MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  emcllem2 Structured version   Visualization version   GIF version

Theorem emcllem2 26737
Description: Lemma for emcl 26743. 𝐹 is increasing, and 𝐺 is decreasing. (Contributed by Mario Carneiro, 11-Jul-2014.)
Hypotheses
Ref Expression
emcl.1 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)))
emcl.2 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))))
Assertion
Ref Expression
emcllem2 (𝑁 ∈ ℕ → ((𝐹‘(𝑁 + 1)) ≤ (𝐹𝑁) ∧ (𝐺𝑁) ≤ (𝐺‘(𝑁 + 1))))
Distinct variable group:   𝑚,𝑛,𝑁
Allowed substitution hints:   𝐹(𝑚,𝑛)   𝐺(𝑚,𝑛)

Proof of Theorem emcllem2
StepHypRef Expression
1 peano2nn 12228 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
21nnrecred 12267 . . . . . 6 (𝑁 ∈ ℕ → (1 / (𝑁 + 1)) ∈ ℝ)
31nnrpd 13018 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℝ+)
43relogcld 26367 . . . . . . 7 (𝑁 ∈ ℕ → (log‘(𝑁 + 1)) ∈ ℝ)
5 nnrp 12989 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
65relogcld 26367 . . . . . . 7 (𝑁 ∈ ℕ → (log‘𝑁) ∈ ℝ)
74, 6resubcld 11646 . . . . . 6 (𝑁 ∈ ℕ → ((log‘(𝑁 + 1)) − (log‘𝑁)) ∈ ℝ)
8 fzfid 13942 . . . . . . 7 (𝑁 ∈ ℕ → (1...𝑁) ∈ Fin)
9 elfznn 13534 . . . . . . . . 9 (𝑚 ∈ (1...𝑁) → 𝑚 ∈ ℕ)
109adantl 480 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑚 ∈ (1...𝑁)) → 𝑚 ∈ ℕ)
1110nnrecred 12267 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑚 ∈ (1...𝑁)) → (1 / 𝑚) ∈ ℝ)
128, 11fsumrecl 15684 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) ∈ ℝ)
133rpreccld 13030 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (1 / (𝑁 + 1)) ∈ ℝ+)
1413rpge0d 13024 . . . . . . . . . 10 (𝑁 ∈ ℕ → 0 ≤ (1 / (𝑁 + 1)))
15 1div1e1 11908 . . . . . . . . . . . 12 (1 / 1) = 1
16 1re 11218 . . . . . . . . . . . . . 14 1 ∈ ℝ
17 ltaddrp 13015 . . . . . . . . . . . . . 14 ((1 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → 1 < (1 + 𝑁))
1816, 5, 17sylancr 585 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 1 < (1 + 𝑁))
19 ax-1cn 11170 . . . . . . . . . . . . . 14 1 ∈ ℂ
20 nncn 12224 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
21 addcom 11404 . . . . . . . . . . . . . 14 ((1 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (1 + 𝑁) = (𝑁 + 1))
2219, 20, 21sylancr 585 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (1 + 𝑁) = (𝑁 + 1))
2318, 22breqtrd 5173 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 1 < (𝑁 + 1))
2415, 23eqbrtrid 5182 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (1 / 1) < (𝑁 + 1))
251nnred 12231 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℝ)
261nngt0d 12265 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 0 < (𝑁 + 1))
27 0lt1 11740 . . . . . . . . . . . . 13 0 < 1
28 ltrec1 12105 . . . . . . . . . . . . 13 (((1 ∈ ℝ ∧ 0 < 1) ∧ ((𝑁 + 1) ∈ ℝ ∧ 0 < (𝑁 + 1))) → ((1 / 1) < (𝑁 + 1) ↔ (1 / (𝑁 + 1)) < 1))
2916, 27, 28mpanl12 698 . . . . . . . . . . . 12 (((𝑁 + 1) ∈ ℝ ∧ 0 < (𝑁 + 1)) → ((1 / 1) < (𝑁 + 1) ↔ (1 / (𝑁 + 1)) < 1))
3025, 26, 29syl2anc 582 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((1 / 1) < (𝑁 + 1) ↔ (1 / (𝑁 + 1)) < 1))
3124, 30mpbid 231 . . . . . . . . . 10 (𝑁 ∈ ℕ → (1 / (𝑁 + 1)) < 1)
