| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lesub1dd | Structured version Visualization version GIF version | ||
| Description: Subtraction from both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.) |
| Ref | Expression |
|---|---|
| leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| ltadd1d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| leadd1dd.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Ref | Expression |
|---|---|
| lesub1dd | ⊢ (𝜑 → (𝐴 − 𝐶) ≤ (𝐵 − 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leadd1dd.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
| 2 | leidd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | ltnegd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | ltadd1d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 5 | 2, 3, 4 | lesub1d 11764 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (𝐴 − 𝐶) ≤ (𝐵 − 𝐶))) |
| 6 | 1, 5 | mpbid 232 | 1 ⊢ (𝜑 → (𝐴 − 𝐶) ≤ (𝐵 − 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5102 (class class class)co 7370 ℝcr 11046 ≤ cle 11188 − cmin 11384 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7692 ax-resscn 11104 ax-1cn 11105 ax-icn 11106 ax-addcl 11107 ax-addrcl 11108 ax-mulcl 11109 ax-mulrcl 11110 ax-mulcom 11111 ax-addass 11112 ax-mulass 11113 ax-distr 11114 ax-i2m1 11115 ax-1ne0 11116 ax-1rid 11117 ax-rnegex 11118 ax-rrecex 11119 ax-cnre 11120 ax-pre-lttri 11121 ax-pre-lttrn 11122 ax-pre-ltadd 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6453 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7327 df-ov 7373 df-oprab 7374 df-mpo 7375 df-er 8649 df-en 8897 df-dom 8898 df-sdom 8899 df-pnf 11189 df-mnf 11190 df-xr 11191 df-ltxr 11192 df-le 11193 df-sub 11386 df-neg 11387 |
| This theorem is referenced by: eluzmn 12779 elfzmlbm 13578 modmulnn 13830 icodiamlt 15382 rlimrege0 15523 climsqz2 15586 rlimsqz2 15595 isercolllem1 15609 caucvgrlem 15617 climcndslem1 15793 bitsinv1lem 16389 hashdvds 16723 4sqlem6 16892 dvfsumlem2 25968 dvfsumlem2OLD 25969 dvfsumlem4 25971 dvfsum2 25976 isosctrlem1 26763 lgamgulmlem2 26975 basellem9 27034 ppiub 27150 chtub 27158 logfaclbnd 27168 bposlem1 27230 bposlem6 27235 selberg2lem 27496 pntpbnd2 27533 pntlemo 27553 ttgcontlem1 28867 axpaschlem 28922 axcontlem8 28953 cycpmco2lem7 33106 dnibndlem10 36470 unblimceq0 36490 unbdqndv2lem2 36493 poimirlem6 37615 poimirlem7 37616 itg2addnclem3 37662 iccbnd 37829 lcmineqlem23 42034 sticksstones12a 42140 sticksstones12 42141 bcled 42161 bcle2d 42162 jm2.24nn 42943 fzmaxdif 42965 areaquad 43200 monoords 45290 iccshift 45511 climinf 45599 sumnnodd 45623 dvnmul 45936 itgiccshift 45973 itgperiod 45974 itgsbtaddcnst 45975 stoweidlem13 46006 stoweidlem26 46019 stoweidlem34 46027 fourierdlem19 46119 fourierdlem42 46142 fourierdlem74 46173 fourierdlem75 46174 fourierdlem79 46178 fourierdlem81 46180 fourierdlem82 46181 fourierdlem103 46202 fourierdlem104 46203 fouriersw 46224 hoidmvlelem1 46588 bgoldbtbndlem2 47802 |
| Copyright terms: Public domain | W3C validator |