![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > i1fpos | Structured version Visualization version GIF version |
Description: The positive part of a simple function is simple. (Contributed by Mario Carneiro, 28-Jun-2014.) |
Ref | Expression |
---|---|
i1fpos.1 | ⊢ 𝐺 = (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑥), (𝐹‘𝑥), 0)) |
Ref | Expression |
---|---|
i1fpos | ⊢ (𝐹 ∈ dom ∫1 → 𝐺 ∈ dom ∫1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | i1fpos.1 | . . 3 ⊢ 𝐺 = (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑥), (𝐹‘𝑥), 0)) | |
2 | simpr 477 | . . . . . . 7 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) | |
3 | 2 | biantrurd 525 | . . . . . 6 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ∈ (0[,)+∞)))) |
4 | i1ff 23980 | . . . . . . . . 9 ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) | |
5 | 4 | ffvelrnda 6676 | . . . . . . . 8 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ ℝ) |
6 | 5 | biantrurd 525 | . . . . . . 7 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ) → (0 ≤ (𝐹‘𝑥) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑥)))) |
7 | elrege0 12658 | . . . . . . 7 ⊢ ((𝐹‘𝑥) ∈ (0[,)+∞) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑥))) | |
8 | 6, 7 | syl6bbr 281 | . . . . . 6 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ) → (0 ≤ (𝐹‘𝑥) ↔ (𝐹‘𝑥) ∈ (0[,)+∞))) |
9 | 4 | adantr 473 | . . . . . . 7 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ) → 𝐹:ℝ⟶ℝ) |
10 | ffn 6344 | . . . . . . 7 ⊢ (𝐹:ℝ⟶ℝ → 𝐹 Fn ℝ) | |
11 | elpreima 6653 | . . . . . . 7 ⊢ (𝐹 Fn ℝ → (𝑥 ∈ (◡𝐹 “ (0[,)+∞)) ↔ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ∈ (0[,)+∞)))) | |
12 | 9, 10, 11 | 3syl 18 | . . . . . 6 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (◡𝐹 “ (0[,)+∞)) ↔ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ∈ (0[,)+∞)))) |
13 | 3, 8, 12 | 3bitr4d 303 | . . . . 5 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ) → (0 ≤ (𝐹‘𝑥) ↔ 𝑥 ∈ (◡𝐹 “ (0[,)+∞)))) |
14 | 13 | ifbid 4372 | . . . 4 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ) → if(0 ≤ (𝐹‘𝑥), (𝐹‘𝑥), 0) = if(𝑥 ∈ (◡𝐹 “ (0[,)+∞)), (𝐹‘𝑥), 0)) |
15 | 14 | mpteq2dva 5022 | . . 3 ⊢ (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑥), (𝐹‘𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (◡𝐹 “ (0[,)+∞)), (𝐹‘𝑥), 0))) |
16 | 1, 15 | syl5eq 2827 | . 2 ⊢ (𝐹 ∈ dom ∫1 → 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (◡𝐹 “ (0[,)+∞)), (𝐹‘𝑥), 0))) |
17 | i1fima 23982 | . . 3 ⊢ (𝐹 ∈ dom ∫1 → (◡𝐹 “ (0[,)+∞)) ∈ dom vol) | |
18 | eqid 2779 | . . . 4 ⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (◡𝐹 “ (0[,)+∞)), (𝐹‘𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (◡𝐹 “ (0[,)+∞)), (𝐹‘𝑥), 0)) | |
19 | 18 | i1fres 24009 | . . 3 ⊢ ((𝐹 ∈ dom ∫1 ∧ (◡𝐹 “ (0[,)+∞)) ∈ dom vol) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (◡𝐹 “ (0[,)+∞)), (𝐹‘𝑥), 0)) ∈ dom ∫1) |
20 | 17, 19 | mpdan 674 | . 2 ⊢ (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (◡𝐹 “ (0[,)+∞)), (𝐹‘𝑥), 0)) ∈ dom ∫1) |
21 | 16, 20 | eqeltrd 2867 | 1 ⊢ (𝐹 ∈ dom ∫1 → 𝐺 ∈ dom ∫1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ifcif 4350 class class class wbr 4929 ↦ cmpt 5008 ◡ccnv 5406 dom cdm 5407 “ cima 5410 Fn wfn 6183 ⟶wf 6184 ‘cfv 6188 (class class class)co 6976 ℝcr 10334 0cc0 10335 +∞cpnf 10471 ≤ cle 10475 [,)cico 12556 volcvol 23767 ∫1citg1 23919 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-inf2 8898 ax-cnex 10391 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 ax-pre-sup 10413 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-fal 1520 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3418 df-sbc 3683 df-csb 3788 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-pss 3846 df-nul 4180 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-int 4750 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-se 5367 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-isom 6197 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-of 7227 df-om 7397 df-1st 7501 df-2nd 7502 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-1o 7905 df-2o 7906 df-oadd 7909 df-er 8089 df-map 8208 df-pm 8209 df-en 8307 df-dom 8308 df-sdom 8309 df-fin 8310 df-fi 8670 df-sup 8701 df-inf 8702 df-oi 8769 df-dju 9124 df-card 9162 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-div 11099 df-nn 11440 df-2 11503 df-3 11504 df-n0 11708 df-z 11794 df-uz 12059 df-q 12163 df-rp 12205 df-xneg 12324 df-xadd 12325 df-xmul 12326 df-ioo 12558 df-ico 12560 df-icc 12561 df-fz 12709 df-fzo 12850 df-fl 12977 df-seq 13185 df-exp 13245 df-hash 13506 df-cj 14319 df-re 14320 df-im 14321 df-sqrt 14455 df-abs 14456 df-clim 14706 df-sum 14904 df-rest 16552 df-topgen 16573 df-psmet 20239 df-xmet 20240 df-met 20241 df-bl 20242 df-mopn 20243 df-top 21206 df-topon 21223 df-bases 21258 df-cmp 21699 df-ovol 23768 df-vol 23769 df-mbf 23923 df-itg1 23924 |
This theorem is referenced by: i1fposd 24011 i1fibl 24111 itg2addnclem 34381 ftc1anclem5 34409 |
Copyright terms: Public domain | W3C validator |