![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnfldtopon | Structured version Visualization version GIF version |
Description: The topology of the complex numbers is a topology. (Contributed by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
cnfldtopn.1 | ⊢ 𝐽 = (TopOpen‘ℂfld) |
Ref | Expression |
---|---|
cnfldtopon | ⊢ 𝐽 ∈ (TopOn‘ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnfldtps 24819 | . 2 ⊢ ℂfld ∈ TopSp | |
2 | cnfldbas 21391 | . . 3 ⊢ ℂ = (Base‘ℂfld) | |
3 | cnfldtopn.1 | . . 3 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
4 | 2, 3 | istps 22961 | . 2 ⊢ (ℂfld ∈ TopSp ↔ 𝐽 ∈ (TopOn‘ℂ)) |
5 | 1, 4 | mpbi 230 | 1 ⊢ 𝐽 ∈ (TopOn‘ℂ) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 ‘cfv 6573 ℂcc 11182 TopOpenctopn 17481 ℂfldccnfld 21387 TopOnctopon 22937 TopSpctps 22959 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-fz 13568 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-struct 17194 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-mulr 17325 df-starv 17326 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-rest 17482 df-topn 17483 df-topgen 17503 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-xms 24351 df-ms 24352 |
This theorem is referenced by: cnfldtop 24825 unicntop 24827 sszcld 24858 reperflem 24859 cnperf 24861 divcnOLD 24909 divcn 24911 fsumcn 24913 expcn 24915 divccn 24916 expcnOLD 24917 divccnOLD 24918 cncfcn1 24956 cncfmptc 24957 cncfmptid 24958 cncfmpt2f 24960 cdivcncf 24966 abscncfALT 24970 cncfcnvcn 24971 cnmptre 24973 iirevcn 24976 iihalf1cn 24978 iihalf1cnOLD 24979 iihalf2cn 24981 iihalf2cnOLD 24982 iimulcn 24986 iimulcnOLD 24987 icchmeo 24990 icchmeoOLD 24991 cnrehmeo 25003 cnrehmeoOLD 25004 cnheiborlem 25005 cnheibor 25006 cnllycmp 25007 evth 25010 evth2 25011 lebnumlem2 25013 reparphti 25048 reparphtiOLD 25049 pcoass 25076 mulcncf 25499 mbfimaopnlem 25709 limcvallem 25926 ellimc2 25932 limcnlp 25933 limcflflem 25935 limcflf 25936 limcmo 25937 limcres 25941 cnplimc 25942 cnlimc 25943 limccnp 25946 limccnp2 25947 dvbss 25956 perfdvf 25958 recnperf 25960 dvreslem 25964 dvres2lem 25965 dvres3a 25969 dvidlem 25970 dvcnp2 25975 dvcnp2OLD 25976 dvcn 25977 dvnres 25987 dvaddbr 25994 dvmulbr 25995 dvmulbrOLD 25996 dvcmulf 26002 dvcobr 26003 dvcobrOLD 26004 dvcjbr 26007 dvrec 26013 dvmptid 26015 dvmptc 26016 dvmptres2 26020 dvmptcmul 26022 dvmptntr 26029 dvmptfsum 26033 dvcnvlem 26034 dvcnv 26035 dvexp3 26036 dveflem 26037 dvlipcn 26053 lhop1lem 26072 lhop2 26074 lhop 26075 dvcnvrelem2 26077 dvcnvre 26078 ftc1lem3 26099 ftc1cn 26104 plycn 26320 plycnOLD 26321 dvply1 26343 dvtaylp 26430 taylthlem1 26433 taylthlem2 26434 taylthlem2OLD 26435 ulmdvlem3 26463 psercn2 26484 psercn2OLD 26485 psercn 26488 pserdvlem2 26490 pserdv 26491 abelth 26503 pige3ALT 26580 logcn 26707 dvloglem 26708 dvlog 26711 dvlog2 26713 efopnlem2 26717 efopn 26718 logtayl 26720 dvcxp1 26800 cxpcn 26805 cxpcnOLD 26806 cxpcn2 26807 cxpcn3 26809 resqrtcn 26810 sqrtcn 26811 loglesqrt 26822 atansopn 26993 dvatan 26996 xrlimcnp 27029 efrlim 27030 efrlimOLD 27031 lgamucov 27099 ftalem3 27136 vmcn 30731 dipcn 30752 ipasslem7 30868 ipasslem8 30869 occllem 31335 nlelchi 32093 tpr2rico 33858 rmulccn 33874 raddcn 33875 cxpcncf1 34572 cvxpconn 35210 cvxsconn 35211 cnllysconn 35213 sinccvglem 35640 ivthALT 36301 knoppcnlem10 36468 knoppcnlem11 36469 broucube 37614 dvtanlem 37629 dvtan 37630 ftc1cnnc 37652 dvasin 37664 dvacos 37665 dvreasin 37666 dvreacos 37667 areacirclem1 37668 areacirclem2 37669 areacirclem4 37671 refsumcn 44930 fprodcnlem 45520 fprodcn 45521 fsumcncf 45799 ioccncflimc 45806 cncfuni 45807 icocncflimc 45810 cncfdmsn 45811 cncfiooicclem1 45814 cxpcncf2 45820 fprodsub2cncf 45826 fprodadd2cncf 45827 dvmptconst 45836 dvmptidg 45838 dvresntr 45839 itgsubsticclem 45896 dirkercncflem2 46025 dirkercncflem4 46027 dirkercncf 46028 fourierdlem32 46060 fourierdlem33 46061 fourierdlem62 46089 fourierdlem93 46120 fourierdlem101 46128 |
Copyright terms: Public domain | W3C validator |