| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > emcllem4 | Structured version Visualization version GIF version | ||
| Description: Lemma for emcl 26982. The difference between series 𝐹 and 𝐺 tends to zero. (Contributed by Mario Carneiro, 11-Jul-2014.) |
| Ref | Expression |
|---|---|
| emcl.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛))) |
| emcl.2 | ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))) |
| emcl.3 | ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛)))) |
| Ref | Expression |
|---|---|
| emcllem4 | ⊢ 𝐻 ⇝ 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz 12903 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
| 2 | 1zzd 12631 | . . 3 ⊢ (⊤ → 1 ∈ ℤ) | |
| 3 | ax-1cn 11195 | . . . 4 ⊢ 1 ∈ ℂ | |
| 4 | divcnv 15871 | . . . 4 ⊢ (1 ∈ ℂ → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0) | |
| 5 | 3, 4 | mp1i 13 | . . 3 ⊢ (⊤ → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0) |
| 6 | emcl.3 | . . . . 5 ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛)))) | |
| 7 | nnex 12254 | . . . . . 6 ⊢ ℕ ∈ V | |
| 8 | 7 | mptex 7225 | . . . . 5 ⊢ (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛)))) ∈ V |
| 9 | 6, 8 | eqeltri 2829 | . . . 4 ⊢ 𝐻 ∈ V |
| 10 | 9 | a1i 11 | . . 3 ⊢ (⊤ → 𝐻 ∈ V) |
| 11 | oveq2 7421 | . . . . . 6 ⊢ (𝑛 = 𝑚 → (1 / 𝑛) = (1 / 𝑚)) | |
| 12 | eqid 2734 | . . . . . 6 ⊢ (𝑛 ∈ ℕ ↦ (1 / 𝑛)) = (𝑛 ∈ ℕ ↦ (1 / 𝑛)) | |
| 13 | ovex 7446 | . . . . . 6 ⊢ (1 / 𝑚) ∈ V | |
| 14 | 11, 12, 13 | fvmpt 6996 | . . . . 5 ⊢ (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑚) = (1 / 𝑚)) |
| 15 | 14 | adantl 481 | . . . 4 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑚) = (1 / 𝑚)) |
| 16 | nnrecre 12290 | . . . . 5 ⊢ (𝑚 ∈ ℕ → (1 / 𝑚) ∈ ℝ) | |
| 17 | 16 | adantl 481 | . . . 4 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (1 / 𝑚) ∈ ℝ) |
| 18 | 15, 17 | eqeltrd 2833 | . . 3 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑚) ∈ ℝ) |
| 19 | 11 | oveq2d 7429 | . . . . . . . 8 ⊢ (𝑛 = 𝑚 → (1 + (1 / 𝑛)) = (1 + (1 / 𝑚))) |
| 20 | 19 | fveq2d 6890 | . . . . . . 7 ⊢ (𝑛 = 𝑚 → (log‘(1 + (1 / 𝑛))) = (log‘(1 + (1 / 𝑚)))) |
| 21 | fvex 6899 | . . . . . . 7 ⊢ (log‘(1 + (1 / 𝑚))) ∈ V | |
| 22 | 20, 6, 21 | fvmpt 6996 | . . . . . 6 ⊢ (𝑚 ∈ ℕ → (𝐻‘𝑚) = (log‘(1 + (1 / 𝑚)))) |
| 23 | 22 | adantl 481 | . . . . 5 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (𝐻‘𝑚) = (log‘(1 + (1 / 𝑚)))) |
| 24 | 1rp 13020 | . . . . . . . 8 ⊢ 1 ∈ ℝ+ | |
| 25 | nnrp 13028 | . . . . . . . . . 10 ⊢ (𝑚 ∈ ℕ → 𝑚 ∈ ℝ+) | |
| 26 | 25 | adantl 481 | . . . . . . . . 9 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℝ+) |
| 27 | 26 | rpreccld 13069 | . . . . . . . 8 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (1 / 𝑚) ∈ ℝ+) |
| 28 | rpaddcl 13039 | . . . . . . . 8 ⊢ ((1 ∈ ℝ+ ∧ (1 / 𝑚) ∈ ℝ+) → (1 + (1 / 𝑚)) ∈ ℝ+) | |
| 29 | 24, 27, 28 | sylancr 587 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (1 + (1 / 𝑚)) ∈ ℝ+) |
| 30 | 29 | rpred 13059 | . . . . . 6 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (1 + (1 / 𝑚)) ∈ ℝ) |
| 31 | 1re 11243 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
| 32 | ltaddrp 13054 | . . . . . . 7 ⊢ ((1 ∈ ℝ ∧ (1 / 𝑚) ∈ ℝ+) → 1 < (1 + (1 / 𝑚))) | |
| 33 | 31, 27, 32 | sylancr 587 | . . . . . 6 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → 1 < (1 + (1 / 𝑚))) |
| 34 | 30, 33 | rplogcld 26607 | . . . . 5 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (log‘(1 + (1 / 𝑚))) ∈ ℝ+) |
| 35 | 23, 34 | eqeltrd 2833 | . . . 4 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (𝐻‘𝑚) ∈ ℝ+) |
| 36 | 35 | rpred 13059 | . . 3 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (𝐻‘𝑚) ∈ ℝ) |
| 37 | 29 | relogcld 26601 | . . . . 5 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (log‘(1 + (1 / 𝑚))) ∈ ℝ) |
| 38 | efgt1p 16133 | . . . . . . . 8 ⊢ ((1 / 𝑚) ∈ ℝ+ → (1 + (1 / 𝑚)) < (exp‘(1 / 𝑚))) | |
