| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > issubgrpd2 | Structured version Visualization version GIF version | ||
| Description: Prove a subgroup by closure (definition version). (Contributed by Stefan O'Rear, 7-Dec-2014.) |
| Ref | Expression |
|---|---|
| issubgrpd.s | ⊢ (𝜑 → 𝑆 = (𝐼 ↾s 𝐷)) |
| issubgrpd.z | ⊢ (𝜑 → 0 = (0g‘𝐼)) |
| issubgrpd.p | ⊢ (𝜑 → + = (+g‘𝐼)) |
| issubgrpd.ss | ⊢ (𝜑 → 𝐷 ⊆ (Base‘𝐼)) |
| issubgrpd.zcl | ⊢ (𝜑 → 0 ∈ 𝐷) |
| issubgrpd.acl | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 + 𝑦) ∈ 𝐷) |
| issubgrpd.ncl | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((invg‘𝐼)‘𝑥) ∈ 𝐷) |
| issubgrpd.g | ⊢ (𝜑 → 𝐼 ∈ Grp) |
| Ref | Expression |
|---|---|
| issubgrpd2 | ⊢ (𝜑 → 𝐷 ∈ (SubGrp‘𝐼)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubgrpd.ss | . 2 ⊢ (𝜑 → 𝐷 ⊆ (Base‘𝐼)) | |
| 2 | issubgrpd.zcl | . . 3 ⊢ (𝜑 → 0 ∈ 𝐷) | |
| 3 | 2 | ne0d 4287 | . 2 ⊢ (𝜑 → 𝐷 ≠ ∅) |
| 4 | issubgrpd.p | . . . . . . . 8 ⊢ (𝜑 → + = (+g‘𝐼)) | |
| 5 | 4 | oveqd 7358 | . . . . . . 7 ⊢ (𝜑 → (𝑥 + 𝑦) = (𝑥(+g‘𝐼)𝑦)) |
| 6 | 5 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑦 ∈ 𝐷) → (𝑥 + 𝑦) = (𝑥(+g‘𝐼)𝑦)) |
| 7 | issubgrpd.acl | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 + 𝑦) ∈ 𝐷) | |
| 8 | 7 | 3expa 1118 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑦 ∈ 𝐷) → (𝑥 + 𝑦) ∈ 𝐷) |
| 9 | 6, 8 | eqeltrrd 2832 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑦 ∈ 𝐷) → (𝑥(+g‘𝐼)𝑦) ∈ 𝐷) |
| 10 | 9 | ralrimiva 3124 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ∀𝑦 ∈ 𝐷 (𝑥(+g‘𝐼)𝑦) ∈ 𝐷) |
| 11 | issubgrpd.ncl | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((invg‘𝐼)‘𝑥) ∈ 𝐷) | |
| 12 | 10, 11 | jca 511 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (∀𝑦 ∈ 𝐷 (𝑥(+g‘𝐼)𝑦) ∈ 𝐷 ∧ ((invg‘𝐼)‘𝑥) ∈ 𝐷)) |
| 13 | 12 | ralrimiva 3124 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐷 (∀𝑦 ∈ 𝐷 (𝑥(+g‘𝐼)𝑦) ∈ 𝐷 ∧ ((invg‘𝐼)‘𝑥) ∈ 𝐷)) |
| 14 | issubgrpd.g | . . 3 ⊢ (𝜑 → 𝐼 ∈ Grp) | |
| 15 | eqid 2731 | . . . 4 ⊢ (Base‘𝐼) = (Base‘𝐼) | |
| 16 | eqid 2731 | . . . 4 ⊢ (+g‘𝐼) = (+g‘𝐼) | |
| 17 | eqid 2731 | . . . 4 ⊢ (invg‘𝐼) = (invg‘𝐼) | |
| 18 | 15, 16, 17 | issubg2 19049 | . . 3 ⊢ (𝐼 ∈ Grp → (𝐷 ∈ (SubGrp‘𝐼) ↔ (𝐷 ⊆ (Base‘𝐼) ∧ 𝐷 ≠ ∅ ∧ ∀𝑥 ∈ 𝐷 (∀𝑦 ∈ 𝐷 (𝑥(+g‘𝐼)𝑦) ∈ 𝐷 ∧ ((invg‘𝐼)‘𝑥) ∈ 𝐷)))) |
| 19 | 14, 18 | syl 17 | . 2 ⊢ (𝜑 → (𝐷 ∈ (SubGrp‘𝐼) ↔ (𝐷 ⊆ (Base‘𝐼) ∧ 𝐷 ≠ ∅ ∧ ∀𝑥 ∈ 𝐷 (∀𝑦 ∈ 𝐷 (𝑥(+g‘𝐼)𝑦) ∈ 𝐷 ∧ ((invg‘𝐼)‘𝑥) ∈ 𝐷)))) |
| 20 | 1, 3, 13, 19 | mpbir3and 1343 | 1 ⊢ (𝜑 → 𝐷 ∈ (SubGrp‘𝐼)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ⊆ wss 3897 ∅c0 4278 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 ↾s cress 17136 +gcplusg 17156 0gc0g 17338 Grpcgrp 18841 invgcminusg 18842 SubGrpcsubg 19028 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-0g 17340 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-subg 19031 |
| This theorem is referenced by: issubgrpd 19051 symgsssg 19374 symgfisg 19375 issubrgd 21118 dsmmsubg 21675 nsgmgclem 33368 |
| Copyright terms: Public domain | W3C validator |