MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  emcllem2 Structured version   Visualization version   GIF version

Theorem emcllem2 25175
Description: Lemma for emcl 25181. 𝐹 is increasing, and 𝐺 is decreasing. (Contributed by Mario Carneiro, 11-Jul-2014.)
Hypotheses
Ref Expression
emcl.1 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)))
emcl.2 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))))
Assertion
Ref Expression
emcllem2 (𝑁 ∈ ℕ → ((𝐹‘(𝑁 + 1)) ≤ (𝐹𝑁) ∧ (𝐺𝑁) ≤ (𝐺‘(𝑁 + 1))))
Distinct variable group:   𝑚,𝑛,𝑁
Allowed substitution hints:   𝐹(𝑚,𝑛)   𝐺(𝑚,𝑛)

Proof of Theorem emcllem2
StepHypRef Expression
1 peano2nn 11388 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
21nnrecred 11426 . . . . . 6 (𝑁 ∈ ℕ → (1 / (𝑁 + 1)) ∈ ℝ)
31nnrpd 12179 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℝ+)
43relogcld 24806 . . . . . . 7 (𝑁 ∈ ℕ → (log‘(𝑁 + 1)) ∈ ℝ)
5 nnrp 12150 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
65relogcld 24806 . . . . . . 7 (𝑁 ∈ ℕ → (log‘𝑁) ∈ ℝ)
74, 6resubcld 10803 . . . . . 6 (𝑁 ∈ ℕ → ((log‘(𝑁 + 1)) − (log‘𝑁)) ∈ ℝ)
8 fzfid 13091 . . . . . . 7 (𝑁 ∈ ℕ → (1...𝑁) ∈ Fin)
9 elfznn 12687 . . . . . . . . 9 (𝑚 ∈ (1...𝑁) → 𝑚 ∈ ℕ)
109adantl 475 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑚 ∈ (1...𝑁)) → 𝑚 ∈ ℕ)
1110nnrecred 11426 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑚 ∈ (1...𝑁)) → (1 / 𝑚) ∈ ℝ)
128, 11fsumrecl 14872 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) ∈ ℝ)
133rpreccld 12191 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (1 / (𝑁 + 1)) ∈ ℝ+)
1413rpge0d 12185 . . . . . . . . . 10 (𝑁 ∈ ℕ → 0 ≤ (1 / (𝑁 + 1)))
15 1div1e1 11065 . . . . . . . . . . . 12 (1 / 1) = 1
16 1re 10376 . . . . . . . . . . . . . 14 1 ∈ ℝ
17 ltaddrp 12176 . . . . . . . . . . . . . 14 ((1 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → 1 < (1 + 𝑁))
1816, 5, 17sylancr 581 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 1 < (1 + 𝑁))
19 ax-1cn 10330 . . . . . . . . . . . . . 14 1 ∈ ℂ
20 nncn 11383 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
21 addcom 10562 . . . . . . . . . . . . . 14 ((1 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (1 + 𝑁) = (𝑁 + 1))
2219, 20, 21sylancr 581 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (1 + 𝑁) = (𝑁 + 1))
2318, 22breqtrd 4912 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 1 < (𝑁 + 1))
2415, 23syl5eqbr 4921 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (1 / 1) < (𝑁 + 1))
251nnred 11391 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℝ)
261nngt0d 11424 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 0 < (𝑁 + 1))
27 0lt1 10897 . . . . . . . . . . . . 13 0 < 1
28 ltrec1 11264 . . . . . . . . . . . . 13 (((1 ∈ ℝ ∧ 0 < 1) ∧ ((𝑁 + 1) ∈ ℝ ∧ 0 < (𝑁 + 1))) → ((1 / 1) < (𝑁 + 1) ↔ (1 / (𝑁 + 1)) < 1))
2916, 27, 28mpanl12 692 . . . . . . . . . . . 12 (((𝑁 + 1) ∈ ℝ ∧ 0 < (𝑁 + 1)) → ((1 / 1) < (𝑁 + 1) ↔ (1 / (𝑁 + 1)) < 1))
3025, 26, 29syl2anc 579 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((1 / 1) < (𝑁 + 1) ↔ (1 / (𝑁 + 1)) < 1))
