| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnfldtopon | Structured version Visualization version GIF version | ||
| Description: The topology of the complex numbers is a topology. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| cnfldtopn.1 | ⊢ 𝐽 = (TopOpen‘ℂfld) |
| Ref | Expression |
|---|---|
| cnfldtopon | ⊢ 𝐽 ∈ (TopOn‘ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfldtps 24665 | . 2 ⊢ ℂfld ∈ TopSp | |
| 2 | cnfldbas 21268 | . . 3 ⊢ ℂ = (Base‘ℂfld) | |
| 3 | cnfldtopn.1 | . . 3 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
| 4 | 2, 3 | istps 22821 | . 2 ⊢ (ℂfld ∈ TopSp ↔ 𝐽 ∈ (TopOn‘ℂ)) |
| 5 | 1, 4 | mpbi 230 | 1 ⊢ 𝐽 ∈ (TopOn‘ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ‘cfv 6511 ℂcc 11066 TopOpenctopn 17384 ℂfldccnfld 21264 TopOnctopon 22797 TopSpctps 22819 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-fz 13469 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-struct 17117 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-mulr 17234 df-starv 17235 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-rest 17385 df-topn 17386 df-topgen 17406 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-cnfld 21265 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-xms 24208 df-ms 24209 |
| This theorem is referenced by: cnfldtop 24671 unicntop 24673 sszcld 24706 reperflem 24707 cnperf 24709 divcnOLD 24757 divcn 24759 fsumcn 24761 expcn 24763 divccn 24764 expcnOLD 24765 divccnOLD 24766 cncfcn1 24804 cncfmptc 24805 cncfmptid 24806 cncfmpt2f 24808 cdivcncf 24814 abscncfALT 24818 cncfcnvcn 24819 cnmptre 24821 iirevcn 24824 iihalf1cn 24826 iihalf1cnOLD 24827 iihalf2cn 24829 iihalf2cnOLD 24830 iimulcn 24834 iimulcnOLD 24835 icchmeo 24838 icchmeoOLD 24839 cnrehmeo 24851 cnrehmeoOLD 24852 cnheiborlem 24853 cnheibor 24854 cnllycmp 24855 evth 24858 evth2 24859 lebnumlem2 24861 reparphti 24896 reparphtiOLD 24897 pcoass 24924 mulcncf 25346 mbfimaopnlem 25556 limcvallem 25772 ellimc2 25778 limcnlp 25779 limcflflem 25781 limcflf 25782 limcmo 25783 limcres 25787 cnplimc 25788 cnlimc 25789 limccnp 25792 limccnp2 25793 dvbss 25802 perfdvf 25804 recnperf 25806 dvreslem 25810 dvres2lem 25811 dvres3a 25815 dvidlem 25816 dvcnp2 25821 dvcnp2OLD 25822 dvcn 25823 dvnres 25833 dvaddbr 25840 dvmulbr 25841 dvmulbrOLD 25842 dvcmulf 25848 dvcobr 25849 dvcobrOLD 25850 dvcjbr 25853 dvrec 25859 dvmptid 25861 dvmptc 25862 dvmptres2 25866 dvmptcmul 25868 dvmptntr 25875 dvmptfsum 25879 dvcnvlem 25880 dvcnv 25881 dvexp3 25882 dveflem 25883 dvlipcn 25899 lhop1lem 25918 lhop2 25920 lhop 25921 dvcnvrelem2 25923 dvcnvre 25924 ftc1lem3 25945 ftc1cn 25950 plycn 26166 plycnOLD 26167 dvply1 26191 dvtaylp 26278 taylthlem1 26281 taylthlem2 26282 taylthlem2OLD 26283 ulmdvlem3 26311 psercn2 26332 psercn2OLD 26333 psercn 26336 pserdvlem2 26338 pserdv 26339 abelth 26351 pige3ALT 26429 logcn 26556 dvloglem 26557 dvlog 26560 dvlog2 26562 efopnlem2 26566 efopn 26567 logtayl 26569 dvcxp1 26649 cxpcn 26654 cxpcnOLD 26655 cxpcn2 26656 cxpcn3 26658 resqrtcn 26659 sqrtcn 26660 loglesqrt 26671 atansopn 26842 dvatan 26845 xrlimcnp 26878 efrlim 26879 efrlimOLD 26880 lgamucov 26948 ftalem3 26985 vmcn 30628 dipcn 30649 ipasslem7 30765 ipasslem8 30766 occllem 31232 nlelchi 31990 tpr2rico 33902 rmulccn 33918 raddcn 33919 cxpcncf1 34586 cvxpconn 35229 cvxsconn 35230 cnllysconn 35232 sinccvglem 35659 ivthALT 36323 knoppcnlem10 36490 knoppcnlem11 36491 broucube 37648 dvtan 37664 ftc1cnnc 37686 dvasin 37698 dvacos 37699 dvreasin 37700 dvreacos 37701 areacirclem1 37702 areacirclem2 37703 areacirclem4 37705 refsumcn 45024 fprodcnlem 45597 fprodcn 45598 fsumcncf 45876 ioccncflimc 45883 cncfuni 45884 icocncflimc 45887 cncfdmsn 45888 cncfiooicclem1 45891 cxpcncf2 45897 fprodsub2cncf 45903 fprodadd2cncf 45904 dvmptconst 45913 dvmptidg 45915 dvresntr 45916 itgsubsticclem 45973 dirkercncflem2 46102 dirkercncflem4 46104 dirkercncf 46105 fourierdlem32 46137 fourierdlem33 46138 fourierdlem62 46166 fourierdlem93 46197 fourierdlem101 46205 |
| Copyright terms: Public domain | W3C validator |