322, 14, 31eflegeo 16068 . . . . . . . . 9 (𝑁 ∈ ℕ → (exp‘(1 / (𝑁 + 1))) ≤ (1 / (1 − (1 / (𝑁 + 1)))))
3325recnd 11246 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℂ)
34 nnne0 12250 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
351nnne0d 12266 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 + 1) ≠ 0)
3620, 33, 34, 35recdivd 12011 . . . . . . . . . 10 (𝑁 ∈ ℕ → (1 / (𝑁 / (𝑁 + 1))) = ((𝑁 + 1) / 𝑁))
37 1cnd 11213 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 1 ∈ ℂ)
3833, 37, 33, 35divsubdird 12033 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (((𝑁 + 1) − 1) / (𝑁 + 1)) = (((𝑁 + 1) / (𝑁 + 1)) − (1 / (𝑁 + 1))))
39 pncan 11470 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
4020, 19, 39sylancl 584 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((𝑁 + 1) − 1) = 𝑁)
4140oveq1d 7426 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (((𝑁 + 1) − 1) / (𝑁 + 1)) = (𝑁 / (𝑁 + 1)))
4233, 35dividd 11992 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((𝑁 + 1) / (𝑁 + 1)) = 1)
4342oveq1d 7426 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (((𝑁 + 1) / (𝑁 + 1)) − (1 / (𝑁 + 1))) = (1 − (1 / (𝑁 + 1))))
4438, 41, 433eqtr3rd 2779 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (1 − (1 / (𝑁 + 1))) = (𝑁 / (𝑁 + 1)))
4544oveq2d 7427 . . . . . . . . . 10 (𝑁 ∈ ℕ → (1 / (1 − (1 / (𝑁 + 1)))) = (1 / (𝑁 / (𝑁 + 1))))
463, 5rpdivcld 13037 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((𝑁 + 1) / 𝑁) ∈ ℝ+)
4746reeflogd 26368 . . . . . . . . . 10 (𝑁 ∈ ℕ → (exp‘(log‘((𝑁 + 1) / 𝑁))) = ((𝑁 + 1) / 𝑁))
4836, 45, 473eqtr4d 2780 . . . . . . . . 9 (𝑁 ∈ ℕ → (1 / (1 − (1 / (𝑁 + 1)))) = (exp‘(log‘((𝑁 + 1) / 𝑁))))
4932, 48breqtrd 5173 . . . . . . . 8 (𝑁 ∈ ℕ → (exp‘(1 / (𝑁 + 1))) ≤ (exp‘(log‘((𝑁 + 1) / 𝑁))))
503, 5relogdivd 26370 . . . . . . . . . 10 (𝑁 ∈ ℕ → (log‘((𝑁 + 1) / 𝑁)) = ((log‘(𝑁 + 1)) − (log‘𝑁)))
5150, 7eqeltrd 2831 . . . . . . . . 9 (𝑁 ∈ ℕ → (log‘((𝑁 + 1) / 𝑁)) ∈ ℝ)
52 efle 16065 . . . . . . . . 9 (((1 / (𝑁 + 1)) ∈ ℝ ∧ (log‘((𝑁 + 1) / 𝑁)) ∈ ℝ) → ((1 / (𝑁 + 1)) ≤ (log‘((𝑁 + 1) / 𝑁)) ↔ (exp‘(1 / (𝑁 + 1))) ≤ (exp‘(log‘((𝑁 + 1) / 𝑁)))))
532, 51, 52syl2anc 582 . . . . . . . 8 (𝑁 ∈ ℕ → ((1 / (𝑁 + 1)) ≤ (log‘((𝑁 + 1) / 𝑁)) ↔ (exp‘(1 / (𝑁 + 1))) ≤ (exp‘(log‘((𝑁 + 1) / 𝑁)))))
5449, 53mpbird 256 . . . . . . 7 (𝑁 ∈ ℕ → (1 / (𝑁 + 1)) ≤ (log‘((𝑁 + 1) / 𝑁)))
5554, 50breqtrd 5173 . . . . . 6 (𝑁 ∈ ℕ → (1 / (𝑁 + 1)) ≤ ((log‘(𝑁 + 1)) − (log‘𝑁)))
562, 7, 12, 55leadd2dd 11833 . . . . 5 (𝑁 ∈ ℕ → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) + (1 / (𝑁 + 1))) ≤ (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) + ((log‘(𝑁 + 1)) − (log‘𝑁))))
57 id 22 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
58 nnuz 12869 . . . . . . 7 ℕ = (ℤ‘1)
5957, 58eleqtrdi 2841 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ‘1))
60 elfznn 13534 . . . . . . . . 9 (𝑚 ∈ (1...(𝑁 + 1)) → 𝑚 ∈ ℕ)
6160adantl 480 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑚 ∈ (1...(𝑁 + 1))) → 𝑚 ∈ ℕ)
6261nnrecred 12267 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑚 ∈ (1...(𝑁 + 1))) → (1 / 𝑚) ∈ ℝ)
