MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  emcllem2 Structured version   Visualization version   GIF version

Theorem emcllem2 26244
Description: Lemma for emcl 26250. 𝐹 is increasing, and 𝐺 is decreasing. (Contributed by Mario Carneiro, 11-Jul-2014.)
Hypotheses
Ref Expression
emcl.1 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)))
emcl.2 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))))
Assertion
Ref Expression
emcllem2 (𝑁 ∈ ℕ → ((𝐹‘(𝑁 + 1)) ≤ (𝐹𝑁) ∧ (𝐺𝑁) ≤ (𝐺‘(𝑁 + 1))))
Distinct variable group:   𝑚,𝑛,𝑁
Allowed substitution hints:   𝐹(𝑚,𝑛)   𝐺(𝑚,𝑛)

Proof of Theorem emcllem2
StepHypRef Expression
1 peano2nn 12078 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
21nnrecred 12117 . . . . . 6 (𝑁 ∈ ℕ → (1 / (𝑁 + 1)) ∈ ℝ)
31nnrpd 12863 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℝ+)
43relogcld 25876 . . . . . . 7 (𝑁 ∈ ℕ → (log‘(𝑁 + 1)) ∈ ℝ)
5 nnrp 12834 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
65relogcld 25876 . . . . . . 7 (𝑁 ∈ ℕ → (log‘𝑁) ∈ ℝ)
74, 6resubcld 11496 . . . . . 6 (𝑁 ∈ ℕ → ((log‘(𝑁 + 1)) − (log‘𝑁)) ∈ ℝ)
8 fzfid 13786 . . . . . . 7 (𝑁 ∈ ℕ → (1...𝑁) ∈ Fin)
9 elfznn 13378 . . . . . . . . 9 (𝑚 ∈ (1...𝑁) → 𝑚 ∈ ℕ)
109adantl 482 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑚 ∈ (1...𝑁)) → 𝑚 ∈ ℕ)
1110nnrecred 12117 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑚 ∈ (1...𝑁)) → (1 / 𝑚) ∈ ℝ)
128, 11fsumrecl 15537 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) ∈ ℝ)
133rpreccld 12875 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (1 / (𝑁 + 1)) ∈ ℝ+)
1413rpge0d 12869 . . . . . . . . . 10 (𝑁 ∈ ℕ → 0 ≤ (1 / (𝑁 + 1)))
15 1div1e1 11758 . . . . . . . . . . . 12 (1 / 1) = 1
16 1re 11068 . . . . . . . . . . . . . 14 1 ∈ ℝ
17 ltaddrp 12860 . . . . . . . . . . . . . 14 ((1 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → 1 < (1 + 𝑁))
1816, 5, 17sylancr 587 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 1 < (1 + 𝑁))
19 ax-1cn 11022 . . . . . . . . . . . . . 14 1 ∈ ℂ
20 nncn 12074 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
21 addcom 11254 . . . . . . . . . . . . . 14 ((1 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (1 + 𝑁) = (𝑁 + 1))
2219, 20, 21sylancr 587 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (1 + 𝑁) = (𝑁 + 1))
2318, 22breqtrd 5115 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 1 < (𝑁 + 1))
2415, 23eqbrtrid 5124 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (1 / 1) < (𝑁 + 1))
251nnred 12081 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℝ)
261nngt0d 12115 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 0 < (𝑁 + 1))
27 0lt1 11590 . . . . . . . . . . . . 13 0 < 1
28 ltrec1 11955 . . . . . . . . . . . . 13 (((1 ∈ ℝ ∧ 0 < 1) ∧ ((𝑁 + 1) ∈ ℝ ∧ 0 < (𝑁 + 1))) → ((1 / 1) < (𝑁 + 1) ↔ (1 / (𝑁 + 1)) < 1))
2916, 27, 28mpanl12 699 . . . . . . . . . . . 12 (((𝑁 + 1) ∈ ℝ ∧ 0 < (𝑁 + 1)) → ((1 / 1) < (𝑁 + 1) ↔ (1 / (𝑁 + 1)) < 1))
3025, 26, 29syl2anc 584 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((1 / 1) < (𝑁 + 1) ↔ (1 / (𝑁 + 1)) < 1))
3124, 30mpbid 231 . . . . . . . . . 10 (𝑁 ∈ ℕ → (1 / (𝑁 + 1)) < 1)
322, 14, 31eflegeo 15921 . . . . . . . . 9 (𝑁 ∈ ℕ → (exp‘(1 / (𝑁 + 1))) ≤ (1 / (1 − (1 / (𝑁 + 1)))))
3325recnd 11096 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℂ)
