MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemd Structured version   Visualization version   GIF version

Theorem pntlemd 27638
Description: Lemma for pnt 27658. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝐴 is C^*, 𝐵 is c1, 𝐿 is λ, 𝐷 is c2, and 𝐹 is c3. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
Assertion
Ref Expression
pntlemd (𝜑 → (𝐿 ∈ ℝ+𝐷 ∈ ℝ+𝐹 ∈ ℝ+))

Proof of Theorem pntlemd
StepHypRef Expression
1 ioossre 13448 . . . 4 (0(,)1) ⊆ ℝ
2 pntlem1.l . . . 4 (𝜑𝐿 ∈ (0(,)1))
31, 2sselid 3981 . . 3 (𝜑𝐿 ∈ ℝ)
4 eliooord 13446 . . . . 5 (𝐿 ∈ (0(,)1) → (0 < 𝐿𝐿 < 1))
52, 4syl 17 . . . 4 (𝜑 → (0 < 𝐿𝐿 < 1))
65simpld 494 . . 3 (𝜑 → 0 < 𝐿)
73, 6elrpd 13074 . 2 (𝜑𝐿 ∈ ℝ+)
8 pntlem1.d . . 3 𝐷 = (𝐴 + 1)
9 pntlem1.a . . . 4 (𝜑𝐴 ∈ ℝ+)
10 1rp 13038 . . . 4 1 ∈ ℝ+
11 rpaddcl 13057 . . . 4 ((𝐴 ∈ ℝ+ ∧ 1 ∈ ℝ+) → (𝐴 + 1) ∈ ℝ+)
129, 10, 11sylancl 586 . . 3 (𝜑 → (𝐴 + 1) ∈ ℝ+)
138, 12eqeltrid 2845 . 2 (𝜑𝐷 ∈ ℝ+)
14 pntlem1.f . . 3 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
15 1re 11261 . . . . . . . 8 1 ∈ ℝ
16 ltaddrp 13072 . . . . . . . 8 ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 1 < (1 + 𝐴))
1715, 9, 16sylancr 587 . . . . . . 7 (𝜑 → 1 < (1 + 𝐴))
189rpcnd 13079 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
19 ax-1cn 11213 . . . . . . . . 9 1 ∈ ℂ
20 addcom 11447 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) = (1 + 𝐴))
2118, 19, 20sylancl 586 . . . . . . . 8 (𝜑 → (𝐴 + 1) = (1 + 𝐴))
228, 21eqtrid 2789 . . . . . . 7 (𝜑𝐷 = (1 + 𝐴))
2317, 22breqtrrd 5171 . . . . . 6 (𝜑 → 1 < 𝐷)
2413recgt1d 13091 . . . . . 6 (𝜑 → (1 < 𝐷 ↔ (1 / 𝐷) < 1))
2523, 24mpbid 232 . . . . 5 (𝜑 → (1 / 𝐷) < 1)
2613rprecred 13088 . . . . . 6 (𝜑 → (1 / 𝐷) ∈ ℝ)
27 difrp 13073 . . . . . 6 (((1 / 𝐷) ∈ ℝ ∧ 1 ∈ ℝ) → ((1 / 𝐷) < 1 ↔ (1 − (1 / 𝐷)) ∈ ℝ+))
2826, 15, 27sylancl 586 . . . . 5 (𝜑 → ((1 / 𝐷) < 1 ↔ (1 − (1 / 𝐷)) ∈ ℝ+))
2925, 28mpbid 232 . . . 4 (𝜑 → (1 − (1 / 𝐷)) ∈ ℝ+)
30 3nn0 12544 . . . . . . . . 9 3 ∈ ℕ0
31 2nn 12339 . . . . . . . . 9 2 ∈ ℕ
3230, 31decnncl 12753 . . . . . . . 8 32 ∈ ℕ
33 nnrp 13046 . . . . . . . 8 (32 ∈ ℕ → 32 ∈ ℝ+)
3432, 33ax-mp 5 . . . . . . 7 32 ∈ ℝ+
35 pntlem1.b . . . . . . 7 (𝜑𝐵 ∈ ℝ+)
36 rpmulcl 13058 . . . . . . 7 ((32 ∈ ℝ+𝐵 ∈ ℝ+) → (32 · 𝐵) ∈ ℝ+)
3734, 35, 36sylancr 587 . . . . . 6 (𝜑 → (32 · 𝐵) ∈ ℝ+)
387, 37rpdivcld 13094 . . . . 5 (𝜑 → (𝐿 / (32 · 𝐵)) ∈ ℝ+)
39 2z 12649 . . . . . 6 2 ∈ ℤ
40 rpexpcl 14121 . . . . . 6 ((𝐷 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝐷↑2) ∈ ℝ+)
4113, 39, 40sylancl 586 . . . . 5 (𝜑 → (𝐷↑2) ∈ ℝ+)
4238, 41rpdivcld 13094 . . . 4 (𝜑 → ((𝐿 / (32 · 𝐵)) / (𝐷↑2)) ∈ ℝ+)
4329, 42rpmulcld 13093 . . 3 (𝜑 → ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2))) ∈ ℝ+)
4414, 43eqeltrid 2845 . 2 (𝜑𝐹 ∈ ℝ+)
457, 13, 443jca 1129 1 (𝜑 → (𝐿 ∈ ℝ+𝐷 ∈ ℝ+𝐹 ∈ ℝ+))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108   class class class wbr 5143  cmpt 5225  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cmin 11492   / cdiv 11920  cn 12266  2c2 12321  3c3 12322  cz 12613  cdc 12733  +crp 13034  (,)cioo 13387  cexp 14102  ψcchp 27136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-rp 13035  df-ioo 13391  df-seq 14043  df-exp 14103
This theorem is referenced by:  pntlemc  27639  pntlema  27640  pntlemb  27641  pntlemq  27645  pntlemr  27646  pntlemj  27647  pntlemf  27649  pntlemo  27651  pntleml  27655
  Copyright terms: Public domain W3C validator