3124, 30mpbid 224 . . . . . . . . . 10 (𝑁 ∈ ℕ → (1 / (𝑁 + 1)) < 1)
322, 14, 31eflegeo 15253 . . . . . . . . 9 (𝑁 ∈ ℕ → (exp‘(1 / (𝑁 + 1))) ≤ (1 / (1 − (1 / (𝑁 + 1)))))
3325recnd 10405 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℂ)
34 nnne0 11410 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
351nnne0d 11425 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 + 1) ≠ 0)
3620, 33, 34, 35recdivd 11168 . . . . . . . . . 10 (𝑁 ∈ ℕ → (1 / (𝑁 / (𝑁 + 1))) = ((𝑁 + 1) / 𝑁))
37 1cnd 10371 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 1 ∈ ℂ)
3833, 37, 33, 35divsubdird 11190 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (((𝑁 + 1) − 1) / (𝑁 + 1)) = (((𝑁 + 1) / (𝑁 + 1)) − (1 / (𝑁 + 1))))
39 pncan 10628 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
4020, 19, 39sylancl 580 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((𝑁 + 1) − 1) = 𝑁)
4140oveq1d 6937 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (((𝑁 + 1) − 1) / (𝑁 + 1)) = (𝑁 / (𝑁 + 1)))
4233, 35dividd 11149 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((𝑁 + 1) / (𝑁 + 1)) = 1)
4342oveq1d 6937 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (((𝑁 + 1) / (𝑁 + 1)) − (1 / (𝑁 + 1))) = (1 − (1 / (𝑁 + 1))))
4438, 41, 433eqtr3rd 2823 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (1 − (1 / (𝑁 + 1))) = (𝑁 / (𝑁 + 1)))
4544oveq2d 6938 . . . . . . . . . 10 (𝑁 ∈ ℕ → (1 / (1 − (1 / (𝑁 + 1)))) = (1 / (𝑁 / (𝑁 + 1))))
463, 5rpdivcld 12198 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((𝑁 + 1) / 𝑁) ∈ ℝ+)
4746reeflogd 24807 . . . . . . . . . 10 (𝑁 ∈ ℕ → (exp‘(log‘((𝑁 + 1) / 𝑁))) = ((𝑁 + 1) / 𝑁))
4836, 45, 473eqtr4d 2824 . . . . . . . . 9 (𝑁 ∈ ℕ → (1 / (1 − (1 / (𝑁 + 1)))) = (exp‘(log‘((𝑁 + 1) / 𝑁))))
4932, 48breqtrd 4912 . . . . . . . 8 (𝑁 ∈ ℕ → (exp‘(1 / (𝑁 + 1))) ≤ (exp‘(log‘((𝑁 + 1) / 𝑁))))
503, 5relogdivd 24809 . . . . . . . . . 10 (𝑁 ∈ ℕ → (log‘((𝑁 + 1) / 𝑁)) = ((log‘(𝑁 + 1)) − (log‘𝑁)))
5150, 7eqeltrd 2859 . . . . . . . . 9 (𝑁 ∈ ℕ → (log‘((𝑁 + 1) / 𝑁)) ∈ ℝ)
52 efle 15250 . . . . . . . . 9 (((1 / (𝑁 + 1)) ∈ ℝ ∧ (log‘((𝑁 + 1) / 𝑁)) ∈ ℝ) → ((1 / (𝑁 + 1)) ≤ (log‘((𝑁 + 1) / 𝑁)) ↔ (exp‘(1 / (𝑁 + 1))) ≤ (exp‘(log‘((𝑁 + 1) / 𝑁)))))
532, 51, 52syl2anc 579 . . . . . . . 8 (𝑁 ∈ ℕ → ((1 / (𝑁 + 1)) ≤ (log‘((𝑁 + 1) / 𝑁)) ↔ (exp‘(1 / (𝑁 + 1))) ≤ (exp‘(log‘((𝑁 + 1) / 𝑁)))))
5449, 53mpbird 249 . . . . . . 7 (𝑁 ∈ ℕ → (1 / (𝑁 + 1)) ≤ (log‘((𝑁 + 1) / 𝑁)))
5554, 50breqtrd 4912 . . . . . 6 (𝑁 ∈ ℕ → (1 / (𝑁 + 1)) ≤ ((log‘(𝑁 + 1)) − (log‘𝑁)))
562, 7, 12, 55leadd2dd 10990 . . . . 5 (𝑁 ∈ ℕ → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) + (1 / (𝑁 + 1))) ≤ (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) + ((log‘(𝑁 + 1)) − (log‘𝑁))))
57 id 22 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
58 nnuz 12029 . . . . . . 7 ℕ = (ℤ‘1)
5957, 58syl6eleq 2869 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ‘1))
60 elfznn 12687 . . . . . . . . 9 (𝑚 ∈ (1...(𝑁 + 1)) → 𝑚 ∈ ℕ)
6160adantl 475 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑚 ∈ (1...(𝑁 + 1))) → 𝑚 ∈ ℕ)