34 nnne0 12100 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
351nnne0d 12116 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 + 1) ≠ 0)
3620, 33, 34, 35recdivd 11861 . . . . . . . . . 10 (𝑁 ∈ ℕ → (1 / (𝑁 / (𝑁 + 1))) = ((𝑁 + 1) / 𝑁))
37 1cnd 11063 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 1 ∈ ℂ)
3833, 37, 33, 35divsubdird 11883 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (((𝑁 + 1) − 1) / (𝑁 + 1)) = (((𝑁 + 1) / (𝑁 + 1)) − (1 / (𝑁 + 1))))
39 pncan 11320 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
4020, 19, 39sylancl 586 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((𝑁 + 1) − 1) = 𝑁)
4140oveq1d 7344 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (((𝑁 + 1) − 1) / (𝑁 + 1)) = (𝑁 / (𝑁 + 1)))
4233, 35dividd 11842 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((𝑁 + 1) / (𝑁 + 1)) = 1)
4342oveq1d 7344 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (((𝑁 + 1) / (𝑁 + 1)) − (1 / (𝑁 + 1))) = (1 − (1 / (𝑁 + 1))))
4438, 41, 433eqtr3rd 2785 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (1 − (1 / (𝑁 + 1))) = (𝑁 / (𝑁 + 1)))
4544oveq2d 7345 . . . . . . . . . 10 (𝑁 ∈ ℕ → (1 / (1 − (1 / (𝑁 + 1)))) = (1 / (𝑁 / (𝑁 + 1))))
463, 5rpdivcld 12882 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((𝑁 + 1) / 𝑁) ∈ ℝ+)
4746reeflogd 25877 . . . . . . . . . 10 (𝑁 ∈ ℕ → (exp‘(log‘((𝑁 + 1) / 𝑁))) = ((𝑁 + 1) / 𝑁))
4836, 45, 473eqtr4d 2786 . . . . . . . . 9 (𝑁 ∈ ℕ → (1 / (1 − (1 / (𝑁 + 1)))) = (exp‘(log‘((𝑁 + 1) / 𝑁))))
4932, 48breqtrd 5115 . . . . . . . 8 (𝑁 ∈ ℕ → (exp‘(1 / (𝑁 + 1))) ≤ (exp‘(log‘((𝑁 + 1) / 𝑁))))
503, 5relogdivd 25879 . . . . . . . . . 10 (𝑁 ∈ ℕ → (log‘((𝑁 + 1) / 𝑁)) = ((log‘(𝑁 + 1)) − (log‘𝑁)))
5150, 7eqeltrd 2837 . . . . . . . . 9 (𝑁 ∈ ℕ → (log‘((𝑁 + 1) / 𝑁)) ∈ ℝ)
52 efle 15918 . . . . . . . . 9 (((1 / (𝑁 + 1)) ∈ ℝ ∧ (log‘((𝑁 + 1) / 𝑁)) ∈ ℝ) → ((1 / (𝑁 + 1)) ≤ (log‘((𝑁 + 1) / 𝑁)) ↔ (exp‘(1 / (𝑁 + 1))) ≤ (exp‘(log‘((𝑁 + 1) / 𝑁)))))
532, 51, 52syl2anc 584 . . . . . . . 8 (𝑁 ∈ ℕ → ((1 / (𝑁 + 1)) ≤ (log‘((𝑁 + 1) / 𝑁)) ↔ (exp‘(1 / (𝑁 + 1))) ≤ (exp‘(log‘((𝑁 + 1) / 𝑁)))))
5449, 53mpbird 256 . . . . . . 7 (𝑁 ∈ ℕ → (1 / (𝑁 + 1)) ≤ (log‘((𝑁 + 1) / 𝑁)))
5554, 50breqtrd 5115 . . . . . 6 (𝑁 ∈ ℕ → (1 / (𝑁 + 1)) ≤ ((log‘(𝑁 + 1)) − (log‘𝑁)))
562, 7, 12, 55leadd2dd 11683 . . . . 5 (𝑁 ∈ ℕ → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) + (1 / (𝑁 + 1))) ≤ (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) + ((log‘(𝑁 + 1)) − (log‘𝑁))))
57 id 22 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
58 nnuz 12714 . . . . . . 7 ℕ = (ℤ‘1)
5957, 58eleqtrdi 2847 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ‘1))
60 elfznn 13378 . . . . . . . . 9 (𝑚 ∈ (1...(𝑁 + 1)) → 𝑚 ∈ ℕ)
6160adantl 482 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑚 ∈ (1...(𝑁 + 1))) → 𝑚 ∈ ℕ)
6261nnrecred 12117 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑚 ∈ (1...(𝑁 + 1))) → (1 / 𝑚) ∈ ℝ)
6362recnd 11096 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑚 ∈ (1...(𝑁 + 1))) → (1 / 𝑚) ∈ ℂ)
64 oveq2 7337 . . . . . 6 (𝑚 = (𝑁 + 1) → (1 / 𝑚) = (1 / (𝑁 + 1)))
6559, 63, 64fsump1 15559 . . . . 5 (𝑁 ∈ ℕ → Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) = (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) + (1 / (𝑁 + 1))))
