| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pntlemd | Structured version Visualization version GIF version | ||
| Description: Lemma for pnt 27541. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝐴 is C^*, 𝐵 is c1, 𝐿 is λ, 𝐷 is c2, and 𝐹 is c3. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| Ref | Expression |
|---|---|
| pntlem1.r | ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) |
| pntlem1.a | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| pntlem1.b | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
| pntlem1.l | ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) |
| pntlem1.d | ⊢ 𝐷 = (𝐴 + 1) |
| pntlem1.f | ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) |
| Ref | Expression |
|---|---|
| pntlemd | ⊢ (𝜑 → (𝐿 ∈ ℝ+ ∧ 𝐷 ∈ ℝ+ ∧ 𝐹 ∈ ℝ+)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioossre 13328 | . . . 4 ⊢ (0(,)1) ⊆ ℝ | |
| 2 | pntlem1.l | . . . 4 ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) | |
| 3 | 1, 2 | sselid 3935 | . . 3 ⊢ (𝜑 → 𝐿 ∈ ℝ) |
| 4 | eliooord 13326 | . . . . 5 ⊢ (𝐿 ∈ (0(,)1) → (0 < 𝐿 ∧ 𝐿 < 1)) | |
| 5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝜑 → (0 < 𝐿 ∧ 𝐿 < 1)) |
| 6 | 5 | simpld 494 | . . 3 ⊢ (𝜑 → 0 < 𝐿) |
| 7 | 3, 6 | elrpd 12952 | . 2 ⊢ (𝜑 → 𝐿 ∈ ℝ+) |
| 8 | pntlem1.d | . . 3 ⊢ 𝐷 = (𝐴 + 1) | |
| 9 | pntlem1.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 10 | 1rp 12915 | . . . 4 ⊢ 1 ∈ ℝ+ | |
| 11 | rpaddcl 12935 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 1 ∈ ℝ+) → (𝐴 + 1) ∈ ℝ+) | |
| 12 | 9, 10, 11 | sylancl 586 | . . 3 ⊢ (𝜑 → (𝐴 + 1) ∈ ℝ+) |
| 13 | 8, 12 | eqeltrid 2832 | . 2 ⊢ (𝜑 → 𝐷 ∈ ℝ+) |
| 14 | pntlem1.f | . . 3 ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) | |
| 15 | 1re 11134 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
| 16 | ltaddrp 12950 | . . . . . . . 8 ⊢ ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 1 < (1 + 𝐴)) | |
| 17 | 15, 9, 16 | sylancr 587 | . . . . . . 7 ⊢ (𝜑 → 1 < (1 + 𝐴)) |
| 18 | 9 | rpcnd 12957 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 19 | ax-1cn 11086 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
| 20 | addcom 11320 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) = (1 + 𝐴)) | |
| 21 | 18, 19, 20 | sylancl 586 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 + 1) = (1 + 𝐴)) |
| 22 | 8, 21 | eqtrid 2776 | . . . . . . 7 ⊢ (𝜑 → 𝐷 = (1 + 𝐴)) |
| 23 | 17, 22 | breqtrrd 5123 | . . . . . 6 ⊢ (𝜑 → 1 < 𝐷) |
| 24 | 13 | recgt1d 12969 | . . . . . 6 ⊢ (𝜑 → (1 < 𝐷 ↔ (1 / 𝐷) < 1)) |
| 25 | 23, 24 | mpbid 232 | . . . . 5 ⊢ (𝜑 → (1 / 𝐷) < 1) |
| 26 | 13 | rprecred 12966 | . . . . . 6 ⊢ (𝜑 → (1 / 𝐷) ∈ ℝ) |
| 27 | difrp 12951 | . . . . . 6 ⊢ (((1 / 𝐷) ∈ ℝ ∧ 1 ∈ ℝ) → ((1 / 𝐷) < 1 ↔ (1 − (1 / 𝐷)) ∈ ℝ+)) | |
| 28 | 26, 15, 27 | sylancl 586 | . . . . 5 ⊢ (𝜑 → ((1 / 𝐷) < 1 ↔ (1 − (1 / 𝐷)) ∈ ℝ+)) |
| 29 | 25, 28 | mpbid 232 | . . . 4 ⊢ (𝜑 → (1 − (1 / 𝐷)) ∈ ℝ+) |
| 30 | 3nn0 12420 | . . . . . . . . 9 ⊢ 3 ∈ ℕ0 | |
| 31 | 2nn 12219 | . . . . . . . . 9 ⊢ 2 ∈ ℕ | |
| 32 | 30, 31 | decnncl 12629 | . . . . . . . 8 ⊢ ;32 ∈ ℕ |
| 33 | nnrp 12923 | . . . . . . . 8 ⊢ (;32 ∈ ℕ → ;32 ∈ ℝ+) | |
| 34 | 32, 33 | ax-mp 5 | . . . . . . 7 ⊢ ;32 ∈ ℝ+ |
| 35 | pntlem1.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
| 36 | rpmulcl 12936 | . . . . . . 7 ⊢ ((;32 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (;32 · 𝐵) ∈ ℝ+) | |
| 37 | 34, 35, 36 | sylancr 587 | . . . . . 6 ⊢ (𝜑 → (;32 · 𝐵) ∈ ℝ+) |
| 38 | 7, 37 | rpdivcld 12972 | . . . . 5 ⊢ (𝜑 → (𝐿 / (;32 · 𝐵)) ∈ ℝ+) |
| 39 | 2z 12525 | . . . . . 6 ⊢ 2 ∈ ℤ | |
| 40 | rpexpcl 14005 | . . . . . 6 ⊢ ((𝐷 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝐷↑2) ∈ ℝ+) | |
| 41 | 13, 39, 40 | sylancl 586 | . . . . 5 ⊢ (𝜑 → (𝐷↑2) ∈ ℝ+) |
| 42 | 38, 41 | rpdivcld 12972 | . . . 4 ⊢ (𝜑 → ((𝐿 / (;32 · 𝐵)) / (𝐷↑2)) ∈ ℝ+) |
| 43 | 29, 42 | rpmulcld 12971 | . . 3 ⊢ (𝜑 → ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) ∈ ℝ+) |
| 44 | 14, 43 | eqeltrid 2832 | . 2 ⊢ (𝜑 → 𝐹 ∈ ℝ+) |
| 45 | 7, 13, 44 | 3jca 1128 | 1 ⊢ (𝜑 → (𝐿 ∈ ℝ+ ∧ 𝐷 ∈ ℝ+ ∧ 𝐹 ∈ ℝ+)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5095 ↦ cmpt 5176 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 ℝcr 11027 0cc0 11028 1c1 11029 + caddc 11031 · cmul 11033 < clt 11168 − cmin 11365 / cdiv 11795 ℕcn 12146 2c2 12201 3c3 12202 ℤcz 12489 ;cdc 12609 ℝ+crp 12911 (,)cioo 13266 ↑cexp 13986 ψcchp 27019 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-rp 12912 df-ioo 13270 df-seq 13927 df-exp 13987 |
| This theorem is referenced by: pntlemc 27522 pntlema 27523 pntlemb 27524 pntlemq 27528 pntlemr 27529 pntlemj 27530 pntlemf 27532 pntlemo 27534 pntleml 27538 |
| Copyright terms: Public domain | W3C validator |