| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pntlemd | Structured version Visualization version GIF version | ||
| Description: Lemma for pnt 27525. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝐴 is C^*, 𝐵 is c1, 𝐿 is λ, 𝐷 is c2, and 𝐹 is c3. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| Ref | Expression |
|---|---|
| pntlem1.r | ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) |
| pntlem1.a | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| pntlem1.b | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
| pntlem1.l | ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) |
| pntlem1.d | ⊢ 𝐷 = (𝐴 + 1) |
| pntlem1.f | ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) |
| Ref | Expression |
|---|---|
| pntlemd | ⊢ (𝜑 → (𝐿 ∈ ℝ+ ∧ 𝐷 ∈ ℝ+ ∧ 𝐹 ∈ ℝ+)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioossre 13368 | . . . 4 ⊢ (0(,)1) ⊆ ℝ | |
| 2 | pntlem1.l | . . . 4 ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) | |
| 3 | 1, 2 | sselid 3944 | . . 3 ⊢ (𝜑 → 𝐿 ∈ ℝ) |
| 4 | eliooord 13366 | . . . . 5 ⊢ (𝐿 ∈ (0(,)1) → (0 < 𝐿 ∧ 𝐿 < 1)) | |
| 5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝜑 → (0 < 𝐿 ∧ 𝐿 < 1)) |
| 6 | 5 | simpld 494 | . . 3 ⊢ (𝜑 → 0 < 𝐿) |
| 7 | 3, 6 | elrpd 12992 | . 2 ⊢ (𝜑 → 𝐿 ∈ ℝ+) |
| 8 | pntlem1.d | . . 3 ⊢ 𝐷 = (𝐴 + 1) | |
| 9 | pntlem1.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 10 | 1rp 12955 | . . . 4 ⊢ 1 ∈ ℝ+ | |
| 11 | rpaddcl 12975 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 1 ∈ ℝ+) → (𝐴 + 1) ∈ ℝ+) | |
| 12 | 9, 10, 11 | sylancl 586 | . . 3 ⊢ (𝜑 → (𝐴 + 1) ∈ ℝ+) |
| 13 | 8, 12 | eqeltrid 2832 | . 2 ⊢ (𝜑 → 𝐷 ∈ ℝ+) |
| 14 | pntlem1.f | . . 3 ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) | |
| 15 | 1re 11174 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
| 16 | ltaddrp 12990 | . . . . . . . 8 ⊢ ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 1 < (1 + 𝐴)) | |
| 17 | 15, 9, 16 | sylancr 587 | . . . . . . 7 ⊢ (𝜑 → 1 < (1 + 𝐴)) |
| 18 | 9 | rpcnd 12997 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 19 | ax-1cn 11126 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
| 20 | addcom 11360 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) = (1 + 𝐴)) | |
| 21 | 18, 19, 20 | sylancl 586 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 + 1) = (1 + 𝐴)) |
| 22 | 8, 21 | eqtrid 2776 | . . . . . . 7 ⊢ (𝜑 → 𝐷 = (1 + 𝐴)) |
| 23 | 17, 22 | breqtrrd 5135 | . . . . . 6 ⊢ (𝜑 → 1 < 𝐷) |
| 24 | 13 | recgt1d 13009 | . . . . . 6 ⊢ (𝜑 → (1 < 𝐷 ↔ (1 / 𝐷) < 1)) |
| 25 | 23, 24 | mpbid 232 | . . . . 5 ⊢ (𝜑 → (1 / 𝐷) < 1) |
| 26 | 13 | rprecred 13006 | . . . . . 6 ⊢ (𝜑 → (1 / 𝐷) ∈ ℝ) |
| 27 | difrp 12991 | . . . . . 6 ⊢ (((1 / 𝐷) ∈ ℝ ∧ 1 ∈ ℝ) → ((1 / 𝐷) < 1 ↔ (1 − (1 / 𝐷)) ∈ ℝ+)) | |
| 28 | 26, 15, 27 | sylancl 586 | . . . . 5 ⊢ (𝜑 → ((1 / 𝐷) < 1 ↔ (1 − (1 / 𝐷)) ∈ ℝ+)) |
| 29 | 25, 28 | mpbid 232 | . . . 4 ⊢ (𝜑 → (1 − (1 / 𝐷)) ∈ ℝ+) |
| 30 | 3nn0 12460 | . . . . . . . . 9 ⊢ 3 ∈ ℕ0 | |
| 31 | 2nn 12259 | . . . . . . . . 9 ⊢ 2 ∈ ℕ | |
| 32 | 30, 31 | decnncl 12669 | . . . . . . . 8 ⊢ ;32 ∈ ℕ |
| 33 | nnrp 12963 | . . . . . . . 8 ⊢ (;32 ∈ ℕ → ;32 ∈ ℝ+) | |
| 34 | 32, 33 | ax-mp 5 | . . . . . . 7 ⊢ ;32 ∈ ℝ+ |
| 35 | pntlem1.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
| 36 | rpmulcl 12976 | . . . . . . 7 ⊢ ((;32 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (;32 · 𝐵) ∈ ℝ+) | |
| 37 | 34, 35, 36 | sylancr 587 | . . . . . 6 ⊢ (𝜑 → (;32 · 𝐵) ∈ ℝ+) |
| 38 | 7, 37 | rpdivcld 13012 | . . . . 5 ⊢ (𝜑 → (𝐿 / (;32 · 𝐵)) ∈ ℝ+) |
| 39 | 2z 12565 | . . . . . 6 ⊢ 2 ∈ ℤ | |
| 40 | rpexpcl 14045 | . . . . . 6 ⊢ ((𝐷 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝐷↑2) ∈ ℝ+) | |
| 41 | 13, 39, 40 | sylancl 586 | . . . . 5 ⊢ (𝜑 → (𝐷↑2) ∈ ℝ+) |
| 42 | 38, 41 | rpdivcld 13012 | . . . 4 ⊢ (𝜑 → ((𝐿 / (;32 · 𝐵)) / (𝐷↑2)) ∈ ℝ+) |
| 43 | 29, 42 | rpmulcld 13011 | . . 3 ⊢ (𝜑 → ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) ∈ ℝ+) |
| 44 | 14, 43 | eqeltrid 2832 | . 2 ⊢ (𝜑 → 𝐹 ∈ ℝ+) |
| 45 | 7, 13, 44 | 3jca 1128 | 1 ⊢ (𝜑 → (𝐿 ∈ ℝ+ ∧ 𝐷 ∈ ℝ+ ∧ 𝐹 ∈ ℝ+)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ↦ cmpt 5188 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 ℝcr 11067 0cc0 11068 1c1 11069 + caddc 11071 · cmul 11073 < clt 11208 − cmin 11405 / cdiv 11835 ℕcn 12186 2c2 12241 3c3 12242 ℤcz 12529 ;cdc 12649 ℝ+crp 12951 (,)cioo 13306 ↑cexp 14026 ψcchp 27003 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-rp 12952 df-ioo 13310 df-seq 13967 df-exp 14027 |
| This theorem is referenced by: pntlemc 27506 pntlema 27507 pntlemb 27508 pntlemq 27512 pntlemr 27513 pntlemj 27514 pntlemf 27516 pntlemo 27518 pntleml 27522 |
| Copyright terms: Public domain | W3C validator |