664recnd 11096 . . . . . 6 (𝑁 ∈ ℕ → (log‘(𝑁 + 1)) ∈ ℂ)
6712recnd 11096 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) ∈ ℂ)
686recnd 11096 . . . . . 6 (𝑁 ∈ ℕ → (log‘𝑁) ∈ ℂ)
6966, 67, 68addsub12d 11448 . . . . 5 (𝑁 ∈ ℕ → ((log‘(𝑁 + 1)) + (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁))) = (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) + ((log‘(𝑁 + 1)) − (log‘𝑁))))
7056, 65, 693brtr4d 5121 . . . 4 (𝑁 ∈ ℕ → Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) ≤ ((log‘(𝑁 + 1)) + (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁))))
71 fzfid 13786 . . . . . 6 (𝑁 ∈ ℕ → (1...(𝑁 + 1)) ∈ Fin)
7271, 62fsumrecl 15537 . . . . 5 (𝑁 ∈ ℕ → Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) ∈ ℝ)
7312, 6resubcld 11496 . . . . 5 (𝑁 ∈ ℕ → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁)) ∈ ℝ)
7472, 4, 73lesubadd2d 11667 . . . 4 (𝑁 ∈ ℕ → ((Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘(𝑁 + 1))) ≤ (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁)) ↔ Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) ≤ ((log‘(𝑁 + 1)) + (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁)))))
7570, 74mpbird 256 . . 3 (𝑁 ∈ ℕ → (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘(𝑁 + 1))) ≤ (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁)))
76 oveq2 7337 . . . . . . 7 (𝑛 = (𝑁 + 1) → (1...𝑛) = (1...(𝑁 + 1)))
7776sumeq1d 15504 . . . . . 6 (𝑛 = (𝑁 + 1) → Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) = Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚))
78 fveq2 6819 . . . . . 6 (𝑛 = (𝑁 + 1) → (log‘𝑛) = (log‘(𝑁 + 1)))
7977, 78oveq12d 7347 . . . . 5 (𝑛 = (𝑁 + 1) → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)) = (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘(𝑁 + 1))))
80 emcl.1 . . . . 5 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)))
81 ovex 7362 . . . . 5 𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘(𝑁 + 1))) ∈ V
8279, 80, 81fvmpt 6925 . . . 4 ((𝑁 + 1) ∈ ℕ → (𝐹‘(𝑁 + 1)) = (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘(𝑁 + 1))))
831, 82syl 17 . . 3 (𝑁 ∈ ℕ → (𝐹‘(𝑁 + 1)) = (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘(𝑁 + 1))))
84 oveq2 7337 . . . . . 6 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
8584sumeq1d 15504 . . . . 5 (𝑛 = 𝑁 → Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) = Σ𝑚 ∈ (1...𝑁)(1 / 𝑚))
86 fveq2 6819 . . . . 5 (𝑛 = 𝑁 → (log‘𝑛) = (log‘𝑁))
8785, 86oveq12d 7347 . . . 4 (𝑛 = 𝑁 → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)) = (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁)))
88 ovex 7362 . . . 4 𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁)) ∈ V
8987, 80, 88fvmpt 6925 . . 3 (𝑁 ∈ ℕ → (𝐹𝑁) = (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁)))
9075, 83, 893brtr4d 5121 . 2 (𝑁 ∈ ℕ → (𝐹‘(𝑁 + 1)) ≤ (𝐹𝑁))
91 peano2nn 12078 . . . . . . . . . 10 ((𝑁 + 1) ∈ ℕ → ((𝑁 + 1) + 1) ∈ ℕ)
921, 91syl 17 . . . . . . . . 9 (𝑁 ∈ ℕ → ((𝑁 + 1) + 1) ∈ ℕ)
9392nnrpd 12863 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝑁 + 1) + 1) ∈ ℝ+)
9493relogcld 25876 . . . . . . 7 (𝑁 ∈ ℕ → (log‘((𝑁 + 1) + 1)) ∈ ℝ)
9594, 4resubcld 11496 . . . . . 6 (𝑁 ∈ ℕ → ((log‘((𝑁 + 1) + 1)) − (log‘(𝑁 + 1))) ∈ ℝ)
96 logdifbnd 26241 . . . . . . 7 ((𝑁 + 1) ∈ ℝ+ → ((log‘((𝑁 + 1) + 1)) − (log‘(𝑁 + 1))) ≤ (1 / (𝑁 + 1)))
