| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pntlemd | Structured version Visualization version GIF version | ||
| Description: Lemma for pnt 27531. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝐴 is C^*, 𝐵 is c1, 𝐿 is λ, 𝐷 is c2, and 𝐹 is c3. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| Ref | Expression |
|---|---|
| pntlem1.r | ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) |
| pntlem1.a | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| pntlem1.b | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
| pntlem1.l | ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) |
| pntlem1.d | ⊢ 𝐷 = (𝐴 + 1) |
| pntlem1.f | ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) |
| Ref | Expression |
|---|---|
| pntlemd | ⊢ (𝜑 → (𝐿 ∈ ℝ+ ∧ 𝐷 ∈ ℝ+ ∧ 𝐹 ∈ ℝ+)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioossre 13374 | . . . 4 ⊢ (0(,)1) ⊆ ℝ | |
| 2 | pntlem1.l | . . . 4 ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) | |
| 3 | 1, 2 | sselid 3946 | . . 3 ⊢ (𝜑 → 𝐿 ∈ ℝ) |
| 4 | eliooord 13372 | . . . . 5 ⊢ (𝐿 ∈ (0(,)1) → (0 < 𝐿 ∧ 𝐿 < 1)) | |
| 5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝜑 → (0 < 𝐿 ∧ 𝐿 < 1)) |
| 6 | 5 | simpld 494 | . . 3 ⊢ (𝜑 → 0 < 𝐿) |
| 7 | 3, 6 | elrpd 12998 | . 2 ⊢ (𝜑 → 𝐿 ∈ ℝ+) |
| 8 | pntlem1.d | . . 3 ⊢ 𝐷 = (𝐴 + 1) | |
| 9 | pntlem1.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 10 | 1rp 12961 | . . . 4 ⊢ 1 ∈ ℝ+ | |
| 11 | rpaddcl 12981 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 1 ∈ ℝ+) → (𝐴 + 1) ∈ ℝ+) | |
| 12 | 9, 10, 11 | sylancl 586 | . . 3 ⊢ (𝜑 → (𝐴 + 1) ∈ ℝ+) |
| 13 | 8, 12 | eqeltrid 2833 | . 2 ⊢ (𝜑 → 𝐷 ∈ ℝ+) |
| 14 | pntlem1.f | . . 3 ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) | |
| 15 | 1re 11180 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
| 16 | ltaddrp 12996 | . . . . . . . 8 ⊢ ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 1 < (1 + 𝐴)) | |
| 17 | 15, 9, 16 | sylancr 587 | . . . . . . 7 ⊢ (𝜑 → 1 < (1 + 𝐴)) |
| 18 | 9 | rpcnd 13003 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 19 | ax-1cn 11132 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
| 20 | addcom 11366 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) = (1 + 𝐴)) | |
| 21 | 18, 19, 20 | sylancl 586 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 + 1) = (1 + 𝐴)) |
| 22 | 8, 21 | eqtrid 2777 | . . . . . . 7 ⊢ (𝜑 → 𝐷 = (1 + 𝐴)) |
| 23 | 17, 22 | breqtrrd 5137 | . . . . . 6 ⊢ (𝜑 → 1 < 𝐷) |
| 24 | 13 | recgt1d 13015 | . . . . . 6 ⊢ (𝜑 → (1 < 𝐷 ↔ (1 / 𝐷) < 1)) |
| 25 | 23, 24 | mpbid 232 | . . . . 5 ⊢ (𝜑 → (1 / 𝐷) < 1) |
| 26 | 13 | rprecred 13012 | . . . . . 6 ⊢ (𝜑 → (1 / 𝐷) ∈ ℝ) |
| 27 | difrp 12997 | . . . . . 6 ⊢ (((1 / 𝐷) ∈ ℝ ∧ 1 ∈ ℝ) → ((1 / 𝐷) < 1 ↔ (1 − (1 / 𝐷)) ∈ ℝ+)) | |
| 28 | 26, 15, 27 | sylancl 586 | . . . . 5 ⊢ (𝜑 → ((1 / 𝐷) < 1 ↔ (1 − (1 / 𝐷)) ∈ ℝ+)) |
| 29 | 25, 28 | mpbid 232 | . . . 4 ⊢ (𝜑 → (1 − (1 / 𝐷)) ∈ ℝ+) |
| 30 | 3nn0 12466 | . . . . . . . . 9 ⊢ 3 ∈ ℕ0 | |
| 31 | 2nn 12260 | . . . . . . . . 9 ⊢ 2 ∈ ℕ | |
| 32 | 30, 31 | decnncl 12675 | . . . . . . . 8 ⊢ ;32 ∈ ℕ |
| 33 | nnrp 12969 | . . . . . . . 8 ⊢ (;32 ∈ ℕ → ;32 ∈ ℝ+) | |
| 34 | 32, 33 | ax-mp 5 | . . . . . . 7 ⊢ ;32 ∈ ℝ+ |
| 35 | pntlem1.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
| 36 | rpmulcl 12982 | . . . . . . 7 ⊢ ((;32 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (;32 · 𝐵) ∈ ℝ+) | |
| 37 | 34, 35, 36 | sylancr 587 | . . . . . 6 ⊢ (𝜑 → (;32 · 𝐵) ∈ ℝ+) |
| 38 | 7, 37 | rpdivcld 13018 | . . . . 5 ⊢ (𝜑 → (𝐿 / (;32 · 𝐵)) ∈ ℝ+) |
| 39 | 2z 12571 | . . . . . 6 ⊢ 2 ∈ ℤ | |
| 40 | rpexpcl 14051 | . . . . . 6 ⊢ ((𝐷 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝐷↑2) ∈ ℝ+) | |
| 41 | 13, 39, 40 | sylancl 586 | . . . . 5 ⊢ (𝜑 → (𝐷↑2) ∈ ℝ+) |
| 42 | 38, 41 | rpdivcld 13018 | . . . 4 ⊢ (𝜑 → ((𝐿 / (;32 · 𝐵)) / (𝐷↑2)) ∈ ℝ+) |
| 43 | 29, 42 | rpmulcld 13017 | . . 3 ⊢ (𝜑 → ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) ∈ ℝ+) |
| 44 | 14, 43 | eqeltrid 2833 | . 2 ⊢ (𝜑 → 𝐹 ∈ ℝ+) |
| 45 | 7, 13, 44 | 3jca 1128 | 1 ⊢ (𝜑 → (𝐿 ∈ ℝ+ ∧ 𝐷 ∈ ℝ+ ∧ 𝐹 ∈ ℝ+)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5109 ↦ cmpt 5190 ‘cfv 6513 (class class class)co 7389 ℂcc 11072 ℝcr 11073 0cc0 11074 1c1 11075 + caddc 11077 · cmul 11079 < clt 11214 − cmin 11411 / cdiv 11841 ℕcn 12187 2c2 12242 3c3 12243 ℤcz 12535 ;cdc 12655 ℝ+crp 12957 (,)cioo 13312 ↑cexp 14032 ψcchp 27009 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-z 12536 df-dec 12656 df-uz 12800 df-rp 12958 df-ioo 13316 df-seq 13973 df-exp 14033 |
| This theorem is referenced by: pntlemc 27512 pntlema 27513 pntlemb 27514 pntlemq 27518 pntlemr 27519 pntlemj 27520 pntlemf 27522 pntlemo 27524 pntleml 27528 |
| Copyright terms: Public domain | W3C validator |