| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnfldtopon | Structured version Visualization version GIF version | ||
| Description: The topology of the complex numbers is a topology. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| cnfldtopn.1 | ⊢ 𝐽 = (TopOpen‘ℂfld) |
| Ref | Expression |
|---|---|
| cnfldtopon | ⊢ 𝐽 ∈ (TopOn‘ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfldtps 24716 | . 2 ⊢ ℂfld ∈ TopSp | |
| 2 | cnfldbas 21319 | . . 3 ⊢ ℂ = (Base‘ℂfld) | |
| 3 | cnfldtopn.1 | . . 3 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
| 4 | 2, 3 | istps 22872 | . 2 ⊢ (ℂfld ∈ TopSp ↔ 𝐽 ∈ (TopOn‘ℂ)) |
| 5 | 1, 4 | mpbi 230 | 1 ⊢ 𝐽 ∈ (TopOn‘ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 ‘cfv 6531 ℂcc 11127 TopOpenctopn 17435 ℂfldccnfld 21315 TopOnctopon 22848 TopSpctps 22870 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-inf 9455 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-q 12965 df-rp 13009 df-xneg 13128 df-xadd 13129 df-xmul 13130 df-fz 13525 df-seq 14020 df-exp 14080 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-struct 17166 df-slot 17201 df-ndx 17213 df-base 17229 df-plusg 17284 df-mulr 17285 df-starv 17286 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-rest 17436 df-topn 17437 df-topgen 17457 df-psmet 21307 df-xmet 21308 df-met 21309 df-bl 21310 df-mopn 21311 df-cnfld 21316 df-top 22832 df-topon 22849 df-topsp 22871 df-bases 22884 df-xms 24259 df-ms 24260 |
| This theorem is referenced by: cnfldtop 24722 unicntop 24724 sszcld 24757 reperflem 24758 cnperf 24760 divcnOLD 24808 divcn 24810 fsumcn 24812 expcn 24814 divccn 24815 expcnOLD 24816 divccnOLD 24817 cncfcn1 24855 cncfmptc 24856 cncfmptid 24857 cncfmpt2f 24859 cdivcncf 24865 abscncfALT 24869 cncfcnvcn 24870 cnmptre 24872 iirevcn 24875 iihalf1cn 24877 iihalf1cnOLD 24878 iihalf2cn 24880 iihalf2cnOLD 24881 iimulcn 24885 iimulcnOLD 24886 icchmeo 24889 icchmeoOLD 24890 cnrehmeo 24902 cnrehmeoOLD 24903 cnheiborlem 24904 cnheibor 24905 cnllycmp 24906 evth 24909 evth2 24910 lebnumlem2 24912 reparphti 24947 reparphtiOLD 24948 pcoass 24975 mulcncf 25398 mbfimaopnlem 25608 limcvallem 25824 ellimc2 25830 limcnlp 25831 limcflflem 25833 limcflf 25834 limcmo 25835 limcres 25839 cnplimc 25840 cnlimc 25841 limccnp 25844 limccnp2 25845 dvbss 25854 perfdvf 25856 recnperf 25858 dvreslem 25862 dvres2lem 25863 dvres3a 25867 dvidlem 25868 dvcnp2 25873 dvcnp2OLD 25874 dvcn 25875 dvnres 25885 dvaddbr 25892 dvmulbr 25893 dvmulbrOLD 25894 dvcmulf 25900 dvcobr 25901 dvcobrOLD 25902 dvcjbr 25905 dvrec 25911 dvmptid 25913 dvmptc 25914 dvmptres2 25918 dvmptcmul 25920 dvmptntr 25927 dvmptfsum 25931 dvcnvlem 25932 dvcnv 25933 dvexp3 25934 dveflem 25935 dvlipcn 25951 lhop1lem 25970 lhop2 25972 lhop 25973 dvcnvrelem2 25975 dvcnvre 25976 ftc1lem3 25997 ftc1cn 26002 plycn 26218 plycnOLD 26219 dvply1 26243 dvtaylp 26330 taylthlem1 26333 taylthlem2 26334 taylthlem2OLD 26335 ulmdvlem3 26363 psercn2 26384 psercn2OLD 26385 psercn 26388 pserdvlem2 26390 pserdv 26391 abelth 26403 pige3ALT 26481 logcn 26608 dvloglem 26609 dvlog 26612 dvlog2 26614 efopnlem2 26618 efopn 26619 logtayl 26621 dvcxp1 26701 cxpcn 26706 cxpcnOLD 26707 cxpcn2 26708 cxpcn3 26710 resqrtcn 26711 sqrtcn 26712 loglesqrt 26723 atansopn 26894 dvatan 26897 xrlimcnp 26930 efrlim 26931 efrlimOLD 26932 lgamucov 27000 ftalem3 27037 vmcn 30680 dipcn 30701 ipasslem7 30817 ipasslem8 30818 occllem 31284 nlelchi 32042 tpr2rico 33943 rmulccn 33959 raddcn 33960 cxpcncf1 34627 cvxpconn 35264 cvxsconn 35265 cnllysconn 35267 sinccvglem 35694 ivthALT 36353 knoppcnlem10 36520 knoppcnlem11 36521 broucube 37678 dvtan 37694 ftc1cnnc 37716 dvasin 37728 dvacos 37729 dvreasin 37730 dvreacos 37731 areacirclem1 37732 areacirclem2 37733 areacirclem4 37735 refsumcn 45054 fprodcnlem 45628 fprodcn 45629 fsumcncf 45907 ioccncflimc 45914 cncfuni 45915 icocncflimc 45918 cncfdmsn 45919 cncfiooicclem1 45922 cxpcncf2 45928 fprodsub2cncf 45934 fprodadd2cncf 45935 dvmptconst 45944 dvmptidg 45946 dvresntr 45947 itgsubsticclem 46004 dirkercncflem2 46133 dirkercncflem4 46135 dirkercncf 46136 fourierdlem32 46168 fourierdlem33 46169 fourierdlem62 46197 fourierdlem93 46228 fourierdlem101 46236 |
| Copyright terms: Public domain | W3C validator |