| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnfldtopon | Structured version Visualization version GIF version | ||
| Description: The topology of the complex numbers is a topology. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| cnfldtopn.1 | ⊢ 𝐽 = (TopOpen‘ℂfld) |
| Ref | Expression |
|---|---|
| cnfldtopon | ⊢ 𝐽 ∈ (TopOn‘ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfldtps 24663 | . 2 ⊢ ℂfld ∈ TopSp | |
| 2 | cnfldbas 21265 | . . 3 ⊢ ℂ = (Base‘ℂfld) | |
| 3 | cnfldtopn.1 | . . 3 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
| 4 | 2, 3 | istps 22819 | . 2 ⊢ (ℂfld ∈ TopSp ↔ 𝐽 ∈ (TopOn‘ℂ)) |
| 5 | 1, 4 | mpbi 230 | 1 ⊢ 𝐽 ∈ (TopOn‘ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ‘cfv 6482 ℂcc 11007 TopOpenctopn 17325 ℂfldccnfld 21261 TopOnctopon 22795 TopSpctps 22817 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-inf 9333 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-fz 13411 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mulr 17175 df-starv 17176 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-rest 17326 df-topn 17327 df-topgen 17347 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-cnfld 21262 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-xms 24206 df-ms 24207 |
| This theorem is referenced by: cnfldtop 24669 unicntop 24671 sszcld 24704 reperflem 24705 cnperf 24707 divcnOLD 24755 divcn 24757 fsumcn 24759 expcn 24761 divccn 24762 expcnOLD 24763 divccnOLD 24764 cncfcn1 24802 cncfmptc 24803 cncfmptid 24804 cncfmpt2f 24806 cdivcncf 24812 abscncfALT 24816 cncfcnvcn 24817 cnmptre 24819 iirevcn 24822 iihalf1cn 24824 iihalf1cnOLD 24825 iihalf2cn 24827 iihalf2cnOLD 24828 iimulcn 24832 iimulcnOLD 24833 icchmeo 24836 icchmeoOLD 24837 cnrehmeo 24849 cnrehmeoOLD 24850 cnheiborlem 24851 cnheibor 24852 cnllycmp 24853 evth 24856 evth2 24857 lebnumlem2 24859 reparphti 24894 reparphtiOLD 24895 pcoass 24922 mulcncf 25344 mbfimaopnlem 25554 limcvallem 25770 ellimc2 25776 limcnlp 25777 limcflflem 25779 limcflf 25780 limcmo 25781 limcres 25785 cnplimc 25786 cnlimc 25787 limccnp 25790 limccnp2 25791 dvbss 25800 perfdvf 25802 recnperf 25804 dvreslem 25808 dvres2lem 25809 dvres3a 25813 dvidlem 25814 dvcnp2 25819 dvcnp2OLD 25820 dvcn 25821 dvnres 25831 dvaddbr 25838 dvmulbr 25839 dvmulbrOLD 25840 dvcmulf 25846 dvcobr 25847 dvcobrOLD 25848 dvcjbr 25851 dvrec 25857 dvmptid 25859 dvmptc 25860 dvmptres2 25864 dvmptcmul 25866 dvmptntr 25873 dvmptfsum 25877 dvcnvlem 25878 dvcnv 25879 dvexp3 25880 dveflem 25881 dvlipcn 25897 lhop1lem 25916 lhop2 25918 lhop 25919 dvcnvrelem2 25921 dvcnvre 25922 ftc1lem3 25943 ftc1cn 25948 plycn 26164 plycnOLD 26165 dvply1 26189 dvtaylp 26276 taylthlem1 26279 taylthlem2 26280 taylthlem2OLD 26281 ulmdvlem3 26309 psercn2 26330 psercn2OLD 26331 psercn 26334 pserdvlem2 26336 pserdv 26337 abelth 26349 pige3ALT 26427 logcn 26554 dvloglem 26555 dvlog 26558 dvlog2 26560 efopnlem2 26564 efopn 26565 logtayl 26567 dvcxp1 26647 cxpcn 26652 cxpcnOLD 26653 cxpcn2 26654 cxpcn3 26656 resqrtcn 26657 sqrtcn 26658 loglesqrt 26669 atansopn 26840 dvatan 26843 xrlimcnp 26876 efrlim 26877 efrlimOLD 26878 lgamucov 26946 ftalem3 26983 vmcn 30643 dipcn 30664 ipasslem7 30780 ipasslem8 30781 occllem 31247 nlelchi 32005 tpr2rico 33885 rmulccn 33901 raddcn 33902 cxpcncf1 34569 cvxpconn 35225 cvxsconn 35226 cnllysconn 35228 sinccvglem 35655 ivthALT 36319 knoppcnlem10 36486 knoppcnlem11 36487 broucube 37644 dvtan 37660 ftc1cnnc 37682 dvasin 37694 dvacos 37695 dvreasin 37696 dvreacos 37697 areacirclem1 37698 areacirclem2 37699 areacirclem4 37701 refsumcn 45018 fprodcnlem 45590 fprodcn 45591 fsumcncf 45869 ioccncflimc 45876 cncfuni 45877 icocncflimc 45880 cncfdmsn 45881 cncfiooicclem1 45884 cxpcncf2 45890 fprodsub2cncf 45896 fprodadd2cncf 45897 dvmptconst 45906 dvmptidg 45908 dvresntr 45909 itgsubsticclem 45966 dirkercncflem2 46095 dirkercncflem4 46097 dirkercncf 46098 fourierdlem32 46130 fourierdlem33 46131 fourierdlem62 46159 fourierdlem93 46190 fourierdlem101 46198 |
| Copyright terms: Public domain | W3C validator |