MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubgrpd2 Structured version   Visualization version   GIF version

Theorem issubgrpd2 18771
Description: Prove a subgroup by closure (definition version). (Contributed by Stefan O'Rear, 7-Dec-2014.)
Hypotheses
Ref Expression
issubgrpd.s (𝜑𝑆 = (𝐼s 𝐷))
issubgrpd.z (𝜑0 = (0g𝐼))
issubgrpd.p (𝜑+ = (+g𝐼))
issubgrpd.ss (𝜑𝐷 ⊆ (Base‘𝐼))
issubgrpd.zcl (𝜑0𝐷)
issubgrpd.acl ((𝜑𝑥𝐷𝑦𝐷) → (𝑥 + 𝑦) ∈ 𝐷)
issubgrpd.ncl ((𝜑𝑥𝐷) → ((invg𝐼)‘𝑥) ∈ 𝐷)
issubgrpd.g (𝜑𝐼 ∈ Grp)
Assertion
Ref Expression
issubgrpd2 (𝜑𝐷 ∈ (SubGrp‘𝐼))
Distinct variable groups:   𝑥,𝑦, 0   𝑥,𝐷,𝑦   𝑥,𝐼,𝑦   𝑥, + ,𝑦   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦

Proof of Theorem issubgrpd2
StepHypRef Expression
1 issubgrpd.ss . 2 (𝜑𝐷 ⊆ (Base‘𝐼))
2 issubgrpd.zcl . . 3 (𝜑0𝐷)
32ne0d 4269 . 2 (𝜑𝐷 ≠ ∅)
4 issubgrpd.p . . . . . . . 8 (𝜑+ = (+g𝐼))
54oveqd 7292 . . . . . . 7 (𝜑 → (𝑥 + 𝑦) = (𝑥(+g𝐼)𝑦))
65ad2antrr 723 . . . . . 6 (((𝜑𝑥𝐷) ∧ 𝑦𝐷) → (𝑥 + 𝑦) = (𝑥(+g𝐼)𝑦))
7 issubgrpd.acl . . . . . . 7 ((𝜑𝑥𝐷𝑦𝐷) → (𝑥 + 𝑦) ∈ 𝐷)
873expa 1117 . . . . . 6 (((𝜑𝑥𝐷) ∧ 𝑦𝐷) → (𝑥 + 𝑦) ∈ 𝐷)
96, 8eqeltrrd 2840 . . . . 5 (((𝜑𝑥𝐷) ∧ 𝑦𝐷) → (𝑥(+g𝐼)𝑦) ∈ 𝐷)
109ralrimiva 3103 . . . 4 ((𝜑𝑥𝐷) → ∀𝑦𝐷 (𝑥(+g𝐼)𝑦) ∈ 𝐷)
11 issubgrpd.ncl . . . 4 ((𝜑𝑥𝐷) → ((invg𝐼)‘𝑥) ∈ 𝐷)
1210, 11jca 512 . . 3 ((𝜑𝑥𝐷) → (∀𝑦𝐷 (𝑥(+g𝐼)𝑦) ∈ 𝐷 ∧ ((invg𝐼)‘𝑥) ∈ 𝐷))
1312ralrimiva 3103 . 2 (𝜑 → ∀𝑥𝐷 (∀𝑦𝐷 (𝑥(+g𝐼)𝑦) ∈ 𝐷 ∧ ((invg𝐼)‘𝑥) ∈ 𝐷))
14 issubgrpd.g . . 3 (𝜑𝐼 ∈ Grp)
15 eqid 2738 . . . 4 (Base‘𝐼) = (Base‘𝐼)
16 eqid 2738 . . . 4 (+g𝐼) = (+g𝐼)
17 eqid 2738 . . . 4 (invg𝐼) = (invg𝐼)
1815, 16, 17issubg2 18770 . . 3 (𝐼 ∈ Grp → (𝐷 ∈ (SubGrp‘𝐼) ↔ (𝐷 ⊆ (Base‘𝐼) ∧ 𝐷 ≠ ∅ ∧ ∀𝑥𝐷 (∀𝑦𝐷 (𝑥(+g𝐼)𝑦) ∈ 𝐷 ∧ ((invg𝐼)‘𝑥) ∈ 𝐷))))
1914, 18syl 17 . 2 (𝜑 → (𝐷 ∈ (SubGrp‘𝐼) ↔ (𝐷 ⊆ (Base‘𝐼) ∧ 𝐷 ≠ ∅ ∧ ∀𝑥𝐷 (∀𝑦𝐷 (𝑥(+g𝐼)𝑦) ∈ 𝐷 ∧ ((invg𝐼)‘𝑥) ∈ 𝐷))))
201, 3, 13, 19mpbir3and 1341 1 (𝜑𝐷 ∈ (SubGrp‘𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wss 3887  c0 4256  cfv 6433  (class class class)co 7275  Basecbs 16912  s cress 16941  +gcplusg 16962  0gc0g 17150  Grpcgrp 18577  invgcminusg 18578  SubGrpcsubg 18749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-subg 18752
This theorem is referenced by:  issubgrpd  18772  symgsssg  19075  symgfisg  19076  issubrngd2  20459  dsmmsubg  20950  nsgmgclem  31596
  Copyright terms: Public domain W3C validator