6261nnrecred 11426 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑚 ∈ (1...(𝑁 + 1))) → (1 / 𝑚) ∈ ℝ)
6362recnd 10405 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑚 ∈ (1...(𝑁 + 1))) → (1 / 𝑚) ∈ ℂ)
64 oveq2 6930 . . . . . 6 (𝑚 = (𝑁 + 1) → (1 / 𝑚) = (1 / (𝑁 + 1)))
6559, 63, 64fsump1 14892 . . . . 5 (𝑁 ∈ ℕ → Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) = (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) + (1 / (𝑁 + 1))))
664recnd 10405 . . . . . 6 (𝑁 ∈ ℕ → (log‘(𝑁 + 1)) ∈ ℂ)
6712recnd 10405 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) ∈ ℂ)
686recnd 10405 . . . . . 6 (𝑁 ∈ ℕ → (log‘𝑁) ∈ ℂ)
6966, 67, 68addsub12d 10757 . . . . 5 (𝑁 ∈ ℕ → ((log‘(𝑁 + 1)) + (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁))) = (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) + ((log‘(𝑁 + 1)) − (log‘𝑁))))
7056, 65, 693brtr4d 4918 . . . 4 (𝑁 ∈ ℕ → Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) ≤ ((log‘(𝑁 + 1)) + (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁))))
71 fzfid 13091 . . . . . 6 (𝑁 ∈ ℕ → (1...(𝑁 + 1)) ∈ Fin)
7271, 62fsumrecl 14872 . . . . 5 (𝑁 ∈ ℕ → Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) ∈ ℝ)
7312, 6resubcld 10803 . . . . 5 (𝑁 ∈ ℕ → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁)) ∈ ℝ)
7472, 4, 73lesubadd2d 10974 . . . 4 (𝑁 ∈ ℕ → ((Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘(𝑁 + 1))) ≤ (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁)) ↔ Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) ≤ ((log‘(𝑁 + 1)) + (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁)))))
7570, 74mpbird 249 . . 3 (𝑁 ∈ ℕ → (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘(𝑁 + 1))) ≤ (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁)))
76 oveq2 6930 . . . . . . 7 (𝑛 = (𝑁 + 1) → (1...𝑛) = (1...(𝑁 + 1)))
7776sumeq1d 14839 . . . . . 6 (𝑛 = (𝑁 + 1) → Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) = Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚))
78 fveq2 6446 . . . . . 6 (𝑛 = (𝑁 + 1) → (log‘𝑛) = (log‘(𝑁 + 1)))
7977, 78oveq12d 6940 . . . . 5 (𝑛 = (𝑁 + 1) → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)) = (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘(𝑁 + 1))))
80 emcl.1 . . . . 5 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)))
81 ovex 6954 . . . . 5 𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘(𝑁 + 1))) ∈ V
8279, 80, 81fvmpt 6542 . . . 4 ((𝑁 + 1) ∈ ℕ → (𝐹‘(𝑁 + 1)) = (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘(𝑁 + 1))))
831, 82syl 17 . . 3 (𝑁 ∈ ℕ → (𝐹‘(𝑁 + 1)) = (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘(𝑁 + 1))))
84 oveq2 6930 . . . . . 6 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
8584sumeq1d 14839 . . . . 5 (𝑛 = 𝑁 → Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) = Σ𝑚 ∈ (1...𝑁)(1 / 𝑚))
86 fveq2 6446 . . . . 5 (𝑛 = 𝑁 → (log‘𝑛) = (log‘𝑁))
8785, 86oveq12d 6940 . . . 4 (𝑛 = 𝑁 → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)) = (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁)))
