Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fpos Structured version   Visualization version   GIF version

Theorem i1fpos 24313
 Description: The positive part of a simple function is simple. (Contributed by Mario Carneiro, 28-Jun-2014.)
Hypothesis
Ref Expression
i1fpos.1 𝐺 = (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))
Assertion
Ref Expression
i1fpos (𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1)
Distinct variable group:   𝑥,𝐹
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem i1fpos
StepHypRef Expression
1 i1fpos.1 . . 3 𝐺 = (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))
2 simpr 488 . . . . . . 7 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
32biantrurd 536 . . . . . 6 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ (0[,)+∞))))
4 i1ff 24283 . . . . . . . . 9 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
54ffvelrnda 6832 . . . . . . . 8 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
65biantrurd 536 . . . . . . 7 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → (0 ≤ (𝐹𝑥) ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥))))
7 elrege0 12836 . . . . . . 7 ((𝐹𝑥) ∈ (0[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
86, 7syl6bbr 292 . . . . . 6 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → (0 ≤ (𝐹𝑥) ↔ (𝐹𝑥) ∈ (0[,)+∞)))
94adantr 484 . . . . . . 7 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → 𝐹:ℝ⟶ℝ)
10 ffn 6491 . . . . . . 7 (𝐹:ℝ⟶ℝ → 𝐹 Fn ℝ)
11 elpreima 6809 . . . . . . 7 (𝐹 Fn ℝ → (𝑥 ∈ (𝐹 “ (0[,)+∞)) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ (0[,)+∞))))
129, 10, 113syl 18 . . . . . 6 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → (𝑥 ∈ (𝐹 “ (0[,)+∞)) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ (0[,)+∞))))
133, 8, 123bitr4d 314 . . . . 5 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → (0 ≤ (𝐹𝑥) ↔ 𝑥 ∈ (𝐹 “ (0[,)+∞))))
1413ifbid 4450 . . . 4 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) = if(𝑥 ∈ (𝐹 “ (0[,)+∞)), (𝐹𝑥), 0))
1514mpteq2dva 5128 . . 3 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (0[,)+∞)), (𝐹𝑥), 0)))
161, 15syl5eq 2848 . 2 (𝐹 ∈ dom ∫1𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (0[,)+∞)), (𝐹𝑥), 0)))
17 i1fima 24285 . . 3 (𝐹 ∈ dom ∫1 → (𝐹 “ (0[,)+∞)) ∈ dom vol)
18 eqid 2801 . . . 4 (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (0[,)+∞)), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (0[,)+∞)), (𝐹𝑥), 0))
1918i1fres 24312 . . 3 ((𝐹 ∈ dom ∫1 ∧ (𝐹 “ (0[,)+∞)) ∈ dom vol) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (0[,)+∞)), (𝐹𝑥), 0)) ∈ dom ∫1)
2017, 19mpdan 686 . 2 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (0[,)+∞)), (𝐹𝑥), 0)) ∈ dom ∫1)
2116, 20eqeltrd 2893 1 (𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2112  ifcif 4428   class class class wbr 5033   ↦ cmpt 5113  ◡ccnv 5522  dom cdm 5523   “ cima 5526   Fn wfn 6323  ⟶wf 6324  ‘cfv 6328  (class class class)co 7139  ℝcr 10529  0cc0 10530  +∞cpnf 10665   ≤ cle 10669  [,)cico 12732  volcvol 24070  ∫1citg1 24222 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-dju 9318  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-ico 12736  df-icc 12737  df-fz 12890  df-fzo 13033  df-fl 13161  df-seq 13369  df-exp 13430  df-hash 13691  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-clim 14840  df-sum 15038  df-rest 16691  df-topgen 16712  df-psmet 20086  df-xmet 20087  df-met 20088  df-bl 20089  df-mopn 20090  df-top 21502  df-topon 21519  df-bases 21554  df-cmp 21995  df-ovol 24071  df-vol 24072  df-mbf 24226  df-itg1 24227 This theorem is referenced by:  i1fposd  24314  i1fibl  24414  itg2addnclem  35101  ftc1anclem5  35127
 Copyright terms: Public domain W3C validator