![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > i1fpos | Structured version Visualization version GIF version |
Description: The positive part of a simple function is simple. (Contributed by Mario Carneiro, 28-Jun-2014.) |
Ref | Expression |
---|---|
i1fpos.1 | β’ πΊ = (π₯ β β β¦ if(0 β€ (πΉβπ₯), (πΉβπ₯), 0)) |
Ref | Expression |
---|---|
i1fpos | β’ (πΉ β dom β«1 β πΊ β dom β«1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | i1fpos.1 | . . 3 β’ πΊ = (π₯ β β β¦ if(0 β€ (πΉβπ₯), (πΉβπ₯), 0)) | |
2 | simpr 484 | . . . . . . 7 β’ ((πΉ β dom β«1 β§ π₯ β β) β π₯ β β) | |
3 | 2 | biantrurd 532 | . . . . . 6 β’ ((πΉ β dom β«1 β§ π₯ β β) β ((πΉβπ₯) β (0[,)+β) β (π₯ β β β§ (πΉβπ₯) β (0[,)+β)))) |
4 | i1ff 25556 | . . . . . . . . 9 β’ (πΉ β dom β«1 β πΉ:ββΆβ) | |
5 | 4 | ffvelcdmda 7079 | . . . . . . . 8 β’ ((πΉ β dom β«1 β§ π₯ β β) β (πΉβπ₯) β β) |
6 | 5 | biantrurd 532 | . . . . . . 7 β’ ((πΉ β dom β«1 β§ π₯ β β) β (0 β€ (πΉβπ₯) β ((πΉβπ₯) β β β§ 0 β€ (πΉβπ₯)))) |
7 | elrege0 13434 | . . . . . . 7 β’ ((πΉβπ₯) β (0[,)+β) β ((πΉβπ₯) β β β§ 0 β€ (πΉβπ₯))) | |
8 | 6, 7 | bitr4di 289 | . . . . . 6 β’ ((πΉ β dom β«1 β§ π₯ β β) β (0 β€ (πΉβπ₯) β (πΉβπ₯) β (0[,)+β))) |
9 | 4 | adantr 480 | . . . . . . 7 β’ ((πΉ β dom β«1 β§ π₯ β β) β πΉ:ββΆβ) |
10 | ffn 6710 | . . . . . . 7 β’ (πΉ:ββΆβ β πΉ Fn β) | |
11 | elpreima 7052 | . . . . . . 7 β’ (πΉ Fn β β (π₯ β (β‘πΉ β (0[,)+β)) β (π₯ β β β§ (πΉβπ₯) β (0[,)+β)))) | |
12 | 9, 10, 11 | 3syl 18 | . . . . . 6 β’ ((πΉ β dom β«1 β§ π₯ β β) β (π₯ β (β‘πΉ β (0[,)+β)) β (π₯ β β β§ (πΉβπ₯) β (0[,)+β)))) |
13 | 3, 8, 12 | 3bitr4d 311 | . . . . 5 β’ ((πΉ β dom β«1 β§ π₯ β β) β (0 β€ (πΉβπ₯) β π₯ β (β‘πΉ β (0[,)+β)))) |
14 | 13 | ifbid 4546 | . . . 4 β’ ((πΉ β dom β«1 β§ π₯ β β) β if(0 β€ (πΉβπ₯), (πΉβπ₯), 0) = if(π₯ β (β‘πΉ β (0[,)+β)), (πΉβπ₯), 0)) |
15 | 14 | mpteq2dva 5241 | . . 3 β’ (πΉ β dom β«1 β (π₯ β β β¦ if(0 β€ (πΉβπ₯), (πΉβπ₯), 0)) = (π₯ β β β¦ if(π₯ β (β‘πΉ β (0[,)+β)), (πΉβπ₯), 0))) |
16 | 1, 15 | eqtrid 2778 | . 2 β’ (πΉ β dom β«1 β πΊ = (π₯ β β β¦ if(π₯ β (β‘πΉ β (0[,)+β)), (πΉβπ₯), 0))) |
17 | i1fima 25558 | . . 3 β’ (πΉ β dom β«1 β (β‘πΉ β (0[,)+β)) β dom vol) | |
18 | eqid 2726 | . . . 4 β’ (π₯ β β β¦ if(π₯ β (β‘πΉ β (0[,)+β)), (πΉβπ₯), 0)) = (π₯ β β β¦ if(π₯ β (β‘πΉ β (0[,)+β)), (πΉβπ₯), 0)) | |
19 | 18 | i1fres 25586 | . . 3 β’ ((πΉ β dom β«1 β§ (β‘πΉ β (0[,)+β)) β dom vol) β (π₯ β β β¦ if(π₯ β (β‘πΉ β (0[,)+β)), (πΉβπ₯), 0)) β dom β«1) |
20 | 17, 19 | mpdan 684 | . 2 β’ (πΉ β dom β«1 β (π₯ β β β¦ if(π₯ β (β‘πΉ β (0[,)+β)), (πΉβπ₯), 0)) β dom β«1) |
21 | 16, 20 | eqeltrd 2827 | 1 β’ (πΉ β dom β«1 β πΊ β dom β«1) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1533 β wcel 2098 ifcif 4523 class class class wbr 5141 β¦ cmpt 5224 β‘ccnv 5668 dom cdm 5669 β cima 5672 Fn wfn 6531 βΆwf 6532 βcfv 6536 (class class class)co 7404 βcr 11108 0cc0 11109 +βcpnf 11246 β€ cle 11250 [,)cico 13329 volcvol 25343 β«1citg1 25495 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-inf2 9635 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-2o 8465 df-er 8702 df-map 8821 df-pm 8822 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fi 9405 df-sup 9436 df-inf 9437 df-oi 9504 df-dju 9895 df-card 9933 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-div 11873 df-nn 12214 df-2 12276 df-3 12277 df-n0 12474 df-z 12560 df-uz 12824 df-q 12934 df-rp 12978 df-xneg 13095 df-xadd 13096 df-xmul 13097 df-ioo 13331 df-ico 13333 df-icc 13334 df-fz 13488 df-fzo 13631 df-fl 13760 df-seq 13970 df-exp 14031 df-hash 14294 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-clim 15436 df-sum 15637 df-rest 17375 df-topgen 17396 df-psmet 21228 df-xmet 21229 df-met 21230 df-bl 21231 df-mopn 21232 df-top 22747 df-topon 22764 df-bases 22800 df-cmp 23242 df-ovol 25344 df-vol 25345 df-mbf 25499 df-itg1 25500 |
This theorem is referenced by: i1fposd 25588 i1fibl 25688 itg2addnclem 37050 ftc1anclem5 37076 |
Copyright terms: Public domain | W3C validator |