Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pntlemd | Structured version Visualization version GIF version |
Description: Lemma for pnt 26495. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝐴 is C^*, 𝐵 is c1, 𝐿 is λ, 𝐷 is c2, and 𝐹 is c3. (Contributed by Mario Carneiro, 13-Apr-2016.) |
Ref | Expression |
---|---|
pntlem1.r | ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) |
pntlem1.a | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
pntlem1.b | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
pntlem1.l | ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) |
pntlem1.d | ⊢ 𝐷 = (𝐴 + 1) |
pntlem1.f | ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) |
Ref | Expression |
---|---|
pntlemd | ⊢ (𝜑 → (𝐿 ∈ ℝ+ ∧ 𝐷 ∈ ℝ+ ∧ 𝐹 ∈ ℝ+)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioossre 12996 | . . . 4 ⊢ (0(,)1) ⊆ ℝ | |
2 | pntlem1.l | . . . 4 ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) | |
3 | 1, 2 | sseldi 3899 | . . 3 ⊢ (𝜑 → 𝐿 ∈ ℝ) |
4 | eliooord 12994 | . . . . 5 ⊢ (𝐿 ∈ (0(,)1) → (0 < 𝐿 ∧ 𝐿 < 1)) | |
5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝜑 → (0 < 𝐿 ∧ 𝐿 < 1)) |
6 | 5 | simpld 498 | . . 3 ⊢ (𝜑 → 0 < 𝐿) |
7 | 3, 6 | elrpd 12625 | . 2 ⊢ (𝜑 → 𝐿 ∈ ℝ+) |
8 | pntlem1.d | . . 3 ⊢ 𝐷 = (𝐴 + 1) | |
9 | pntlem1.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
10 | 1rp 12590 | . . . 4 ⊢ 1 ∈ ℝ+ | |
11 | rpaddcl 12608 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 1 ∈ ℝ+) → (𝐴 + 1) ∈ ℝ+) | |
12 | 9, 10, 11 | sylancl 589 | . . 3 ⊢ (𝜑 → (𝐴 + 1) ∈ ℝ+) |
13 | 8, 12 | eqeltrid 2842 | . 2 ⊢ (𝜑 → 𝐷 ∈ ℝ+) |
14 | pntlem1.f | . . 3 ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) | |
15 | 1re 10833 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
16 | ltaddrp 12623 | . . . . . . . 8 ⊢ ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 1 < (1 + 𝐴)) | |
17 | 15, 9, 16 | sylancr 590 | . . . . . . 7 ⊢ (𝜑 → 1 < (1 + 𝐴)) |
18 | 9 | rpcnd 12630 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
19 | ax-1cn 10787 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
20 | addcom 11018 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) = (1 + 𝐴)) | |
21 | 18, 19, 20 | sylancl 589 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 + 1) = (1 + 𝐴)) |
22 | 8, 21 | syl5eq 2790 | . . . . . . 7 ⊢ (𝜑 → 𝐷 = (1 + 𝐴)) |
23 | 17, 22 | breqtrrd 5081 | . . . . . 6 ⊢ (𝜑 → 1 < 𝐷) |
24 | 13 | recgt1d 12642 | . . . . . 6 ⊢ (𝜑 → (1 < 𝐷 ↔ (1 / 𝐷) < 1)) |
25 | 23, 24 | mpbid 235 | . . . . 5 ⊢ (𝜑 → (1 / 𝐷) < 1) |
26 | 13 | rprecred 12639 | . . . . . 6 ⊢ (𝜑 → (1 / 𝐷) ∈ ℝ) |
27 | difrp 12624 | . . . . . 6 ⊢ (((1 / 𝐷) ∈ ℝ ∧ 1 ∈ ℝ) → ((1 / 𝐷) < 1 ↔ (1 − (1 / 𝐷)) ∈ ℝ+)) | |
28 | 26, 15, 27 | sylancl 589 | . . . . 5 ⊢ (𝜑 → ((1 / 𝐷) < 1 ↔ (1 − (1 / 𝐷)) ∈ ℝ+)) |
29 | 25, 28 | mpbid 235 | . . . 4 ⊢ (𝜑 → (1 − (1 / 𝐷)) ∈ ℝ+) |
30 | 3nn0 12108 | . . . . . . . . 9 ⊢ 3 ∈ ℕ0 | |
31 | 2nn 11903 | . . . . . . . . 9 ⊢ 2 ∈ ℕ | |
32 | 30, 31 | decnncl 12313 | . . . . . . . 8 ⊢ ;32 ∈ ℕ |
33 | nnrp 12597 | . . . . . . . 8 ⊢ (;32 ∈ ℕ → ;32 ∈ ℝ+) | |
34 | 32, 33 | ax-mp 5 | . . . . . . 7 ⊢ ;32 ∈ ℝ+ |
35 | pntlem1.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
36 | rpmulcl 12609 | . . . . . . 7 ⊢ ((;32 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (;32 · 𝐵) ∈ ℝ+) | |
37 | 34, 35, 36 | sylancr 590 | . . . . . 6 ⊢ (𝜑 → (;32 · 𝐵) ∈ ℝ+) |
38 | 7, 37 | rpdivcld 12645 | . . . . 5 ⊢ (𝜑 → (𝐿 / (;32 · 𝐵)) ∈ ℝ+) |
39 | 2z 12209 | . . . . . 6 ⊢ 2 ∈ ℤ | |
40 | rpexpcl 13654 | . . . . . 6 ⊢ ((𝐷 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝐷↑2) ∈ ℝ+) | |
41 | 13, 39, 40 | sylancl 589 | . . . . 5 ⊢ (𝜑 → (𝐷↑2) ∈ ℝ+) |
42 | 38, 41 | rpdivcld 12645 | . . . 4 ⊢ (𝜑 → ((𝐿 / (;32 · 𝐵)) / (𝐷↑2)) ∈ ℝ+) |
43 | 29, 42 | rpmulcld 12644 | . . 3 ⊢ (𝜑 → ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) ∈ ℝ+) |
44 | 14, 43 | eqeltrid 2842 | . 2 ⊢ (𝜑 → 𝐹 ∈ ℝ+) |
45 | 7, 13, 44 | 3jca 1130 | 1 ⊢ (𝜑 → (𝐿 ∈ ℝ+ ∧ 𝐷 ∈ ℝ+ ∧ 𝐹 ∈ ℝ+)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 class class class wbr 5053 ↦ cmpt 5135 ‘cfv 6380 (class class class)co 7213 ℂcc 10727 ℝcr 10728 0cc0 10729 1c1 10730 + caddc 10732 · cmul 10734 < clt 10867 − cmin 11062 / cdiv 11489 ℕcn 11830 2c2 11885 3c3 11886 ℤcz 12176 ;cdc 12293 ℝ+crp 12586 (,)cioo 12935 ↑cexp 13635 ψcchp 25975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-9 11900 df-n0 12091 df-z 12177 df-dec 12294 df-uz 12439 df-rp 12587 df-ioo 12939 df-seq 13575 df-exp 13636 |
This theorem is referenced by: pntlemc 26476 pntlema 26477 pntlemb 26478 pntlemq 26482 pntlemr 26483 pntlemj 26484 pntlemf 26486 pntlemo 26488 pntleml 26492 |
Copyright terms: Public domain | W3C validator |