Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lesub1dd | Structured version Visualization version GIF version |
Description: Subtraction from both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.) |
Ref | Expression |
---|---|
leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ltadd1d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
leadd1dd.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Ref | Expression |
---|---|
lesub1dd | ⊢ (𝜑 → (𝐴 − 𝐶) ≤ (𝐵 − 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leadd1dd.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
2 | leidd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | ltnegd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | ltadd1d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
5 | 2, 3, 4 | lesub1d 11285 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (𝐴 − 𝐶) ≤ (𝐵 − 𝐶))) |
6 | 1, 5 | mpbid 235 | 1 ⊢ (𝜑 → (𝐴 − 𝐶) ≤ (𝐵 − 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2111 class class class wbr 5032 (class class class)co 7150 ℝcr 10574 ≤ cle 10714 − cmin 10908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-po 5443 df-so 5444 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 |
This theorem is referenced by: eluzmn 12289 elfzmlbm 13066 modmulnn 13306 icodiamlt 14843 rlimrege0 14984 climsqz2 15046 rlimsqz2 15055 isercolllem1 15069 caucvgrlem 15077 climcndslem1 15252 bitsinv1lem 15840 hashdvds 16167 4sqlem6 16334 dvfsumlem2 24726 dvfsumlem4 24728 dvfsum2 24733 isosctrlem1 25503 lgamgulmlem2 25714 basellem9 25773 ppiub 25887 chtub 25895 logfaclbnd 25905 bposlem1 25967 bposlem6 25972 selberg2lem 26233 pntpbnd2 26270 pntlemo 26290 ttgcontlem1 26778 axpaschlem 26833 axcontlem8 26864 cycpmco2lem7 30925 dnibndlem10 34216 unblimceq0 34236 unbdqndv2lem2 34239 poimirlem6 35343 poimirlem7 35344 itg2addnclem3 35390 iccbnd 35558 lcmineqlem23 39618 metakunt30 39676 jm2.24nn 40273 fzmaxdif 40295 areaquad 40539 monoords 42297 iccshift 42521 climinf 42614 sumnnodd 42638 dvnmul 42951 itgiccshift 42988 itgperiod 42989 itgsbtaddcnst 42990 stoweidlem13 43021 stoweidlem26 43034 stoweidlem34 43042 fourierdlem19 43134 fourierdlem42 43157 fourierdlem74 43188 fourierdlem75 43189 fourierdlem79 43193 fourierdlem81 43195 fourierdlem82 43196 fourierdlem103 43217 fourierdlem104 43218 fouriersw 43239 hoidmvlelem1 43600 bgoldbtbndlem2 44691 |
Copyright terms: Public domain | W3C validator |