88 ovex 6954 . . . 4 𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁)) ∈ V
8987, 80, 88fvmpt 6542 . . 3 (𝑁 ∈ ℕ → (𝐹𝑁) = (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁)))
9075, 83, 893brtr4d 4918 . 2 (𝑁 ∈ ℕ → (𝐹‘(𝑁 + 1)) ≤ (𝐹𝑁))
91 peano2nn 11388 . . . . . . . . . 10 ((𝑁 + 1) ∈ ℕ → ((𝑁 + 1) + 1) ∈ ℕ)
921, 91syl 17 . . . . . . . . 9 (𝑁 ∈ ℕ → ((𝑁 + 1) + 1) ∈ ℕ)
9392nnrpd 12179 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝑁 + 1) + 1) ∈ ℝ+)
9493relogcld 24806 . . . . . . 7 (𝑁 ∈ ℕ → (log‘((𝑁 + 1) + 1)) ∈ ℝ)
9594, 4resubcld 10803 . . . . . 6 (𝑁 ∈ ℕ → ((log‘((𝑁 + 1) + 1)) − (log‘(𝑁 + 1))) ∈ ℝ)
96 logdifbnd 25172 . . . . . . 7 ((𝑁 + 1) ∈ ℝ+ → ((log‘((𝑁 + 1) + 1)) − (log‘(𝑁 + 1))) ≤ (1 / (𝑁 + 1)))
973, 96syl 17 . . . . . 6 (𝑁 ∈ ℕ → ((log‘((𝑁 + 1) + 1)) − (log‘(𝑁 + 1))) ≤ (1 / (𝑁 + 1)))
9895, 2, 12, 97leadd2dd 10990 . . . . 5 (𝑁 ∈ ℕ → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) + ((log‘((𝑁 + 1) + 1)) − (log‘(𝑁 + 1)))) ≤ (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) + (1 / (𝑁 + 1))))
9994recnd 10405 . . . . . 6 (𝑁 ∈ ℕ → (log‘((𝑁 + 1) + 1)) ∈ ℂ)
10067, 66, 99subadd23d 10756 . . . . 5 (𝑁 ∈ ℕ → ((Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) + (log‘((𝑁 + 1) + 1))) = (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) + ((log‘((𝑁 + 1) + 1)) − (log‘(𝑁 + 1)))))
10198, 100, 653brtr4d 4918 . . . 4 (𝑁 ∈ ℕ → ((Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) + (log‘((𝑁 + 1) + 1))) ≤ Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚))
10212, 4resubcld 10803 . . . . 5 (𝑁 ∈ ℕ → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ∈ ℝ)
103 leaddsub 10851 . . . . 5 (((Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ∈ ℝ ∧ (log‘((𝑁 + 1) + 1)) ∈ ℝ ∧ Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) ∈ ℝ) → (((Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) + (log‘((𝑁 + 1) + 1))) ≤ Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) ↔ (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ≤ (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘((𝑁 + 1) + 1)))))
104102, 94, 72, 103syl3anc 1439 . . . 4 (𝑁 ∈ ℕ → (((Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) + (log‘((𝑁 + 1) + 1))) ≤ Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) ↔ (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ≤ (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘((𝑁 + 1) + 1)))))
105101, 104mpbid 224 . . 3 (𝑁 ∈ ℕ → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ≤ (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘((𝑁 + 1) + 1))))
106 fvoveq1 6945 . . . . 5 (𝑛 = 𝑁 → (log‘(𝑛 + 1)) = (log‘(𝑁 + 1)))
10785, 106oveq12d 6940 . . . 4 (𝑛 = 𝑁 → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))) = (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))))
108 emcl.2 . . . 4 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))))
109 ovex 6954 . . . 4 𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ∈ V
110107, 108, 109fvmpt 6542 . . 3 (𝑁 ∈ ℕ → (𝐺𝑁) = (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))))
111 fvoveq1 6945 . . . . . 6 (𝑛 = (𝑁 + 1) → (log‘(𝑛 + 1)) = (log‘((𝑁 + 1) + 1)))