6362recnd 11246 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑚 ∈ (1...(𝑁 + 1))) → (1 / 𝑚) ∈ ℂ)
64 oveq2 7419 . . . . . 6 (𝑚 = (𝑁 + 1) → (1 / 𝑚) = (1 / (𝑁 + 1)))
6559, 63, 64fsump1 15706 . . . . 5 (𝑁 ∈ ℕ → Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) = (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) + (1 / (𝑁 + 1))))
664recnd 11246 . . . . . 6 (𝑁 ∈ ℕ → (log‘(𝑁 + 1)) ∈ ℂ)
6712recnd 11246 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) ∈ ℂ)
686recnd 11246 . . . . . 6 (𝑁 ∈ ℕ → (log‘𝑁) ∈ ℂ)
6966, 67, 68addsub12d 11598 . . . . 5 (𝑁 ∈ ℕ → ((log‘(𝑁 + 1)) + (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁))) = (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) + ((log‘(𝑁 + 1)) − (log‘𝑁))))
7056, 65, 693brtr4d 5179 . . . 4 (𝑁 ∈ ℕ → Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) ≤ ((log‘(𝑁 + 1)) + (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁))))
71 fzfid 13942 . . . . . 6 (𝑁 ∈ ℕ → (1...(𝑁 + 1)) ∈ Fin)
7271, 62fsumrecl 15684 . . . . 5 (𝑁 ∈ ℕ → Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) ∈ ℝ)
7312, 6resubcld 11646 . . . . 5 (𝑁 ∈ ℕ → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁)) ∈ ℝ)
7472, 4, 73lesubadd2d 11817 . . . 4 (𝑁 ∈ ℕ → ((Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘(𝑁 + 1))) ≤ (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁)) ↔ Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) ≤ ((log‘(𝑁 + 1)) + (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁)))))
7570, 74mpbird 256 . . 3 (𝑁 ∈ ℕ → (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘(𝑁 + 1))) ≤ (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁)))
76 oveq2 7419 . . . . . . 7 (𝑛 = (𝑁 + 1) → (1...𝑛) = (1...(𝑁 + 1)))
7776sumeq1d 15651 . . . . . 6 (𝑛 = (𝑁 + 1) → Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) = Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚))
78 fveq2 6890 . . . . . 6 (𝑛 = (𝑁 + 1) → (log‘𝑛) = (log‘(𝑁 + 1)))
7977, 78oveq12d 7429 . . . . 5 (𝑛 = (𝑁 + 1) → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)) = (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘(𝑁 + 1))))
80 emcl.1 . . . . 5 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)))
81 ovex 7444 . . . . 5 𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘(𝑁 + 1))) ∈ V
8279, 80, 81fvmpt 6997 . . . 4 ((𝑁 + 1) ∈ ℕ → (𝐹‘(𝑁 + 1)) = (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘(𝑁 + 1))))
831, 82syl 17 . . 3 (𝑁 ∈ ℕ → (𝐹‘(𝑁 + 1)) = (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘(𝑁 + 1))))
84 oveq2 7419 . . . . . 6 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
8584sumeq1d 15651 . . . . 5 (𝑛 = 𝑁 → Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) = Σ𝑚 ∈ (1...𝑁)(1 / 𝑚))
86 fveq2 6890 . . . . 5 (𝑛 = 𝑁 → (log‘𝑛) = (log‘𝑁))
8785, 86oveq12d 7429 . . . 4 (𝑛 = 𝑁 → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)) = (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁)))
88 ovex 7444 . . . 4 𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁)) ∈ V
8987, 80, 88fvmpt 6997 . . 3 (𝑁 ∈ ℕ → (𝐹𝑁) = (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁)))
