Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pntlemd | Structured version Visualization version GIF version |
Description: Lemma for pnt 26667. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝐴 is C^*, 𝐵 is c1, 𝐿 is λ, 𝐷 is c2, and 𝐹 is c3. (Contributed by Mario Carneiro, 13-Apr-2016.) |
Ref | Expression |
---|---|
pntlem1.r | ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) |
pntlem1.a | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
pntlem1.b | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
pntlem1.l | ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) |
pntlem1.d | ⊢ 𝐷 = (𝐴 + 1) |
pntlem1.f | ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) |
Ref | Expression |
---|---|
pntlemd | ⊢ (𝜑 → (𝐿 ∈ ℝ+ ∧ 𝐷 ∈ ℝ+ ∧ 𝐹 ∈ ℝ+)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioossre 13069 | . . . 4 ⊢ (0(,)1) ⊆ ℝ | |
2 | pntlem1.l | . . . 4 ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) | |
3 | 1, 2 | sselid 3915 | . . 3 ⊢ (𝜑 → 𝐿 ∈ ℝ) |
4 | eliooord 13067 | . . . . 5 ⊢ (𝐿 ∈ (0(,)1) → (0 < 𝐿 ∧ 𝐿 < 1)) | |
5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝜑 → (0 < 𝐿 ∧ 𝐿 < 1)) |
6 | 5 | simpld 494 | . . 3 ⊢ (𝜑 → 0 < 𝐿) |
7 | 3, 6 | elrpd 12698 | . 2 ⊢ (𝜑 → 𝐿 ∈ ℝ+) |
8 | pntlem1.d | . . 3 ⊢ 𝐷 = (𝐴 + 1) | |
9 | pntlem1.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
10 | 1rp 12663 | . . . 4 ⊢ 1 ∈ ℝ+ | |
11 | rpaddcl 12681 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 1 ∈ ℝ+) → (𝐴 + 1) ∈ ℝ+) | |
12 | 9, 10, 11 | sylancl 585 | . . 3 ⊢ (𝜑 → (𝐴 + 1) ∈ ℝ+) |
13 | 8, 12 | eqeltrid 2843 | . 2 ⊢ (𝜑 → 𝐷 ∈ ℝ+) |
14 | pntlem1.f | . . 3 ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) | |
15 | 1re 10906 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
16 | ltaddrp 12696 | . . . . . . . 8 ⊢ ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 1 < (1 + 𝐴)) | |
17 | 15, 9, 16 | sylancr 586 | . . . . . . 7 ⊢ (𝜑 → 1 < (1 + 𝐴)) |
18 | 9 | rpcnd 12703 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
19 | ax-1cn 10860 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
20 | addcom 11091 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) = (1 + 𝐴)) | |
21 | 18, 19, 20 | sylancl 585 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 + 1) = (1 + 𝐴)) |
22 | 8, 21 | syl5eq 2791 | . . . . . . 7 ⊢ (𝜑 → 𝐷 = (1 + 𝐴)) |
23 | 17, 22 | breqtrrd 5098 | . . . . . 6 ⊢ (𝜑 → 1 < 𝐷) |
24 | 13 | recgt1d 12715 | . . . . . 6 ⊢ (𝜑 → (1 < 𝐷 ↔ (1 / 𝐷) < 1)) |
25 | 23, 24 | mpbid 231 | . . . . 5 ⊢ (𝜑 → (1 / 𝐷) < 1) |
26 | 13 | rprecred 12712 | . . . . . 6 ⊢ (𝜑 → (1 / 𝐷) ∈ ℝ) |
27 | difrp 12697 | . . . . . 6 ⊢ (((1 / 𝐷) ∈ ℝ ∧ 1 ∈ ℝ) → ((1 / 𝐷) < 1 ↔ (1 − (1 / 𝐷)) ∈ ℝ+)) | |
28 | 26, 15, 27 | sylancl 585 | . . . . 5 ⊢ (𝜑 → ((1 / 𝐷) < 1 ↔ (1 − (1 / 𝐷)) ∈ ℝ+)) |
29 | 25, 28 | mpbid 231 | . . . 4 ⊢ (𝜑 → (1 − (1 / 𝐷)) ∈ ℝ+) |
30 | 3nn0 12181 | . . . . . . . . 9 ⊢ 3 ∈ ℕ0 | |
31 | 2nn 11976 | . . . . . . . . 9 ⊢ 2 ∈ ℕ | |
32 | 30, 31 | decnncl 12386 | . . . . . . . 8 ⊢ ;32 ∈ ℕ |
33 | nnrp 12670 | . . . . . . . 8 ⊢ (;32 ∈ ℕ → ;32 ∈ ℝ+) | |
34 | 32, 33 | ax-mp 5 | . . . . . . 7 ⊢ ;32 ∈ ℝ+ |
35 | pntlem1.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
36 | rpmulcl 12682 | . . . . . . 7 ⊢ ((;32 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (;32 · 𝐵) ∈ ℝ+) | |
37 | 34, 35, 36 | sylancr 586 | . . . . . 6 ⊢ (𝜑 → (;32 · 𝐵) ∈ ℝ+) |
38 | 7, 37 | rpdivcld 12718 | . . . . 5 ⊢ (𝜑 → (𝐿 / (;32 · 𝐵)) ∈ ℝ+) |
39 | 2z 12282 | . . . . . 6 ⊢ 2 ∈ ℤ | |
40 | rpexpcl 13729 | . . . . . 6 ⊢ ((𝐷 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝐷↑2) ∈ ℝ+) | |
41 | 13, 39, 40 | sylancl 585 | . . . . 5 ⊢ (𝜑 → (𝐷↑2) ∈ ℝ+) |
42 | 38, 41 | rpdivcld 12718 | . . . 4 ⊢ (𝜑 → ((𝐿 / (;32 · 𝐵)) / (𝐷↑2)) ∈ ℝ+) |
43 | 29, 42 | rpmulcld 12717 | . . 3 ⊢ (𝜑 → ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) ∈ ℝ+) |
44 | 14, 43 | eqeltrid 2843 | . 2 ⊢ (𝜑 → 𝐹 ∈ ℝ+) |
45 | 7, 13, 44 | 3jca 1126 | 1 ⊢ (𝜑 → (𝐿 ∈ ℝ+ ∧ 𝐷 ∈ ℝ+ ∧ 𝐹 ∈ ℝ+)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 ℝcr 10801 0cc0 10802 1c1 10803 + caddc 10805 · cmul 10807 < clt 10940 − cmin 11135 / cdiv 11562 ℕcn 11903 2c2 11958 3c3 11959 ℤcz 12249 ;cdc 12366 ℝ+crp 12659 (,)cioo 13008 ↑cexp 13710 ψcchp 26147 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-rp 12660 df-ioo 13012 df-seq 13650 df-exp 13711 |
This theorem is referenced by: pntlemc 26648 pntlema 26649 pntlemb 26650 pntlemq 26654 pntlemr 26655 pntlemj 26656 pntlemf 26658 pntlemo 26660 pntleml 26664 |
Copyright terms: Public domain | W3C validator |