| 39 | 27, 38 | syl 17 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (1 + (1 / 𝑚)) < (exp‘(1 / 𝑚))) |
| 40 | 17 | rpefcld 16123 | . . . . . . . 8 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (exp‘(1 / 𝑚)) ∈ ℝ+) |
| 41 | logltb 26578 | . . . . . . . 8 ⊢ (((1 + (1 / 𝑚)) ∈ ℝ+ ∧ (exp‘(1 / 𝑚)) ∈ ℝ+) → ((1 + (1 / 𝑚)) < (exp‘(1 / 𝑚)) ↔ (log‘(1 + (1 / 𝑚))) < (log‘(exp‘(1 / 𝑚))))) | |
| 42 | 29, 40, 41 | syl2anc 584 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → ((1 + (1 / 𝑚)) < (exp‘(1 / 𝑚)) ↔ (log‘(1 + (1 / 𝑚))) < (log‘(exp‘(1 / 𝑚))))) |
| 43 | 39, 42 | mpbid 232 | . . . . . 6 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (log‘(1 + (1 / 𝑚))) < (log‘(exp‘(1 / 𝑚)))) |
| 44 | 17 | relogefd 26606 | . . . . . 6 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (log‘(exp‘(1 / 𝑚))) = (1 / 𝑚)) |
| 45 | 43, 44 | breqtrd 5149 | . . . . 5 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (log‘(1 + (1 / 𝑚))) < (1 / 𝑚)) |
| 46 | 37, 17, 45 | ltled 11391 | . . . 4 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (log‘(1 + (1 / 𝑚))) ≤ (1 / 𝑚)) |
| 47 | 46, 23, 15 | 3brtr4d 5155 | . . 3 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (𝐻‘𝑚) ≤ ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑚)) |
| 48 | 35 | rpge0d 13063 | . . 3 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → 0 ≤ (𝐻‘𝑚)) |
| 49 | 1, 2, 5, 10, 18, 36, 47, 48 | climsqz2 15660 | . 2 ⊢ (⊤ → 𝐻 ⇝ 0) |
| 50 | 49 | mptru 1546 | 1 ⊢ 𝐻 ⇝ 0 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1539 ⊤wtru 1540 ∈ wcel 2107 Vcvv 3463 class class class wbr 5123 ↦ cmpt 5205 ‘cfv 6541 (class class class)co 7413 ℂcc 11135 ℝcr 11136 0cc0 11137 1c1 11138 + caddc 11140 < clt 11277 ≤ cle 11278 − cmin 11474 / cdiv 11902 ℕcn 12248 ℝ+crp 13016 ...cfz 13529 ⇝ cli 15502 Σcsu 15704 expce 16079 logclog 26532 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-inf2 9663 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 ax-addf 11216 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-om 7870 df-1st 7996 df-2nd 7997 df-supp 8168 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-er 8727 df-map 8850 df-pm 8851 df-ixp 8920 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-fsupp 9384 df-fi 9433 df-sup 9464 df-inf 9465 df-oi 9532 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-dec 12717 df-uz 12861 df-q 12973 df-rp 13017 df-xneg 13136 df-xadd 13137 df-xmul 13138 df-ioo 13373 df-ioc 13374 df-ico 13375 df-icc 13376 df-fz 13530 df-fzo 13677 df-fl 13814 df-mod 13892 df-seq 14025 df-exp 14085 df-fac 14295 df-bc 14324 df-hash 14352 df-shft 15088 df-cj 15120 df-re 15121 df-im 15122 df-sqrt 15256 df-abs 15257 df-limsup 15489 df-clim 15506 df-rlim 15507 df-sum 15705 df-ef 16085 df-sin 16087 df-cos 16088 df-pi 16090 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17230 df-ress 17253 df-plusg 17286 df-mulr 17287 df-starv 17288 df-sca 17289 df-vsca 17290 df-ip 17291 df-tset 17292 df-ple 17293 df-ds 17295 df-unif 17296 df-hom 17297 df-cco 17298 df-rest 17438 df-topn 17439 df-0g 17457 df-gsum 17458 df-topgen 17459 df-pt 17460 df-prds 17463 df-xrs 17518 df-qtop 17523 df-imas 17524 df-xps 17526 df-mre 17600 df-mrc 17601 df-acs 17603 df-mgm 18622 df-sgrp 18701 df-mnd 18717 df-submnd 18766 df-mulg 19055 df-cntz 19304 df-cmn 19768 df-psmet 21318 df-xmet 21319 df-met 21320 df-bl 21321 df-mopn 21322 df-fbas 21323 df-fg 21324 df-cnfld 21327 df-top 22848 df-topon 22865 df-topsp 22887 df-bases 22900 df-cld 22973 df-ntr 22974 df-cls 22975 df-nei 23052 df-lp 23090 df-perf 23091 df-cn 23181 df-cnp 23182 df-haus 23269 df-tx 23516 df-hmeo 23709 df-fil 23800 df-fm 23892 df-flim 23893 df-flf 23894 df-xms 24275 df-ms 24276 df-tms 24277 df-cncf 24840 df-limc 25837 df-dv 25838 df-log 26534 |
| This theorem is referenced by: emcllem6 26980 |
| Copyright terms: Public domain | W3C validator |