9075, 83, 893brtr4d 5179 . 2 (𝑁 ∈ ℕ → (𝐹‘(𝑁 + 1)) ≤ (𝐹𝑁))
91 peano2nn 12228 . . . . . . . . . 10 ((𝑁 + 1) ∈ ℕ → ((𝑁 + 1) + 1) ∈ ℕ)
921, 91syl 17 . . . . . . . . 9 (𝑁 ∈ ℕ → ((𝑁 + 1) + 1) ∈ ℕ)
9392nnrpd 13018 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝑁 + 1) + 1) ∈ ℝ+)
9493relogcld 26367 . . . . . . 7 (𝑁 ∈ ℕ → (log‘((𝑁 + 1) + 1)) ∈ ℝ)
9594, 4resubcld 11646 . . . . . 6 (𝑁 ∈ ℕ → ((log‘((𝑁 + 1) + 1)) − (log‘(𝑁 + 1))) ∈ ℝ)
96 logdifbnd 26734 . . . . . . 7 ((𝑁 + 1) ∈ ℝ+ → ((log‘((𝑁 + 1) + 1)) − (log‘(𝑁 + 1))) ≤ (1 / (𝑁 + 1)))
973, 96syl 17 . . . . . 6 (𝑁 ∈ ℕ → ((log‘((𝑁 + 1) + 1)) − (log‘(𝑁 + 1))) ≤ (1 / (𝑁 + 1)))
9895, 2, 12, 97leadd2dd 11833 . . . . 5 (𝑁 ∈ ℕ → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) + ((log‘((𝑁 + 1) + 1)) − (log‘(𝑁 + 1)))) ≤ (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) + (1 / (𝑁 + 1))))
9994recnd 11246 . . . . . 6 (𝑁 ∈ ℕ → (log‘((𝑁 + 1) + 1)) ∈ ℂ)
10067, 66, 99subadd23d 11597 . . . . 5 (𝑁 ∈ ℕ → ((Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) + (log‘((𝑁 + 1) + 1))) = (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) + ((log‘((𝑁 + 1) + 1)) − (log‘(𝑁 + 1)))))
10198, 100, 653brtr4d 5179 . . . 4 (𝑁 ∈ ℕ → ((Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) + (log‘((𝑁 + 1) + 1))) ≤ Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚))
10212, 4resubcld 11646 . . . . 5 (𝑁 ∈ ℕ → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ∈ ℝ)
103 leaddsub 11694 . . . . 5 (((Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ∈ ℝ ∧ (log‘((𝑁 + 1) + 1)) ∈ ℝ ∧ Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) ∈ ℝ) → (((Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) + (log‘((𝑁 + 1) + 1))) ≤ Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) ↔ (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ≤ (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘((𝑁 + 1) + 1)))))
104102, 94, 72, 103syl3anc 1369 . . . 4 (𝑁 ∈ ℕ → (((Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) + (log‘((𝑁 + 1) + 1))) ≤ Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) ↔ (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ≤ (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘((𝑁 + 1) + 1)))))
105101, 104mpbid 231 . . 3 (𝑁 ∈ ℕ → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ≤ (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘((𝑁 + 1) + 1))))
106 fvoveq1 7434 . . . . 5 (𝑛 = 𝑁 → (log‘(𝑛 + 1)) = (log‘(𝑁 + 1)))
10785, 106oveq12d 7429 . . . 4 (𝑛 = 𝑁 → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))) = (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))))
108 emcl.2 . . . 4 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))))
109 ovex 7444 . . . 4 𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ∈ V
110107, 108, 109fvmpt 6997 . . 3 (𝑁 ∈ ℕ → (𝐺𝑁) = (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))))
111 fvoveq1 7434 . . . . . 6 (𝑛 = (𝑁 + 1) → (log‘(𝑛 + 1)) = (log‘((𝑁 + 1) + 1)))
11277, 111oveq12d 7429 . . . . 5 (𝑛 = (𝑁 + 1) → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))) = (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘((𝑁 + 1) + 1))))
