![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pntlemd | Structured version Visualization version GIF version |
Description: Lemma for pnt 27676. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝐴 is C^*, 𝐵 is c1, 𝐿 is λ, 𝐷 is c2, and 𝐹 is c3. (Contributed by Mario Carneiro, 13-Apr-2016.) |
Ref | Expression |
---|---|
pntlem1.r | ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) |
pntlem1.a | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
pntlem1.b | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
pntlem1.l | ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) |
pntlem1.d | ⊢ 𝐷 = (𝐴 + 1) |
pntlem1.f | ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) |
Ref | Expression |
---|---|
pntlemd | ⊢ (𝜑 → (𝐿 ∈ ℝ+ ∧ 𝐷 ∈ ℝ+ ∧ 𝐹 ∈ ℝ+)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioossre 13468 | . . . 4 ⊢ (0(,)1) ⊆ ℝ | |
2 | pntlem1.l | . . . 4 ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) | |
3 | 1, 2 | sselid 4006 | . . 3 ⊢ (𝜑 → 𝐿 ∈ ℝ) |
4 | eliooord 13466 | . . . . 5 ⊢ (𝐿 ∈ (0(,)1) → (0 < 𝐿 ∧ 𝐿 < 1)) | |
5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝜑 → (0 < 𝐿 ∧ 𝐿 < 1)) |
6 | 5 | simpld 494 | . . 3 ⊢ (𝜑 → 0 < 𝐿) |
7 | 3, 6 | elrpd 13096 | . 2 ⊢ (𝜑 → 𝐿 ∈ ℝ+) |
8 | pntlem1.d | . . 3 ⊢ 𝐷 = (𝐴 + 1) | |
9 | pntlem1.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
10 | 1rp 13061 | . . . 4 ⊢ 1 ∈ ℝ+ | |
11 | rpaddcl 13079 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 1 ∈ ℝ+) → (𝐴 + 1) ∈ ℝ+) | |
12 | 9, 10, 11 | sylancl 585 | . . 3 ⊢ (𝜑 → (𝐴 + 1) ∈ ℝ+) |
13 | 8, 12 | eqeltrid 2848 | . 2 ⊢ (𝜑 → 𝐷 ∈ ℝ+) |
14 | pntlem1.f | . . 3 ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) | |
15 | 1re 11290 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
16 | ltaddrp 13094 | . . . . . . . 8 ⊢ ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 1 < (1 + 𝐴)) | |
17 | 15, 9, 16 | sylancr 586 | . . . . . . 7 ⊢ (𝜑 → 1 < (1 + 𝐴)) |
18 | 9 | rpcnd 13101 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
19 | ax-1cn 11242 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
20 | addcom 11476 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) = (1 + 𝐴)) | |
21 | 18, 19, 20 | sylancl 585 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 + 1) = (1 + 𝐴)) |
22 | 8, 21 | eqtrid 2792 | . . . . . . 7 ⊢ (𝜑 → 𝐷 = (1 + 𝐴)) |
23 | 17, 22 | breqtrrd 5194 | . . . . . 6 ⊢ (𝜑 → 1 < 𝐷) |
24 | 13 | recgt1d 13113 | . . . . . 6 ⊢ (𝜑 → (1 < 𝐷 ↔ (1 / 𝐷) < 1)) |
25 | 23, 24 | mpbid 232 | . . . . 5 ⊢ (𝜑 → (1 / 𝐷) < 1) |
26 | 13 | rprecred 13110 | . . . . . 6 ⊢ (𝜑 → (1 / 𝐷) ∈ ℝ) |
27 | difrp 13095 | . . . . . 6 ⊢ (((1 / 𝐷) ∈ ℝ ∧ 1 ∈ ℝ) → ((1 / 𝐷) < 1 ↔ (1 − (1 / 𝐷)) ∈ ℝ+)) | |
28 | 26, 15, 27 | sylancl 585 | . . . . 5 ⊢ (𝜑 → ((1 / 𝐷) < 1 ↔ (1 − (1 / 𝐷)) ∈ ℝ+)) |
29 | 25, 28 | mpbid 232 | . . . 4 ⊢ (𝜑 → (1 − (1 / 𝐷)) ∈ ℝ+) |
30 | 3nn0 12571 | . . . . . . . . 9 ⊢ 3 ∈ ℕ0 | |
31 | 2nn 12366 | . . . . . . . . 9 ⊢ 2 ∈ ℕ | |
32 | 30, 31 | decnncl 12778 | . . . . . . . 8 ⊢ ;32 ∈ ℕ |
33 | nnrp 13068 | . . . . . . . 8 ⊢ (;32 ∈ ℕ → ;32 ∈ ℝ+) | |
34 | 32, 33 | ax-mp 5 | . . . . . . 7 ⊢ ;32 ∈ ℝ+ |
35 | pntlem1.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
36 | rpmulcl 13080 | . . . . . . 7 ⊢ ((;32 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (;32 · 𝐵) ∈ ℝ+) | |
37 | 34, 35, 36 | sylancr 586 | . . . . . 6 ⊢ (𝜑 → (;32 · 𝐵) ∈ ℝ+) |
38 | 7, 37 | rpdivcld 13116 | . . . . 5 ⊢ (𝜑 → (𝐿 / (;32 · 𝐵)) ∈ ℝ+) |
39 | 2z 12675 | . . . . . 6 ⊢ 2 ∈ ℤ | |
40 | rpexpcl 14131 | . . . . . 6 ⊢ ((𝐷 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝐷↑2) ∈ ℝ+) | |
41 | 13, 39, 40 | sylancl 585 | . . . . 5 ⊢ (𝜑 → (𝐷↑2) ∈ ℝ+) |
42 | 38, 41 | rpdivcld 13116 | . . . 4 ⊢ (𝜑 → ((𝐿 / (;32 · 𝐵)) / (𝐷↑2)) ∈ ℝ+) |
43 | 29, 42 | rpmulcld 13115 | . . 3 ⊢ (𝜑 → ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) ∈ ℝ+) |
44 | 14, 43 | eqeltrid 2848 | . 2 ⊢ (𝜑 → 𝐹 ∈ ℝ+) |
45 | 7, 13, 44 | 3jca 1128 | 1 ⊢ (𝜑 → (𝐿 ∈ ℝ+ ∧ 𝐷 ∈ ℝ+ ∧ 𝐹 ∈ ℝ+)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 ↦ cmpt 5249 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 ℝcr 11183 0cc0 11184 1c1 11185 + caddc 11187 · cmul 11189 < clt 11324 − cmin 11520 / cdiv 11947 ℕcn 12293 2c2 12348 3c3 12349 ℤcz 12639 ;cdc 12758 ℝ+crp 13057 (,)cioo 13407 ↑cexp 14112 ψcchp 27154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-rp 13058 df-ioo 13411 df-seq 14053 df-exp 14113 |
This theorem is referenced by: pntlemc 27657 pntlema 27658 pntlemb 27659 pntlemq 27663 pntlemr 27664 pntlemj 27665 pntlemf 27667 pntlemo 27669 pntleml 27673 |
Copyright terms: Public domain | W3C validator |