MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemd Structured version   Visualization version   GIF version

Theorem pntlemd 26742
Description: Lemma for pnt 26762. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝐴 is C^*, 𝐵 is c1, 𝐿 is λ, 𝐷 is c2, and 𝐹 is c3. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
Assertion
Ref Expression
pntlemd (𝜑 → (𝐿 ∈ ℝ+𝐷 ∈ ℝ+𝐹 ∈ ℝ+))

Proof of Theorem pntlemd
StepHypRef Expression
1 ioossre 13140 . . . 4 (0(,)1) ⊆ ℝ
2 pntlem1.l . . . 4 (𝜑𝐿 ∈ (0(,)1))
31, 2sselid 3919 . . 3 (𝜑𝐿 ∈ ℝ)
4 eliooord 13138 . . . . 5 (𝐿 ∈ (0(,)1) → (0 < 𝐿𝐿 < 1))
52, 4syl 17 . . . 4 (𝜑 → (0 < 𝐿𝐿 < 1))
65simpld 495 . . 3 (𝜑 → 0 < 𝐿)
73, 6elrpd 12769 . 2 (𝜑𝐿 ∈ ℝ+)
8 pntlem1.d . . 3 𝐷 = (𝐴 + 1)
9 pntlem1.a . . . 4 (𝜑𝐴 ∈ ℝ+)
10 1rp 12734 . . . 4 1 ∈ ℝ+
11 rpaddcl 12752 . . . 4 ((𝐴 ∈ ℝ+ ∧ 1 ∈ ℝ+) → (𝐴 + 1) ∈ ℝ+)
129, 10, 11sylancl 586 . . 3 (𝜑 → (𝐴 + 1) ∈ ℝ+)
138, 12eqeltrid 2843 . 2 (𝜑𝐷 ∈ ℝ+)
14 pntlem1.f . . 3 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
15 1re 10975 . . . . . . . 8 1 ∈ ℝ
16 ltaddrp 12767 . . . . . . . 8 ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 1 < (1 + 𝐴))
1715, 9, 16sylancr 587 . . . . . . 7 (𝜑 → 1 < (1 + 𝐴))
189rpcnd 12774 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
19 ax-1cn 10929 . . . . . . . . 9 1 ∈ ℂ
20 addcom 11161 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) = (1 + 𝐴))
2118, 19, 20sylancl 586 . . . . . . . 8 (𝜑 → (𝐴 + 1) = (1 + 𝐴))
228, 21eqtrid 2790 . . . . . . 7 (𝜑𝐷 = (1 + 𝐴))
2317, 22breqtrrd 5102 . . . . . 6 (𝜑 → 1 < 𝐷)
2413recgt1d 12786 . . . . . 6 (𝜑 → (1 < 𝐷 ↔ (1 / 𝐷) < 1))
2523, 24mpbid 231 . . . . 5 (𝜑 → (1 / 𝐷) < 1)
2613rprecred 12783 . . . . . 6 (𝜑 → (1 / 𝐷) ∈ ℝ)
27 difrp 12768 . . . . . 6 (((1 / 𝐷) ∈ ℝ ∧ 1 ∈ ℝ) → ((1 / 𝐷) < 1 ↔ (1 − (1 / 𝐷)) ∈ ℝ+))
2826, 15, 27sylancl 586 . . . . 5 (𝜑 → ((1 / 𝐷) < 1 ↔ (1 − (1 / 𝐷)) ∈ ℝ+))
2925, 28mpbid 231 . . . 4 (𝜑 → (1 − (1 / 𝐷)) ∈ ℝ+)
30 3nn0 12251 . . . . . . . . 9 3 ∈ ℕ0
31 2nn 12046 . . . . . . . . 9 2 ∈ ℕ
3230, 31decnncl 12457 . . . . . . . 8 32 ∈ ℕ
33 nnrp 12741 . . . . . . . 8 (32 ∈ ℕ → 32 ∈ ℝ+)
3432, 33ax-mp 5 . . . . . . 7 32 ∈ ℝ+
35 pntlem1.b . . . . . . 7 (𝜑𝐵 ∈ ℝ+)
36 rpmulcl 12753 . . . . . . 7 ((32 ∈ ℝ+𝐵 ∈ ℝ+) → (32 · 𝐵) ∈ ℝ+)
3734, 35, 36sylancr 587 . . . . . 6 (𝜑 → (32 · 𝐵) ∈ ℝ+)
387, 37rpdivcld 12789 . . . . 5 (𝜑 → (𝐿 / (32 · 𝐵)) ∈ ℝ+)
39 2z 12352 . . . . . 6 2 ∈ ℤ
40 rpexpcl 13801 . . . . . 6 ((𝐷 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝐷↑2) ∈ ℝ+)
4113, 39, 40sylancl 586 . . . . 5 (𝜑 → (𝐷↑2) ∈ ℝ+)
4238, 41rpdivcld 12789 . . . 4 (𝜑 → ((𝐿 / (32 · 𝐵)) / (𝐷↑2)) ∈ ℝ+)
4329, 42rpmulcld 12788 . . 3 (𝜑 → ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2))) ∈ ℝ+)
4414, 43eqeltrid 2843 . 2 (𝜑𝐹 ∈ ℝ+)
457, 13, 443jca 1127 1 (𝜑 → (𝐿 ∈ ℝ+𝐷 ∈ ℝ+𝐹 ∈ ℝ+))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106   class class class wbr 5074  cmpt 5157  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cmin 11205   / cdiv 11632  cn 11973  2c2 12028  3c3 12029  cz 12319  cdc 12437  +crp 12730  (,)cioo 13079  cexp 13782  ψcchp 26242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-rp 12731  df-ioo 13083  df-seq 13722  df-exp 13783
This theorem is referenced by:  pntlemc  26743  pntlema  26744  pntlemb  26745  pntlemq  26749  pntlemr  26750  pntlemj  26751  pntlemf  26753  pntlemo  26755  pntleml  26759
  Copyright terms: Public domain W3C validator