113 ovex 7444 . . . . 5 𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘((𝑁 + 1) + 1))) ∈ V
114112, 108, 113fvmpt 6997 . . . 4 ((𝑁 + 1) ∈ ℕ → (𝐺‘(𝑁 + 1)) = (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘((𝑁 + 1) + 1))))
1151, 114syl 17 . . 3 (𝑁 ∈ ℕ → (𝐺‘(𝑁 + 1)) = (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘((𝑁 + 1) + 1))))
116105, 110, 1153brtr4d 5179 . 2 (𝑁 ∈ ℕ → (𝐺𝑁) ≤ (𝐺‘(𝑁 + 1)))
11790, 116jca 510 1 (𝑁 ∈ ℕ → ((𝐹‘(𝑁 + 1)) ≤ (𝐹𝑁) ∧ (𝐺𝑁) ≤ (𝐺‘(𝑁 + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1539  wcel 2104   class class class wbr 5147  cmpt 5230  cfv 6542  (class class class)co 7411  cc 11110  cr 11111  0cc0 11112  1c1 11113   + caddc 11115   < clt 11252  cle 11253  cmin 11448   / cdiv 11875  cn 12216  cuz 12826  +crp 12978  ...cfz 13488  Σcsu 15636  expce 16009  logclog 26299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-inf2 9638  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190  ax-addf 11191
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-of 7672  df-om 7858  df-1st 7977  df-2nd 7978  df-supp 8149  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-er 8705  df-map 8824  df-pm 8825  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-fi 9408  df-sup 9439  df-inf 9440  df-oi 9507  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-z 12563  df-dec 12682  df-uz 12827  df-q 12937  df-rp 12979  df-xneg 13096  df-xadd 13097  df-xmul 13098  df-ioo 13332  df-ioc 13333  df-ico 13334  df-icc 13335  df-fz 13489  df-fzo 13632  df-fl 13761  df-mod 13839  df-seq 13971  df-exp 14032  df-fac 14238  df-bc 14267  df-hash 14295  df-shft 15018  df-cj 15050  df-re 15051  df-im 15052  df-sqrt 15186  df-abs 15187  df-limsup 15419  df-clim 15436  df-rlim 15437  df-sum 15637  df-ef 16015  df-sin 16017  df-cos 16018  df-pi 16020  df-struct 17084  df-sets 17101  df-slot 17119  df-ndx 17131  df-base 17149  df-ress 17178  df-plusg 17214  df-mulr 17215  df-starv 17216  df-sca 17217  df-vsca 17218  df-ip 17219  df-tset 17220  df-ple 17221  df-ds 17223  df-unif 17224  df-hom 17225  df-cco 17226  df-rest 17372  df-topn 17373  df-0g 17391  df-gsum 17392  df-topgen 17393  df-pt 17394  df-prds 17397  df-xrs 17452  df-qtop 17457  df-imas 17458  df-xps 17460  df-mre 17534  df-mrc 17535  df-acs 17537  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-submnd 18706  df-mulg 18987  df-cntz 19222  df-cmn 19691  df-psmet 21136  df-xmet 21137  df-met 21138  df-bl 21139  df-mopn 21140  df-fbas 21141  df-fg 21142  df-cnfld 21145  df-top 22616  df-topon 22633  df-topsp 22655  df-bases 22669  df-cld 22743  df-ntr 22744  df-cls 22745  df-nei 22822  df-lp 22860  df-perf 22861  df-cn 22951  df-cnp 22952  df-haus 23039  df-tx 23286  df-hmeo 23479  df-fil 23570  df-fm 23662  df-flim 23663  df-flf 23664  df-xms 24046  df-ms 24047  df-tms 24048  df-cncf 24618  df-limc 25615  df-dv 25616  df-log 26301
This theorem is referenced by:  emcllem6  26741  emcllem7  26742
  Copyright terms: Public domain W3C validator