![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pntlemd | Structured version Visualization version GIF version |
Description: Lemma for pnt 27646. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝐴 is C^*, 𝐵 is c1, 𝐿 is λ, 𝐷 is c2, and 𝐹 is c3. (Contributed by Mario Carneiro, 13-Apr-2016.) |
Ref | Expression |
---|---|
pntlem1.r | ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) |
pntlem1.a | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
pntlem1.b | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
pntlem1.l | ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) |
pntlem1.d | ⊢ 𝐷 = (𝐴 + 1) |
pntlem1.f | ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) |
Ref | Expression |
---|---|
pntlemd | ⊢ (𝜑 → (𝐿 ∈ ℝ+ ∧ 𝐷 ∈ ℝ+ ∧ 𝐹 ∈ ℝ+)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioossre 13441 | . . . 4 ⊢ (0(,)1) ⊆ ℝ | |
2 | pntlem1.l | . . . 4 ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) | |
3 | 1, 2 | sselid 3977 | . . 3 ⊢ (𝜑 → 𝐿 ∈ ℝ) |
4 | eliooord 13439 | . . . . 5 ⊢ (𝐿 ∈ (0(,)1) → (0 < 𝐿 ∧ 𝐿 < 1)) | |
5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝜑 → (0 < 𝐿 ∧ 𝐿 < 1)) |
6 | 5 | simpld 493 | . . 3 ⊢ (𝜑 → 0 < 𝐿) |
7 | 3, 6 | elrpd 13069 | . 2 ⊢ (𝜑 → 𝐿 ∈ ℝ+) |
8 | pntlem1.d | . . 3 ⊢ 𝐷 = (𝐴 + 1) | |
9 | pntlem1.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
10 | 1rp 13034 | . . . 4 ⊢ 1 ∈ ℝ+ | |
11 | rpaddcl 13052 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 1 ∈ ℝ+) → (𝐴 + 1) ∈ ℝ+) | |
12 | 9, 10, 11 | sylancl 584 | . . 3 ⊢ (𝜑 → (𝐴 + 1) ∈ ℝ+) |
13 | 8, 12 | eqeltrid 2830 | . 2 ⊢ (𝜑 → 𝐷 ∈ ℝ+) |
14 | pntlem1.f | . . 3 ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) | |
15 | 1re 11266 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
16 | ltaddrp 13067 | . . . . . . . 8 ⊢ ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 1 < (1 + 𝐴)) | |
17 | 15, 9, 16 | sylancr 585 | . . . . . . 7 ⊢ (𝜑 → 1 < (1 + 𝐴)) |
18 | 9 | rpcnd 13074 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
19 | ax-1cn 11218 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
20 | addcom 11452 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) = (1 + 𝐴)) | |
21 | 18, 19, 20 | sylancl 584 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 + 1) = (1 + 𝐴)) |
22 | 8, 21 | eqtrid 2778 | . . . . . . 7 ⊢ (𝜑 → 𝐷 = (1 + 𝐴)) |
23 | 17, 22 | breqtrrd 5183 | . . . . . 6 ⊢ (𝜑 → 1 < 𝐷) |
24 | 13 | recgt1d 13086 | . . . . . 6 ⊢ (𝜑 → (1 < 𝐷 ↔ (1 / 𝐷) < 1)) |
25 | 23, 24 | mpbid 231 | . . . . 5 ⊢ (𝜑 → (1 / 𝐷) < 1) |
26 | 13 | rprecred 13083 | . . . . . 6 ⊢ (𝜑 → (1 / 𝐷) ∈ ℝ) |
27 | difrp 13068 | . . . . . 6 ⊢ (((1 / 𝐷) ∈ ℝ ∧ 1 ∈ ℝ) → ((1 / 𝐷) < 1 ↔ (1 − (1 / 𝐷)) ∈ ℝ+)) | |
28 | 26, 15, 27 | sylancl 584 | . . . . 5 ⊢ (𝜑 → ((1 / 𝐷) < 1 ↔ (1 − (1 / 𝐷)) ∈ ℝ+)) |
29 | 25, 28 | mpbid 231 | . . . 4 ⊢ (𝜑 → (1 − (1 / 𝐷)) ∈ ℝ+) |
30 | 3nn0 12544 | . . . . . . . . 9 ⊢ 3 ∈ ℕ0 | |