973, 96syl 17 . . . . . 6 (𝑁 ∈ ℕ → ((log‘((𝑁 + 1) + 1)) − (log‘(𝑁 + 1))) ≤ (1 / (𝑁 + 1)))
9895, 2, 12, 97leadd2dd 11683 . . . . 5 (𝑁 ∈ ℕ → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) + ((log‘((𝑁 + 1) + 1)) − (log‘(𝑁 + 1)))) ≤ (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) + (1 / (𝑁 + 1))))
9994recnd 11096 . . . . . 6 (𝑁 ∈ ℕ → (log‘((𝑁 + 1) + 1)) ∈ ℂ)
10067, 66, 99subadd23d 11447 . . . . 5 (𝑁 ∈ ℕ → ((Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) + (log‘((𝑁 + 1) + 1))) = (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) + ((log‘((𝑁 + 1) + 1)) − (log‘(𝑁 + 1)))))
10198, 100, 653brtr4d 5121 . . . 4 (𝑁 ∈ ℕ → ((Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) + (log‘((𝑁 + 1) + 1))) ≤ Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚))
10212, 4resubcld 11496 . . . . 5 (𝑁 ∈ ℕ → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ∈ ℝ)
103 leaddsub 11544 . . . . 5 (((Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ∈ ℝ ∧ (log‘((𝑁 + 1) + 1)) ∈ ℝ ∧ Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) ∈ ℝ) → (((Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) + (log‘((𝑁 + 1) + 1))) ≤ Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) ↔ (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ≤ (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘((𝑁 + 1) + 1)))))
104102, 94, 72, 103syl3anc 1370 . . . 4 (𝑁 ∈ ℕ → (((Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) + (log‘((𝑁 + 1) + 1))) ≤ Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) ↔ (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ≤ (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘((𝑁 + 1) + 1)))))
105101, 104mpbid 231 . . 3 (𝑁 ∈ ℕ → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ≤ (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘((𝑁 + 1) + 1))))
106 fvoveq1 7352 . . . . 5 (𝑛 = 𝑁 → (log‘(𝑛 + 1)) = (log‘(𝑁 + 1)))
10785, 106oveq12d 7347 . . . 4 (𝑛 = 𝑁 → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))) = (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))))
108 emcl.2 . . . 4 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))))
109 ovex 7362 . . . 4 𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ∈ V
110107, 108, 109fvmpt 6925 . . 3 (𝑁 ∈ ℕ → (𝐺𝑁) = (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))))
111 fvoveq1 7352 . . . . . 6 (𝑛 = (𝑁 + 1) → (log‘(𝑛 + 1)) = (log‘((𝑁 + 1) + 1)))
11277, 111oveq12d 7347 . . . . 5 (𝑛 = (𝑁 + 1) → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))) = (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘((𝑁 + 1) + 1))))
113 ovex 7362 . . . . 5 𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘((𝑁 + 1) + 1))) ∈ V
114112, 108, 113fvmpt 6925 . . . 4 ((𝑁 + 1) ∈ ℕ → (𝐺‘(𝑁 + 1)) = (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘((𝑁 + 1) + 1))))
1151, 114syl 17 . . 3 (𝑁 ∈ ℕ → (𝐺‘(𝑁 + 1)) = (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘((𝑁 + 1) + 1))))
116105, 110, 1153brtr4d 5121 . 2 (𝑁 ∈ ℕ → (𝐺𝑁) ≤ (𝐺‘(𝑁 + 1)))