11277, 111oveq12d 6940 . . . . 5 (𝑛 = (𝑁 + 1) → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))) = (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘((𝑁 + 1) + 1))))
113 ovex 6954 . . . . 5 𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘((𝑁 + 1) + 1))) ∈ V
114112, 108, 113fvmpt 6542 . . . 4 ((𝑁 + 1) ∈ ℕ → (𝐺‘(𝑁 + 1)) = (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘((𝑁 + 1) + 1))))
1151, 114syl 17 . . 3 (𝑁 ∈ ℕ → (𝐺‘(𝑁 + 1)) = (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘((𝑁 + 1) + 1))))
116105, 110, 1153brtr4d 4918 . 2 (𝑁 ∈ ℕ → (𝐺𝑁) ≤ (𝐺‘(𝑁 + 1)))
11790, 116jca 507 1 (𝑁 ∈ ℕ → ((𝐹‘(𝑁 + 1)) ≤ (𝐹𝑁) ∧ (𝐺𝑁) ≤ (𝐺‘(𝑁 + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1601  wcel 2107   class class class wbr 4886  cmpt 4965  cfv 6135  (class class class)co 6922  cc 10270  cr 10271  0cc0 10272  1c1 10273   + caddc 10275   < clt 10411  cle 10412  cmin 10606   / cdiv 11032  cn 11374  cuz 11992  +crp 12137  ...cfz 12643  Σcsu 14824  expce 15194  logclog 24738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-addf 10351  ax-mulf 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-iin 4756  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-supp 7577  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-er 8026  df-map 8142  df-pm 8143  df-ixp 8195  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fsupp 8564  df-fi 8605  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-dec 11846  df-uz 11993  df-q 12096  df-rp 12138  df-xneg 12257  df-xadd 12258  df-xmul 12259  df-ioo 12491  df-ioc 12492  df-ico 12493  df-icc 12494  df-fz 12644  df-fzo 12785  df-fl 12912  df-mod 12988  df-seq 13120  df-exp 13179  df-fac 13379  df-bc 13408  df-hash 13436  df-shft 14214  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-limsup 14610  df-clim 14627  df-rlim 14628  df-sum 14825  df-ef 15200  df-sin 15202  df-cos 15203  df-pi 15205  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-starv 16353  df-sca 16354  df-vsca 16355  df-ip 16356  df-tset 16357  df-ple 16358  df-ds 16360  df-unif 16361  df-hom 16362  df-cco 16363  df-rest 16469  df-topn 16470  df-0g 16488  df-gsum 16489  df-topgen 16490  df-pt 16491  df-prds 16494  df-xrs 16548  df-qtop 16553  df-imas 16554  df-xps 16556  df-mre 16632  df-mrc 16633  df-acs 16635  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-submnd 17722  df-mulg 17928  df-cntz 18133  df-cmn 18581  df-psmet 20134  df-xmet 20135  df-met 20136  df-bl 20137  df-mopn 20138  df-fbas 20139  df-fg 20140  df-cnfld 20143  df-top 21106  df-topon 21123  df-topsp 21145  df-bases 21158  df-cld 21231  df-ntr 21232  df-cls 21233  df-nei 21310  df-lp 21348  df-perf 21349  df-cn 21439  df-cnp 21440  df-haus 21527  df-tx 21774  df-hmeo 21967  df-fil 22058  df-fm 22150  df-flim 22151  df-flf 22152  df-xms 22533  df-ms 22534  df-tms 22535  df-cncf 23089  df-limc 24067  df-dv 24068  df-log 24740
This theorem is referenced by:  emcllem6  25179  emcllem7  25180
  Copyright terms: Public domain W3C validator