| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lesub1dd | Structured version Visualization version GIF version | ||
| Description: Subtraction from both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.) |
| Ref | Expression |
|---|---|
| leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| ltadd1d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| leadd1dd.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Ref | Expression |
|---|---|
| lesub1dd | ⊢ (𝜑 → (𝐴 − 𝐶) ≤ (𝐵 − 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leadd1dd.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
| 2 | leidd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | ltnegd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | ltadd1d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 5 | 2, 3, 4 | lesub1d 11763 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (𝐴 − 𝐶) ≤ (𝐵 − 𝐶))) |
| 6 | 1, 5 | mpbid 232 | 1 ⊢ (𝜑 → (𝐴 − 𝐶) ≤ (𝐵 − 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5102 (class class class)co 7369 ℝcr 11045 ≤ cle 11187 − cmin 11383 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 |
| This theorem is referenced by: eluzmn 12778 elfzmlbm 13577 modmulnn 13829 icodiamlt 15381 rlimrege0 15522 climsqz2 15585 rlimsqz2 15594 isercolllem1 15608 caucvgrlem 15616 climcndslem1 15792 bitsinv1lem 16388 hashdvds 16722 4sqlem6 16891 dvfsumlem2 25967 dvfsumlem2OLD 25968 dvfsumlem4 25970 dvfsum2 25975 isosctrlem1 26762 lgamgulmlem2 26974 basellem9 27033 ppiub 27149 chtub 27157 logfaclbnd 27167 bposlem1 27229 bposlem6 27234 selberg2lem 27495 pntpbnd2 27532 pntlemo 27552 ttgcontlem1 28866 axpaschlem 28921 axcontlem8 28952 cycpmco2lem7 33105 dnibndlem10 36469 unblimceq0 36489 unbdqndv2lem2 36492 poimirlem6 37614 poimirlem7 37615 itg2addnclem3 37661 iccbnd 37828 lcmineqlem23 42033 sticksstones12a 42139 sticksstones12 42140 bcled 42160 bcle2d 42161 jm2.24nn 42942 fzmaxdif 42964 areaquad 43199 monoords 45289 iccshift 45510 climinf 45598 sumnnodd 45622 dvnmul 45935 itgiccshift 45972 itgperiod 45973 itgsbtaddcnst 45974 stoweidlem13 46005 stoweidlem26 46018 stoweidlem34 46026 fourierdlem19 46118 fourierdlem42 46141 fourierdlem74 46172 fourierdlem75 46173 fourierdlem79 46177 fourierdlem81 46179 fourierdlem82 46180 fourierdlem103 46201 fourierdlem104 46202 fouriersw 46223 hoidmvlelem1 46587 bgoldbtbndlem2 47801 |
| Copyright terms: Public domain | W3C validator |