31 | 2nn 12339 | . . . . . . . . 9 ⊢ 2 ∈ ℕ | |
32 | 30, 31 | decnncl 12751 | . . . . . . . 8 ⊢ ;32 ∈ ℕ |
33 | nnrp 13041 | . . . . . . . 8 ⊢ (;32 ∈ ℕ → ;32 ∈ ℝ+) | |
34 | 32, 33 | ax-mp 5 | . . . . . . 7 ⊢ ;32 ∈ ℝ+ |
35 | pntlem1.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
36 | rpmulcl 13053 | . . . . . . 7 ⊢ ((;32 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (;32 · 𝐵) ∈ ℝ+) | |
37 | 34, 35, 36 | sylancr 585 | . . . . . 6 ⊢ (𝜑 → (;32 · 𝐵) ∈ ℝ+) |
38 | 7, 37 | rpdivcld 13089 | . . . . 5 ⊢ (𝜑 → (𝐿 / (;32 · 𝐵)) ∈ ℝ+) |
39 | 2z 12648 | . . . . . 6 ⊢ 2 ∈ ℤ | |
40 | rpexpcl 14102 | . . . . . 6 ⊢ ((𝐷 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝐷↑2) ∈ ℝ+) | |
41 | 13, 39, 40 | sylancl 584 | . . . . 5 ⊢ (𝜑 → (𝐷↑2) ∈ ℝ+) |
42 | 38, 41 | rpdivcld 13089 | . . . 4 ⊢ (𝜑 → ((𝐿 / (;32 · 𝐵)) / (𝐷↑2)) ∈ ℝ+) |
43 | 29, 42 | rpmulcld 13088 | . . 3 ⊢ (𝜑 → ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) ∈ ℝ+) |
44 | 14, 43 | eqeltrid 2830 | . 2 ⊢ (𝜑 → 𝐹 ∈ ℝ+) |
45 | 7, 13, 44 | 3jca 1125 | 1 ⊢ (𝜑 → (𝐿 ∈ ℝ+ ∧ 𝐷 ∈ ℝ+ ∧ 𝐹 ∈ ℝ+)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 class class class wbr 5155 ↦ cmpt 5238 ‘cfv 6556 (class class class)co 7426 ℂcc 11158 ℝcr 11159 0cc0 11160 1c1 11161 + caddc 11163 · cmul 11165 < clt 11300 − cmin 11496 / cdiv 11923 ℕcn 12266 2c2 12321 3c3 12322 ℤcz 12612 ;cdc 12731 ℝ+crp 13030 (,)cioo 13380 ↑cexp 14083 ψcchp 27124 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5306 ax-nul 5313 ax-pow 5371 ax-pr 5435 ax-un 7748 ax-cnex 11216 ax-resscn 11217 ax-1cn 11218 ax-icn 11219 ax-addcl 11220 ax-addrcl 11221 ax-mulcl 11222 ax-mulrcl 11223 ax-mulcom 11224 ax-addass 11225 ax-mulass 11226 ax-distr 11227 ax-i2m1 11228 ax-1ne0 11229 ax-1rid 11230 ax-rnegex 11231 ax-rrecex 11232 ax-cnre 11233 ax-pre-lttri 11234 ax-pre-lttrn 11235 ax-pre-ltadd 11236 ax-pre-mulgt0 11237 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4916 df-iun 5005 df-br 5156 df-opab 5218 df-mpt 5239 df-tr 5273 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5639 df-we 5641 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6314 df-ord 6381 df-on 6382 df-lim 6383 df-suc 6384 df-iota 6508 df-fun 6558 df-fn 6559 df-f 6560 df-f1 6561 df-fo 6562 df-f1o 6563 df-fv 6564 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-1st 8005 df-2nd 8006 df-frecs 8298 df-wrecs 8329 df-recs 8403 df-rdg 8442 df-er 8736 df-en 8977 df-dom 8978 df-sdom 8979 df-pnf 11302 df-mnf 11303 df-xr 11304 df-ltxr 11305 df-le 11306 df-sub 11498 df-neg 11499 df-div 11924 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12613 df-dec 12732 df-uz 12877 df-rp 13031 df-ioo 13384 df-seq 14024 df-exp 14084 |
This theorem is referenced by: pntlemc 27627 pntlema 27628 pntlemb 27629 pntlemq 27633 pntlemr 27634 pntlemj 27635 pntlemf 27637 pntlemo 27639 pntleml 27643 |
Copyright terms: Public domain | W3C validator |