| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pntlemd | Structured version Visualization version GIF version | ||
| Description: Lemma for pnt 27558. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝐴 is C^*, 𝐵 is c1, 𝐿 is λ, 𝐷 is c2, and 𝐹 is c3. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| Ref | Expression |
|---|---|
| pntlem1.r | ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) |
| pntlem1.a | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| pntlem1.b | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
| pntlem1.l | ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) |
| pntlem1.d | ⊢ 𝐷 = (𝐴 + 1) |
| pntlem1.f | ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) |
| Ref | Expression |
|---|---|
| pntlemd | ⊢ (𝜑 → (𝐿 ∈ ℝ+ ∧ 𝐷 ∈ ℝ+ ∧ 𝐹 ∈ ℝ+)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioossre 13313 | . . . 4 ⊢ (0(,)1) ⊆ ℝ | |
| 2 | pntlem1.l | . . . 4 ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) | |
| 3 | 1, 2 | sselid 3927 | . . 3 ⊢ (𝜑 → 𝐿 ∈ ℝ) |
| 4 | eliooord 13311 | . . . . 5 ⊢ (𝐿 ∈ (0(,)1) → (0 < 𝐿 ∧ 𝐿 < 1)) | |
| 5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝜑 → (0 < 𝐿 ∧ 𝐿 < 1)) |
| 6 | 5 | simpld 494 | . . 3 ⊢ (𝜑 → 0 < 𝐿) |
| 7 | 3, 6 | elrpd 12937 | . 2 ⊢ (𝜑 → 𝐿 ∈ ℝ+) |
| 8 | pntlem1.d | . . 3 ⊢ 𝐷 = (𝐴 + 1) | |
| 9 | pntlem1.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 10 | 1rp 12900 | . . . 4 ⊢ 1 ∈ ℝ+ | |
| 11 | rpaddcl 12920 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 1 ∈ ℝ+) → (𝐴 + 1) ∈ ℝ+) | |
| 12 | 9, 10, 11 | sylancl 586 | . . 3 ⊢ (𝜑 → (𝐴 + 1) ∈ ℝ+) |
| 13 | 8, 12 | eqeltrid 2835 | . 2 ⊢ (𝜑 → 𝐷 ∈ ℝ+) |
| 14 | pntlem1.f | . . 3 ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) | |
| 15 | 1re 11118 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
| 16 | ltaddrp 12935 | . . . . . . . 8 ⊢ ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 1 < (1 + 𝐴)) | |
| 17 | 15, 9, 16 | sylancr 587 | . . . . . . 7 ⊢ (𝜑 → 1 < (1 + 𝐴)) |
| 18 | 9 | rpcnd 12942 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 19 | ax-1cn 11070 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
| 20 | addcom 11305 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) = (1 + 𝐴)) | |
| 21 | 18, 19, 20 | sylancl 586 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 + 1) = (1 + 𝐴)) |
| 22 | 8, 21 | eqtrid 2778 | . . . . . . 7 ⊢ (𝜑 → 𝐷 = (1 + 𝐴)) |
| 23 | 17, 22 | breqtrrd 5121 | . . . . . 6 ⊢ (𝜑 → 1 < 𝐷) |
| 24 | 13 | recgt1d 12954 | . . . . . 6 ⊢ (𝜑 → (1 < 𝐷 ↔ (1 / 𝐷) < 1)) |
| 25 | 23, 24 | mpbid 232 | . . . . 5 ⊢ (𝜑 → (1 / 𝐷) < 1) |
| 26 | 13 | rprecred 12951 | . . . . . 6 ⊢ (𝜑 → (1 / 𝐷) ∈ ℝ) |
| 27 | difrp 12936 | . . . . . 6 ⊢ (((1 / 𝐷) ∈ ℝ ∧ 1 ∈ ℝ) → ((1 / 𝐷) < 1 ↔ (1 − (1 / 𝐷)) ∈ ℝ+)) | |
| 28 | 26, 15, 27 | sylancl 586 | . . . . 5 ⊢ (𝜑 → ((1 / 𝐷) < 1 ↔ (1 − (1 / 𝐷)) ∈ ℝ+)) |
| 29 | 25, 28 | mpbid 232 | . . . 4 ⊢ (𝜑 → (1 − (1 / 𝐷)) ∈ ℝ+) |
| 30 | 3nn0 12405 | . . . . . . . . 9 ⊢ 3 ∈ ℕ0 | |
| 31 | 2nn 12204 | . . . . . . . . 9 ⊢ 2 ∈ ℕ | |
| 32 | 30, 31 | decnncl 12614 | . . . . . . . 8 ⊢ ;32 ∈ ℕ |
| 33 | nnrp 12908 | . . . . . . . 8 ⊢ (;32 ∈ ℕ → ;32 ∈ ℝ+) | |
| 34 | 32, 33 | ax-mp 5 | . . . . . . 7 ⊢ ;32 ∈ ℝ+ |
| 35 | pntlem1.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
| 36 | rpmulcl 12921 | . . . . . . 7 ⊢ ((;32 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (;32 · 𝐵) ∈ ℝ+) | |
| 37 | 34, 35, 36 | sylancr 587 | . . . . . 6 ⊢ (𝜑 → (;32 · 𝐵) ∈ ℝ+) |
| 38 | 7, 37 | rpdivcld 12957 | . . . . 5 ⊢ (𝜑 → (𝐿 / (;32 · 𝐵)) ∈ ℝ+) |
| 39 | 2z 12510 | . . . . . 6 ⊢ 2 ∈ ℤ | |
| 40 | rpexpcl 13993 | . . . . . 6 ⊢ ((𝐷 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝐷↑2) ∈ ℝ+) | |
| 41 | 13, 39, 40 | sylancl 586 | . . . . 5 ⊢ (𝜑 → (𝐷↑2) ∈ ℝ+) |
| 42 | 38, 41 | rpdivcld 12957 | . . . 4 ⊢ (𝜑 → ((𝐿 / (;32 · 𝐵)) / (𝐷↑2)) ∈ ℝ+) |
| 43 | 29, 42 | rpmulcld 12956 | . . 3 ⊢ (𝜑 → ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) ∈ ℝ+) |
| 44 | 14, 43 | eqeltrid 2835 | . 2 ⊢ (𝜑 → 𝐹 ∈ ℝ+) |
| 45 | 7, 13, 44 | 3jca 1128 | 1 ⊢ (𝜑 → (𝐿 ∈ ℝ+ ∧ 𝐷 ∈ ℝ+ ∧ 𝐹 ∈ ℝ+)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 class class class wbr 5093 ↦ cmpt 5174 ‘cfv 6487 (class class class)co 7352 ℂcc 11010 ℝcr 11011 0cc0 11012 1c1 11013 + caddc 11015 · cmul 11017 < clt 11152 − cmin 11350 / cdiv 11780 ℕcn 12131 2c2 12186 3c3 12187 ℤcz 12474 ;cdc 12594 ℝ+crp 12896 (,)cioo 13251 ↑cexp 13974 ψcchp 27036 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-div 11781 df-nn 12132 df-2 12194 df-3 12195 df-4 12196 df-5 12197 df-6 12198 df-7 12199 df-8 12200 df-9 12201 df-n0 12388 df-z 12475 df-dec 12595 df-uz 12739 df-rp 12897 df-ioo 13255 df-seq 13915 df-exp 13975 |
| This theorem is referenced by: pntlemc 27539 pntlema 27540 pntlemb 27541 pntlemq 27545 pntlemr 27546 pntlemj 27547 pntlemf 27549 pntlemo 27551 pntleml 27555 |
| Copyright terms: Public domain | W3C validator |