylan2 593 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → ((𝐺 ∘f − 𝐹)‘𝑥) = ((𝐺‘𝑥) − (𝐹‘𝑥))) |
27 | 17, 26 | breqtrrd 5176 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → 0 ≤ ((𝐺 ∘f − 𝐹)‘𝑥)) |
28 | 4, 5, 6, 27 | itg1ge0a 25761 | . . 3 ⊢ (𝜑 → 0 ≤ (∫1‘(𝐺 ∘f − 𝐹))) |
29 | itg1sub 25759 | . . . 4 ⊢ ((𝐺 ∈ dom ∫1 ∧ 𝐹 ∈ dom ∫1) → (∫1‘(𝐺 ∘f − 𝐹)) = ((∫1‘𝐺) − (∫1‘𝐹))) | |
30 | 1, 2, 29 | syl2anc 584 | . . 3 ⊢ (𝜑 → (∫1‘(𝐺 ∘f − 𝐹)) = ((∫1‘𝐺) − (∫1‘𝐹))) |
31 | 28, 30 | breqtrd 5174 | . 2 ⊢ (𝜑 → 0 ≤ ((∫1‘𝐺) − (∫1‘𝐹))) |
32 | itg1cl 25734 | . . . 4 ⊢ (𝐺 ∈ dom ∫1 → (∫1‘𝐺) ∈ ℝ) | |
33 | 1, 32 | syl 17 | . . 3 ⊢ (𝜑 → (∫1‘𝐺) ∈ ℝ) |
34 | itg1cl 25734 | . . . 4 ⊢ (𝐹 ∈ dom ∫1 → (∫1‘𝐹) ∈ ℝ) | |
35 | 2, 34 | syl 17 | . . 3 ⊢ (𝜑 → (∫1‘𝐹) ∈ ℝ) |
36 | 33, 35 | subge0d 11851 | . 2 ⊢ (𝜑 → (0 ≤ ((∫1‘𝐺) − (∫1‘𝐹)) ↔ (∫1‘𝐹) ≤ (∫1‘𝐺))) |
37 | 31, 36 | mpbid 232 | 1 ⊢ (𝜑 → (∫1‘𝐹) ≤ (∫1‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ∖ cdif 3960 ⊆ wss 3963 class class class wbr 5148 dom cdm 5689 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 ∘f cof 7695 ℝcr 11152 0cc0 11153 ≤ cle 11294 − cmin 11490 vol*covol 25511 ∫1citg1 25664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 ax-addf 11232 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-disj 5116 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-pm 8868 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-inf 9481 df-oi 9548 df-dju 9939 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12612 df-uz 12877 df-q 12989 df-rp 13033 df-xadd 13153 df-ioo 13388 df-ico 13390 df-icc 13391 df-fz 13545 df-fzo 13692 df-fl 13829 df-seq 14040 df-exp 14100 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-clim 15521 df-sum 15720 df-xmet 21375 df-met 21376 df-ovol 25513 df-vol 25514 df-mbf 25668 df-itg1 25669 |
This theorem is referenced by: itg1le 25763 itg2uba 25793 itg2splitlem 25798 |
Copyright terms: Public domain | W3C validator |