| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lesub1dd | Structured version Visualization version GIF version | ||
| Description: Subtraction from both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.) |
| Ref | Expression |
|---|---|
| leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| ltadd1d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| leadd1dd.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Ref | Expression |
|---|---|
| lesub1dd | ⊢ (𝜑 → (𝐴 − 𝐶) ≤ (𝐵 − 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leadd1dd.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
| 2 | leidd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | ltnegd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | ltadd1d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 5 | 2, 3, 4 | lesub1d 11836 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (𝐴 − 𝐶) ≤ (𝐵 − 𝐶))) |
| 6 | 1, 5 | mpbid 232 | 1 ⊢ (𝜑 → (𝐴 − 𝐶) ≤ (𝐵 − 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 class class class wbr 5116 (class class class)co 7399 ℝcr 11120 ≤ cle 11262 − cmin 11458 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-opab 5179 df-mpt 5199 df-id 5545 df-po 5558 df-so 5559 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-er 8713 df-en 8954 df-dom 8955 df-sdom 8956 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 |
| This theorem is referenced by: eluzmn 12851 elfzmlbm 13644 modmulnn 13895 icodiamlt 15441 rlimrege0 15582 climsqz2 15645 rlimsqz2 15654 isercolllem1 15668 caucvgrlem 15676 climcndslem1 15852 bitsinv1lem 16445 hashdvds 16779 4sqlem6 16948 dvfsumlem2 25970 dvfsumlem2OLD 25971 dvfsumlem4 25973 dvfsum2 25978 isosctrlem1 26764 lgamgulmlem2 26976 basellem9 27035 ppiub 27151 chtub 27159 logfaclbnd 27169 bposlem1 27231 bposlem6 27236 selberg2lem 27497 pntpbnd2 27534 pntlemo 27554 ttgcontlem1 28796 axpaschlem 28851 axcontlem8 28882 cycpmco2lem7 33061 dnibndlem10 36426 unblimceq0 36446 unbdqndv2lem2 36449 poimirlem6 37571 poimirlem7 37572 itg2addnclem3 37618 iccbnd 37785 lcmineqlem23 41986 sticksstones12a 42092 sticksstones12 42093 bcled 42113 bcle2d 42114 metakunt30 42169 jm2.24nn 42908 fzmaxdif 42930 areaquad 43165 monoords 45253 iccshift 45475 climinf 45565 sumnnodd 45589 dvnmul 45902 itgiccshift 45939 itgperiod 45940 itgsbtaddcnst 45941 stoweidlem13 45972 stoweidlem26 45985 stoweidlem34 45993 fourierdlem19 46085 fourierdlem42 46108 fourierdlem74 46139 fourierdlem75 46140 fourierdlem79 46144 fourierdlem81 46146 fourierdlem82 46147 fourierdlem103 46168 fourierdlem104 46169 fouriersw 46190 hoidmvlelem1 46554 bgoldbtbndlem2 47738 |
| Copyright terms: Public domain | W3C validator |