| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > issubgrpd2 | Structured version Visualization version GIF version | ||
| Description: Prove a subgroup by closure (definition version). (Contributed by Stefan O'Rear, 7-Dec-2014.) |
| Ref | Expression |
|---|---|
| issubgrpd.s | ⊢ (𝜑 → 𝑆 = (𝐼 ↾s 𝐷)) |
| issubgrpd.z | ⊢ (𝜑 → 0 = (0g‘𝐼)) |
| issubgrpd.p | ⊢ (𝜑 → + = (+g‘𝐼)) |
| issubgrpd.ss | ⊢ (𝜑 → 𝐷 ⊆ (Base‘𝐼)) |
| issubgrpd.zcl | ⊢ (𝜑 → 0 ∈ 𝐷) |
| issubgrpd.acl | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 + 𝑦) ∈ 𝐷) |
| issubgrpd.ncl | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((invg‘𝐼)‘𝑥) ∈ 𝐷) |
| issubgrpd.g | ⊢ (𝜑 → 𝐼 ∈ Grp) |
| Ref | Expression |
|---|---|
| issubgrpd2 | ⊢ (𝜑 → 𝐷 ∈ (SubGrp‘𝐼)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubgrpd.ss | . 2 ⊢ (𝜑 → 𝐷 ⊆ (Base‘𝐼)) | |
| 2 | issubgrpd.zcl | . . 3 ⊢ (𝜑 → 0 ∈ 𝐷) | |
| 3 | 2 | ne0d 4293 | . 2 ⊢ (𝜑 → 𝐷 ≠ ∅) |
| 4 | issubgrpd.p | . . . . . . . 8 ⊢ (𝜑 → + = (+g‘𝐼)) | |
| 5 | 4 | oveqd 7366 | . . . . . . 7 ⊢ (𝜑 → (𝑥 + 𝑦) = (𝑥(+g‘𝐼)𝑦)) |
| 6 | 5 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑦 ∈ 𝐷) → (𝑥 + 𝑦) = (𝑥(+g‘𝐼)𝑦)) |
| 7 | issubgrpd.acl | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 + 𝑦) ∈ 𝐷) | |
| 8 | 7 | 3expa 1118 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑦 ∈ 𝐷) → (𝑥 + 𝑦) ∈ 𝐷) |
| 9 | 6, 8 | eqeltrrd 2829 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑦 ∈ 𝐷) → (𝑥(+g‘𝐼)𝑦) ∈ 𝐷) |
| 10 | 9 | ralrimiva 3121 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ∀𝑦 ∈ 𝐷 (𝑥(+g‘𝐼)𝑦) ∈ 𝐷) |
| 11 | issubgrpd.ncl | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((invg‘𝐼)‘𝑥) ∈ 𝐷) | |
| 12 | 10, 11 | jca 511 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (∀𝑦 ∈ 𝐷 (𝑥(+g‘𝐼)𝑦) ∈ 𝐷 ∧ ((invg‘𝐼)‘𝑥) ∈ 𝐷)) |
| 13 | 12 | ralrimiva 3121 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐷 (∀𝑦 ∈ 𝐷 (𝑥(+g‘𝐼)𝑦) ∈ 𝐷 ∧ ((invg‘𝐼)‘𝑥) ∈ 𝐷)) |
| 14 | issubgrpd.g | . . 3 ⊢ (𝜑 → 𝐼 ∈ Grp) | |
| 15 | eqid 2729 | . . . 4 ⊢ (Base‘𝐼) = (Base‘𝐼) | |
| 16 | eqid 2729 | . . . 4 ⊢ (+g‘𝐼) = (+g‘𝐼) | |
| 17 | eqid 2729 | . . . 4 ⊢ (invg‘𝐼) = (invg‘𝐼) | |
| 18 | 15, 16, 17 | issubg2 19020 | . . 3 ⊢ (𝐼 ∈ Grp → (𝐷 ∈ (SubGrp‘𝐼) ↔ (𝐷 ⊆ (Base‘𝐼) ∧ 𝐷 ≠ ∅ ∧ ∀𝑥 ∈ 𝐷 (∀𝑦 ∈ 𝐷 (𝑥(+g‘𝐼)𝑦) ∈ 𝐷 ∧ ((invg‘𝐼)‘𝑥) ∈ 𝐷)))) |
| 19 | 14, 18 | syl 17 | . 2 ⊢ (𝜑 → (𝐷 ∈ (SubGrp‘𝐼) ↔ (𝐷 ⊆ (Base‘𝐼) ∧ 𝐷 ≠ ∅ ∧ ∀𝑥 ∈ 𝐷 (∀𝑦 ∈ 𝐷 (𝑥(+g‘𝐼)𝑦) ∈ 𝐷 ∧ ((invg‘𝐼)‘𝑥) ∈ 𝐷)))) |
| 20 | 1, 3, 13, 19 | mpbir3and 1343 | 1 ⊢ (𝜑 → 𝐷 ∈ (SubGrp‘𝐼)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ⊆ wss 3903 ∅c0 4284 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 ↾s cress 17141 +gcplusg 17161 0gc0g 17343 Grpcgrp 18812 invgcminusg 18813 SubGrpcsubg 18999 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-0g 17345 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-grp 18815 df-minusg 18816 df-subg 19002 |
| This theorem is referenced by: issubgrpd 19022 symgsssg 19346 symgfisg 19347 issubrgd 21093 dsmmsubg 21650 nsgmgclem 33348 |
| Copyright terms: Public domain | W3C validator |