| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lesub1dd | Structured version Visualization version GIF version | ||
| Description: Subtraction from both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.) |
| Ref | Expression |
|---|---|
| leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| ltadd1d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| leadd1dd.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Ref | Expression |
|---|---|
| lesub1dd | ⊢ (𝜑 → (𝐴 − 𝐶) ≤ (𝐵 − 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leadd1dd.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
| 2 | leidd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | ltnegd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | ltadd1d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 5 | 2, 3, 4 | lesub1d 11730 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (𝐴 − 𝐶) ≤ (𝐵 − 𝐶))) |
| 6 | 1, 5 | mpbid 232 | 1 ⊢ (𝜑 → (𝐴 − 𝐶) ≤ (𝐵 − 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 class class class wbr 5093 (class class class)co 7352 ℝcr 11011 ≤ cle 11153 − cmin 11350 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 |
| This theorem is referenced by: eluzmn 12745 elfzmlbm 13544 modmulnn 13799 icodiamlt 15351 rlimrege0 15492 climsqz2 15555 rlimsqz2 15564 isercolllem1 15578 caucvgrlem 15586 climcndslem1 15762 bitsinv1lem 16358 hashdvds 16692 4sqlem6 16861 dvfsumlem2 25966 dvfsumlem2OLD 25967 dvfsumlem4 25969 dvfsum2 25974 isosctrlem1 26761 lgamgulmlem2 26973 basellem9 27032 ppiub 27148 chtub 27156 logfaclbnd 27166 bposlem1 27228 bposlem6 27233 selberg2lem 27494 pntpbnd2 27531 pntlemo 27551 ttgcontlem1 28869 axpaschlem 28925 axcontlem8 28956 cycpmco2lem7 33108 dnibndlem10 36538 unblimceq0 36558 unbdqndv2lem2 36561 poimirlem6 37672 poimirlem7 37673 itg2addnclem3 37719 iccbnd 37886 lcmineqlem23 42150 sticksstones12a 42256 sticksstones12 42257 bcled 42277 bcle2d 42278 jm2.24nn 43057 fzmaxdif 43079 areaquad 43314 monoords 45403 iccshift 45623 climinf 45711 sumnnodd 45735 dvnmul 46046 itgiccshift 46083 itgperiod 46084 itgsbtaddcnst 46085 stoweidlem13 46116 stoweidlem26 46129 stoweidlem34 46137 fourierdlem19 46229 fourierdlem42 46252 fourierdlem74 46283 fourierdlem75 46284 fourierdlem79 46288 fourierdlem81 46290 fourierdlem82 46291 fourierdlem103 46312 fourierdlem104 46313 fouriersw 46334 hoidmvlelem1 46698 bgoldbtbndlem2 47911 |
| Copyright terms: Public domain | W3C validator |