| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lesub1dd | Structured version Visualization version GIF version | ||
| Description: Subtraction from both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.) |
| Ref | Expression |
|---|---|
| leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| ltadd1d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| leadd1dd.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Ref | Expression |
|---|---|
| lesub1dd | ⊢ (𝜑 → (𝐴 − 𝐶) ≤ (𝐵 − 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leadd1dd.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
| 2 | leidd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | ltnegd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | ltadd1d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 5 | 2, 3, 4 | lesub1d 11785 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (𝐴 − 𝐶) ≤ (𝐵 − 𝐶))) |
| 6 | 1, 5 | mpbid 232 | 1 ⊢ (𝜑 → (𝐴 − 𝐶) ≤ (𝐵 − 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5107 (class class class)co 7387 ℝcr 11067 ≤ cle 11209 − cmin 11405 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 |
| This theorem is referenced by: eluzmn 12800 elfzmlbm 13599 modmulnn 13851 icodiamlt 15404 rlimrege0 15545 climsqz2 15608 rlimsqz2 15617 isercolllem1 15631 caucvgrlem 15639 climcndslem1 15815 bitsinv1lem 16411 hashdvds 16745 4sqlem6 16914 dvfsumlem2 25933 dvfsumlem2OLD 25934 dvfsumlem4 25936 dvfsum2 25941 isosctrlem1 26728 lgamgulmlem2 26940 basellem9 26999 ppiub 27115 chtub 27123 logfaclbnd 27133 bposlem1 27195 bposlem6 27200 selberg2lem 27461 pntpbnd2 27498 pntlemo 27518 ttgcontlem1 28812 axpaschlem 28867 axcontlem8 28898 cycpmco2lem7 33089 dnibndlem10 36475 unblimceq0 36495 unbdqndv2lem2 36498 poimirlem6 37620 poimirlem7 37621 itg2addnclem3 37667 iccbnd 37834 lcmineqlem23 42039 sticksstones12a 42145 sticksstones12 42146 bcled 42166 bcle2d 42167 jm2.24nn 42948 fzmaxdif 42970 areaquad 43205 monoords 45295 iccshift 45516 climinf 45604 sumnnodd 45628 dvnmul 45941 itgiccshift 45978 itgperiod 45979 itgsbtaddcnst 45980 stoweidlem13 46011 stoweidlem26 46024 stoweidlem34 46032 fourierdlem19 46124 fourierdlem42 46147 fourierdlem74 46178 fourierdlem75 46179 fourierdlem79 46183 fourierdlem81 46185 fourierdlem82 46186 fourierdlem103 46207 fourierdlem104 46208 fouriersw 46229 hoidmvlelem1 46593 bgoldbtbndlem2 47804 |
| Copyright terms: Public domain | W3C validator |