MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemd Structured version   Visualization version   GIF version

Theorem pntlemd 27511
Description: Lemma for pnt 27531. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝐴 is C^*, 𝐵 is c1, 𝐿 is λ, 𝐷 is c2, and 𝐹 is c3. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
Assertion
Ref Expression
pntlemd (𝜑 → (𝐿 ∈ ℝ+𝐷 ∈ ℝ+𝐹 ∈ ℝ+))

Proof of Theorem pntlemd
StepHypRef Expression
1 ioossre 13374 . . . 4 (0(,)1) ⊆ ℝ
2 pntlem1.l . . . 4 (𝜑𝐿 ∈ (0(,)1))
31, 2sselid 3946 . . 3 (𝜑𝐿 ∈ ℝ)
4 eliooord 13372 . . . . 5 (𝐿 ∈ (0(,)1) → (0 < 𝐿𝐿 < 1))
52, 4syl 17 . . . 4 (𝜑 → (0 < 𝐿𝐿 < 1))
65simpld 494 . . 3 (𝜑 → 0 < 𝐿)
73, 6elrpd 12998 . 2 (𝜑𝐿 ∈ ℝ+)
8 pntlem1.d . . 3 𝐷 = (𝐴 + 1)
9 pntlem1.a . . . 4 (𝜑𝐴 ∈ ℝ+)
10 1rp 12961 . . . 4 1 ∈ ℝ+
11 rpaddcl 12981 . . . 4 ((𝐴 ∈ ℝ+ ∧ 1 ∈ ℝ+) → (𝐴 + 1) ∈ ℝ+)
129, 10, 11sylancl 586 . . 3 (𝜑 → (𝐴 + 1) ∈ ℝ+)
138, 12eqeltrid 2833 . 2 (𝜑𝐷 ∈ ℝ+)
14 pntlem1.f . . 3 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
15 1re 11180 . . . . . . . 8 1 ∈ ℝ
16 ltaddrp 12996 . . . . . . . 8 ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 1 < (1 + 𝐴))
1715, 9, 16sylancr 587 . . . . . . 7 (𝜑 → 1 < (1 + 𝐴))
189rpcnd 13003 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
19 ax-1cn 11132 . . . . . . . . 9 1 ∈ ℂ
20 addcom 11366 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) = (1 + 𝐴))
2118, 19, 20sylancl 586 . . . . . . . 8 (𝜑 → (𝐴 + 1) = (1 + 𝐴))
228, 21eqtrid 2777 . . . . . . 7 (𝜑𝐷 = (1 + 𝐴))
2317, 22breqtrrd 5137 . . . . . 6 (𝜑 → 1 < 𝐷)
2413recgt1d 13015 . . . . . 6 (𝜑 → (1 < 𝐷 ↔ (1 / 𝐷) < 1))
2523, 24mpbid 232 . . . . 5 (𝜑 → (1 / 𝐷) < 1)
2613rprecred 13012 . . . . . 6 (𝜑 → (1 / 𝐷) ∈ ℝ)
27 difrp 12997 . . . . . 6 (((1 / 𝐷) ∈ ℝ ∧ 1 ∈ ℝ) → ((1 / 𝐷) < 1 ↔ (1 − (1 / 𝐷)) ∈ ℝ+))
2826, 15, 27sylancl 586 . . . . 5 (𝜑 → ((1 / 𝐷) < 1 ↔ (1 − (1 / 𝐷)) ∈ ℝ+))
2925, 28mpbid 232 . . . 4 (𝜑 → (1 − (1 / 𝐷)) ∈ ℝ+)
30 3nn0 12466 . . . . . . . . 9 3 ∈ ℕ0
31 2nn 12260 . . . . . . . . 9 2 ∈ ℕ
3230, 31decnncl 12675 . . . . . . . 8 32 ∈ ℕ
33 nnrp 12969 . . . . . . . 8 (32 ∈ ℕ → 32 ∈ ℝ+)
3432, 33ax-mp 5 . . . . . . 7 32 ∈ ℝ+
35 pntlem1.b . . . . . . 7 (𝜑𝐵 ∈ ℝ+)
36 rpmulcl 12982 . . . . . . 7 ((32 ∈ ℝ+𝐵 ∈ ℝ+) → (32 · 𝐵) ∈ ℝ+)
3734, 35, 36sylancr 587 . . . . . 6 (𝜑 → (32 · 𝐵) ∈ ℝ+)
387, 37rpdivcld 13018 . . . . 5 (𝜑 → (𝐿 / (32 · 𝐵)) ∈ ℝ+)
39 2z 12571 . . . . . 6 2 ∈ ℤ
40 rpexpcl 14051 . . . . . 6 ((𝐷 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝐷↑2) ∈ ℝ+)
4113, 39, 40sylancl 586 . . . . 5 (𝜑 → (𝐷↑2) ∈ ℝ+)
4238, 41rpdivcld 13018 . . . 4 (𝜑 → ((𝐿 / (32 · 𝐵)) / (𝐷↑2)) ∈ ℝ+)
4329, 42rpmulcld 13017 . . 3 (𝜑 → ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2))) ∈ ℝ+)
4414, 43eqeltrid 2833 . 2 (𝜑𝐹 ∈ ℝ+)
457, 13, 443jca 1128 1 (𝜑 → (𝐿 ∈ ℝ+𝐷 ∈ ℝ+𝐹 ∈ ℝ+))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5109  cmpt 5190  cfv 6513  (class class class)co 7389  cc 11072  cr 11073  0cc0 11074  1c1 11075   + caddc 11077   · cmul 11079   < clt 11214  cmin 11411   / cdiv 11841  cn 12187  2c2 12242  3c3 12243  cz 12535  cdc 12655  +crp 12957  (,)cioo 13312  cexp 14032  ψcchp 27009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-z 12536  df-dec 12656  df-uz 12800  df-rp 12958  df-ioo 13316  df-seq 13973  df-exp 14033
This theorem is referenced by:  pntlemc  27512  pntlema  27513  pntlemb  27514  pntlemq  27518  pntlemr  27519  pntlemj  27520  pntlemf  27522  pntlemo  27524  pntleml  27528
  Copyright terms: Public domain W3C validator