11790, 116jca 512 1 (𝑁 ∈ ℕ → ((𝐹‘(𝑁 + 1)) ≤ (𝐹𝑁) ∧ (𝐺𝑁) ≤ (𝐺‘(𝑁 + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105   class class class wbr 5089  cmpt 5172  cfv 6473  (class class class)co 7329  cc 10962  cr 10963  0cc0 10964  1c1 10965   + caddc 10967   < clt 11102  cle 11103  cmin 11298   / cdiv 11725  cn 12066  cuz 12675  +crp 12823  ...cfz 13332  Σcsu 15488  expce 15862  logclog 25808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5226  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-inf2 9490  ax-cnex 11020  ax-resscn 11021  ax-1cn 11022  ax-icn 11023  ax-addcl 11024  ax-addrcl 11025  ax-mulcl 11026  ax-mulrcl 11027  ax-mulcom 11028  ax-addass 11029  ax-mulass 11030  ax-distr 11031  ax-i2m1 11032  ax-1ne0 11033  ax-1rid 11034  ax-rnegex 11035  ax-rrecex 11036  ax-cnre 11037  ax-pre-lttri 11038  ax-pre-lttrn 11039  ax-pre-ltadd 11040  ax-pre-mulgt0 11041  ax-pre-sup 11042  ax-addf 11043  ax-mulf 11044
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-tp 4577  df-op 4579  df-uni 4852  df-int 4894  df-iun 4940  df-iin 4941  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-se 5570  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6232  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-isom 6482  df-riota 7286  df-ov 7332  df-oprab 7333  df-mpo 7334  df-of 7587  df-om 7773  df-1st 7891  df-2nd 7892  df-supp 8040  df-frecs 8159  df-wrecs 8190  df-recs 8264  df-rdg 8303  df-1o 8359  df-2o 8360  df-er 8561  df-map 8680  df-pm 8681  df-ixp 8749  df-en 8797  df-dom 8798  df-sdom 8799  df-fin 8800  df-fsupp 9219  df-fi 9260  df-sup 9291  df-inf 9292  df-oi 9359  df-card 9788  df-pnf 11104  df-mnf 11105  df-xr 11106  df-ltxr 11107  df-le 11108  df-sub 11300  df-neg 11301  df-div 11726  df-nn 12067  df-2 12129  df-3 12130  df-4 12131  df-5 12132  df-6 12133  df-7 12134  df-8 12135  df-9 12136  df-n0 12327  df-z 12413  df-dec 12531  df-uz 12676  df-q 12782  df-rp 12824  df-xneg 12941  df-xadd 12942  df-xmul 12943  df-ioo 13176  df-ioc 13177  df-ico 13178  df-icc 13179  df-fz 13333  df-fzo 13476  df-fl 13605  df-mod 13683  df-seq 13815  df-exp 13876  df-fac 14081  df-bc 14110  df-hash 14138  df-shft 14869  df-cj 14901  df-re 14902  df-im 14903  df-sqrt 15037  df-abs 15038  df-limsup 15271  df-clim 15288  df-rlim 15289  df-sum 15489  df-ef 15868  df-sin 15870  df-cos 15871  df-pi 15873  df-struct 16937  df-sets 16954  df-slot 16972  df-ndx 16984  df-base 17002  df-ress 17031  df-plusg 17064  df-mulr 17065  df-starv 17066  df-sca 17067  df-vsca 17068  df-ip 17069  df-tset 17070  df-ple 17071  df-ds 17073  df-unif 17074  df-hom 17075  df-cco 17076  df-rest 17222  df-topn 17223  df-0g 17241  df-gsum 17242  df-topgen 17243  df-pt 17244  df-prds 17247  df-xrs 17302  df-qtop 17307  df-imas 17308  df-xps 17310  df-mre 17384  df-mrc 17385  df-acs 17387  df-mgm 18415  df-sgrp 18464  df-mnd 18475  df-submnd 18520  df-mulg 18789  df-cntz 19011  df-cmn 19475  df-psmet 20687  df-xmet 20688  df-met 20689  df-bl 20690  df-mopn 20691  df-fbas 20692  df-fg 20693  df-cnfld 20696  df-top 22141  df-topon 22158  df-topsp 22180  df-bases 22194  df-cld 22268  df-ntr 22269  df-cls 22270  df-nei 22347  df-lp 22385  df-perf 22386  df-cn 22476  df-cnp 22477  df-haus 22564  df-tx 22811  df-hmeo 23004  df-fil 23095  df-fm 23187  df-flim 23188  df-flf 23189  df-xms 23571  df-ms 23572  df-tms 23573  df-cncf 24139  df-limc 25128  df-dv 25129  df-log 25810
This theorem is referenced by:  emcllem6  26248  emcllem7  26249
  Copyright terms: Public domain W3C validator