| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > issubgrpd2 | Structured version Visualization version GIF version | ||
| Description: Prove a subgroup by closure (definition version). (Contributed by Stefan O'Rear, 7-Dec-2014.) |
| Ref | Expression |
|---|---|
| issubgrpd.s | ⊢ (𝜑 → 𝑆 = (𝐼 ↾s 𝐷)) |
| issubgrpd.z | ⊢ (𝜑 → 0 = (0g‘𝐼)) |
| issubgrpd.p | ⊢ (𝜑 → + = (+g‘𝐼)) |
| issubgrpd.ss | ⊢ (𝜑 → 𝐷 ⊆ (Base‘𝐼)) |
| issubgrpd.zcl | ⊢ (𝜑 → 0 ∈ 𝐷) |
| issubgrpd.acl | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 + 𝑦) ∈ 𝐷) |
| issubgrpd.ncl | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((invg‘𝐼)‘𝑥) ∈ 𝐷) |
| issubgrpd.g | ⊢ (𝜑 → 𝐼 ∈ Grp) |
| Ref | Expression |
|---|---|
| issubgrpd2 | ⊢ (𝜑 → 𝐷 ∈ (SubGrp‘𝐼)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubgrpd.ss | . 2 ⊢ (𝜑 → 𝐷 ⊆ (Base‘𝐼)) | |
| 2 | issubgrpd.zcl | . . 3 ⊢ (𝜑 → 0 ∈ 𝐷) | |
| 3 | 2 | ne0d 4322 | . 2 ⊢ (𝜑 → 𝐷 ≠ ∅) |
| 4 | issubgrpd.p | . . . . . . . 8 ⊢ (𝜑 → + = (+g‘𝐼)) | |
| 5 | 4 | oveqd 7427 | . . . . . . 7 ⊢ (𝜑 → (𝑥 + 𝑦) = (𝑥(+g‘𝐼)𝑦)) |
| 6 | 5 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑦 ∈ 𝐷) → (𝑥 + 𝑦) = (𝑥(+g‘𝐼)𝑦)) |
| 7 | issubgrpd.acl | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 + 𝑦) ∈ 𝐷) | |
| 8 | 7 | 3expa 1118 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑦 ∈ 𝐷) → (𝑥 + 𝑦) ∈ 𝐷) |
| 9 | 6, 8 | eqeltrrd 2836 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑦 ∈ 𝐷) → (𝑥(+g‘𝐼)𝑦) ∈ 𝐷) |
| 10 | 9 | ralrimiva 3133 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ∀𝑦 ∈ 𝐷 (𝑥(+g‘𝐼)𝑦) ∈ 𝐷) |
| 11 | issubgrpd.ncl | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((invg‘𝐼)‘𝑥) ∈ 𝐷) | |
| 12 | 10, 11 | jca 511 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (∀𝑦 ∈ 𝐷 (𝑥(+g‘𝐼)𝑦) ∈ 𝐷 ∧ ((invg‘𝐼)‘𝑥) ∈ 𝐷)) |
| 13 | 12 | ralrimiva 3133 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐷 (∀𝑦 ∈ 𝐷 (𝑥(+g‘𝐼)𝑦) ∈ 𝐷 ∧ ((invg‘𝐼)‘𝑥) ∈ 𝐷)) |
| 14 | issubgrpd.g | . . 3 ⊢ (𝜑 → 𝐼 ∈ Grp) | |
| 15 | eqid 2736 | . . . 4 ⊢ (Base‘𝐼) = (Base‘𝐼) | |
| 16 | eqid 2736 | . . . 4 ⊢ (+g‘𝐼) = (+g‘𝐼) | |
| 17 | eqid 2736 | . . . 4 ⊢ (invg‘𝐼) = (invg‘𝐼) | |
| 18 | 15, 16, 17 | issubg2 19129 | . . 3 ⊢ (𝐼 ∈ Grp → (𝐷 ∈ (SubGrp‘𝐼) ↔ (𝐷 ⊆ (Base‘𝐼) ∧ 𝐷 ≠ ∅ ∧ ∀𝑥 ∈ 𝐷 (∀𝑦 ∈ 𝐷 (𝑥(+g‘𝐼)𝑦) ∈ 𝐷 ∧ ((invg‘𝐼)‘𝑥) ∈ 𝐷)))) |
| 19 | 14, 18 | syl 17 | . 2 ⊢ (𝜑 → (𝐷 ∈ (SubGrp‘𝐼) ↔ (𝐷 ⊆ (Base‘𝐼) ∧ 𝐷 ≠ ∅ ∧ ∀𝑥 ∈ 𝐷 (∀𝑦 ∈ 𝐷 (𝑥(+g‘𝐼)𝑦) ∈ 𝐷 ∧ ((invg‘𝐼)‘𝑥) ∈ 𝐷)))) |
| 20 | 1, 3, 13, 19 | mpbir3and 1343 | 1 ⊢ (𝜑 → 𝐷 ∈ (SubGrp‘𝐼)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∀wral 3052 ⊆ wss 3931 ∅c0 4313 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 ↾s cress 17256 +gcplusg 17276 0gc0g 17458 Grpcgrp 18921 invgcminusg 18922 SubGrpcsubg 19108 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-0g 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 df-minusg 18925 df-subg 19111 |
| This theorem is referenced by: issubgrpd 19131 symgsssg 19453 symgfisg 19454 issubrgd 21152 dsmmsubg 21708 nsgmgclem 33431 |
| Copyright terms: Public domain | W3C validator |