![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > itg1lea | Structured version Visualization version GIF version |
Description: Approximate version of itg1le 23821. If 𝐹 ≤ 𝐺 for almost all 𝑥, then ∫1𝐹 ≤ ∫1𝐺. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 6-Aug-2014.) |
Ref | Expression |
---|---|
itg10a.1 | ⊢ (𝜑 → 𝐹 ∈ dom ∫1) |
itg10a.2 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
itg10a.3 | ⊢ (𝜑 → (vol*‘𝐴) = 0) |
itg1lea.4 | ⊢ (𝜑 → 𝐺 ∈ dom ∫1) |
itg1lea.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) ≤ (𝐺‘𝑥)) |
Ref | Expression |
---|---|
itg1lea | ⊢ (𝜑 → (∫1‘𝐹) ≤ (∫1‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itg1lea.4 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ dom ∫1) | |
2 | itg10a.1 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ dom ∫1) | |
3 | i1fsub 23816 | . . . . 5 ⊢ ((𝐺 ∈ dom ∫1 ∧ 𝐹 ∈ dom ∫1) → (𝐺 ∘𝑓 − 𝐹) ∈ dom ∫1) | |
4 | 1, 2, 3 | syl2anc 580 | . . . 4 ⊢ (𝜑 → (𝐺 ∘𝑓 − 𝐹) ∈ dom ∫1) |
5 | itg10a.2 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
6 | itg10a.3 | . . . 4 ⊢ (𝜑 → (vol*‘𝐴) = 0) | |
7 | itg1lea.5 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) ≤ (𝐺‘𝑥)) | |
8 | eldifi 3930 | . . . . . . 7 ⊢ (𝑥 ∈ (ℝ ∖ 𝐴) → 𝑥 ∈ ℝ) | |
9 | i1ff 23784 | . . . . . . . . . 10 ⊢ (𝐺 ∈ dom ∫1 → 𝐺:ℝ⟶ℝ) | |
10 | 1, 9 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝐺:ℝ⟶ℝ) |
11 | 10 | ffvelrnda 6585 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐺‘𝑥) ∈ ℝ) |
12 | i1ff 23784 | . . . . . . . . . 10 ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) | |
13 | 2, 12 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
14 | 13 | ffvelrnda 6585 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ ℝ) |
15 | 11, 14 | subge0d 10909 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (0 ≤ ((𝐺‘𝑥) − (𝐹‘𝑥)) ↔ (𝐹‘𝑥) ≤ (𝐺‘𝑥))) |
16 | 8, 15 | sylan2 587 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (0 ≤ ((𝐺‘𝑥) − (𝐹‘𝑥)) ↔ (𝐹‘𝑥) ≤ (𝐺‘𝑥))) |
17 | 7, 16 | mpbird 249 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → 0 ≤ ((𝐺‘𝑥) − (𝐹‘𝑥))) |
18 | 10 | ffnd 6257 | . . . . . . 7 ⊢ (𝜑 → 𝐺 Fn ℝ) |
19 | 13 | ffnd 6257 | . . . . . . 7 ⊢ (𝜑 → 𝐹 Fn ℝ) |
20 | reex 10315 | . . . . . . . 8 ⊢ ℝ ∈ V | |
21 | 20 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ℝ ∈ V) |
22 | inidm 4018 | . . . . . . 7 ⊢ (ℝ ∩ ℝ) = ℝ | |
23 | eqidd 2800 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐺‘𝑥) = (𝐺‘𝑥)) | |
24 | eqidd 2800 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
25 | 18, 19, 21, 21, 22, 23, 24 | ofval 7140 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((𝐺 ∘𝑓 − 𝐹)‘𝑥) = ((𝐺‘𝑥) − (𝐹‘𝑥))) |
26 | 8, 25 | sylan2 587 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → ((𝐺 ∘𝑓 − 𝐹)‘𝑥) = ((𝐺‘𝑥) − (𝐹‘𝑥))) |
27 | 17, 26 | breqtrrd 4871 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → 0 ≤ ((𝐺 ∘𝑓 − 𝐹)‘𝑥)) |
28 | 4, 5, 6, 27 | itg1ge0a 23819 | . . 3 ⊢ (𝜑 → 0 ≤ (∫1‘(𝐺 ∘𝑓 − 𝐹))) |
29 | itg1sub 23817 | . . . 4 ⊢ ((𝐺 ∈ dom ∫1 ∧ 𝐹 ∈ dom ∫1) → (∫1‘(𝐺 ∘𝑓 − 𝐹)) = ((∫1‘𝐺) − (∫1‘𝐹))) | |
30 | 1, 2, 29 | syl2anc 580 | . . 3 ⊢ (𝜑 → (∫1‘(𝐺 ∘𝑓 − 𝐹)) = ((∫1‘𝐺) − (∫1‘𝐹))) |
31 | 28, 30 | breqtrd 4869 | . 2 ⊢ (𝜑 → 0 ≤ ((∫1‘𝐺) − (∫1‘𝐹))) |
32 | itg1cl 23793 | . . . 4 ⊢ (𝐺 ∈ dom ∫1 → (∫1‘𝐺) ∈ ℝ) | |
33 | 1, 32 | syl 17 | . . 3 ⊢ (𝜑 → (∫1‘𝐺) ∈ ℝ) |
34 | itg1cl 23793 | . . . 4 ⊢ (𝐹 ∈ dom ∫1 → (∫1‘𝐹) ∈ ℝ) | |
35 | 2, 34 | syl 17 | . . 3 ⊢ (𝜑 → (∫1‘𝐹) ∈ ℝ) |
36 | 33, 35 | subge0d 10909 | . 2 ⊢ (𝜑 → (0 ≤ ((∫1‘𝐺) − (∫1‘𝐹)) ↔ (∫1‘𝐹) ≤ (∫1‘𝐺))) |
37 | 31, 36 | mpbid 224 | 1 ⊢ (𝜑 → (∫1‘𝐹) ≤ (∫1‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 Vcvv 3385 ∖ cdif 3766 ⊆ wss 3769 class class class wbr 4843 dom cdm 5312 ⟶wf 6097 ‘cfv 6101 (class class class)co 6878 ∘𝑓 cof 7129 ℝcr 10223 0cc0 10224 ≤ cle 10364 − cmin 10556 vol*covol 23570 ∫1citg1 23723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-inf2 8788 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 ax-pre-sup 10302 ax-addf 10303 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-disj 4812 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-se 5272 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-isom 6110 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-of 7131 df-om 7300 df-1st 7401 df-2nd 7402 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-2o 7800 df-oadd 7803 df-er 7982 df-map 8097 df-pm 8098 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-sup 8590 df-inf 8591 df-oi 8657 df-card 9051 df-cda 9278 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-div 10977 df-nn 11313 df-2 11376 df-3 11377 df-n0 11581 df-z 11667 df-uz 11931 df-q 12034 df-rp 12075 df-xadd 12194 df-ioo 12428 df-ico 12430 df-icc 12431 df-fz 12581 df-fzo 12721 df-fl 12848 df-seq 13056 df-exp 13115 df-hash 13371 df-cj 14180 df-re 14181 df-im 14182 df-sqrt 14316 df-abs 14317 df-clim 14560 df-sum 14758 df-xmet 20061 df-met 20062 df-ovol 23572 df-vol 23573 df-mbf 23727 df-itg1 23728 |
This theorem is referenced by: itg1le 23821 itg2uba 23851 itg2splitlem 23856 |
Copyright terms: Public domain | W3C validator |