MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  emcllem4 Structured version   Visualization version   GIF version

Theorem emcllem4 26976
Description: Lemma for emcl 26980. The difference between series 𝐹 and 𝐺 tends to zero. (Contributed by Mario Carneiro, 11-Jul-2014.)
Hypotheses
Ref Expression
emcl.1 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)))
emcl.2 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))))
emcl.3 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛))))
Assertion
Ref Expression
emcllem4 𝐻 ⇝ 0
Distinct variable groups:   𝑚,𝐻   𝑚,𝑛
Allowed substitution hints:   𝐹(𝑚,𝑛)   𝐺(𝑚,𝑛)   𝐻(𝑛)

Proof of Theorem emcllem4
StepHypRef Expression
1 nnuz 12898 . . 3 ℕ = (ℤ‘1)
2 1zzd 12626 . . 3 (⊤ → 1 ∈ ℤ)
3 ax-1cn 11198 . . . 4 1 ∈ ℂ
4 divcnv 15835 . . . 4 (1 ∈ ℂ → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0)
53, 4mp1i 13 . . 3 (⊤ → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0)
6 emcl.3 . . . . 5 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛))))
7 nnex 12251 . . . . . 6 ℕ ∈ V
87mptex 7235 . . . . 5 (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛)))) ∈ V
96, 8eqeltri 2821 . . . 4 𝐻 ∈ V
109a1i 11 . . 3 (⊤ → 𝐻 ∈ V)
11 oveq2 7427 . . . . . 6 (𝑛 = 𝑚 → (1 / 𝑛) = (1 / 𝑚))
12 eqid 2725 . . . . . 6 (𝑛 ∈ ℕ ↦ (1 / 𝑛)) = (𝑛 ∈ ℕ ↦ (1 / 𝑛))
13 ovex 7452 . . . . . 6 (1 / 𝑚) ∈ V
1411, 12, 13fvmpt 7004 . . . . 5 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑚) = (1 / 𝑚))
1514adantl 480 . . . 4 ((⊤ ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑚) = (1 / 𝑚))
16 nnrecre 12287 . . . . 5 (𝑚 ∈ ℕ → (1 / 𝑚) ∈ ℝ)
1716adantl 480 . . . 4 ((⊤ ∧ 𝑚 ∈ ℕ) → (1 / 𝑚) ∈ ℝ)
1815, 17eqeltrd 2825 . . 3 ((⊤ ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑚) ∈ ℝ)
1911oveq2d 7435 . . . . . . . 8 (𝑛 = 𝑚 → (1 + (1 / 𝑛)) = (1 + (1 / 𝑚)))
2019fveq2d 6900 . . . . . . 7 (𝑛 = 𝑚 → (log‘(1 + (1 / 𝑛))) = (log‘(1 + (1 / 𝑚))))
21 fvex 6909 . . . . . . 7 (log‘(1 + (1 / 𝑚))) ∈ V
2220, 6, 21fvmpt 7004 . . . . . 6 (𝑚 ∈ ℕ → (𝐻𝑚) = (log‘(1 + (1 / 𝑚))))
2322adantl 480 . . . . 5 ((⊤ ∧ 𝑚 ∈ ℕ) → (𝐻𝑚) = (log‘(1 + (1 / 𝑚))))
24 1rp 13013 . . . . . . . 8 1 ∈ ℝ+
25 nnrp 13020 . . . . . . . . . 10 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ+)
2625adantl 480 . . . . . . . . 9 ((⊤ ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℝ+)
2726rpreccld 13061 . . . . . . . 8 ((⊤ ∧ 𝑚 ∈ ℕ) → (1 / 𝑚) ∈ ℝ+)
28 rpaddcl 13031 . . . . . . . 8 ((1 ∈ ℝ+ ∧ (1 / 𝑚) ∈ ℝ+) → (1 + (1 / 𝑚)) ∈ ℝ+)
2924, 27, 28sylancr 585 . . . . . . 7 ((⊤ ∧ 𝑚 ∈ ℕ) → (1 + (1 / 𝑚)) ∈ ℝ+)
3029rpred 13051 . . . . . 6 ((⊤ ∧ 𝑚 ∈ ℕ) → (1 + (1 / 𝑚)) ∈ ℝ)
31 1re 11246 . . . . . . 7 1 ∈ ℝ
32 ltaddrp 13046 . . . . . . 7 ((1 ∈ ℝ ∧ (1 / 𝑚) ∈ ℝ+) → 1 < (1 + (1 / 𝑚)))
3331, 27, 32sylancr 585 . . . . . 6 ((⊤ ∧ 𝑚 ∈ ℕ) → 1 < (1 + (1 / 𝑚)))
3430, 33rplogcld 26608 . . . . 5 ((⊤ ∧ 𝑚 ∈ ℕ) → (log‘(1 + (1 / 𝑚))) ∈ ℝ+)
3523, 34eqeltrd 2825 . . . 4 ((⊤ ∧ 𝑚 ∈ ℕ) → (𝐻𝑚) ∈ ℝ+)
3635rpred 13051 . . 3 ((⊤ ∧ 𝑚 ∈ ℕ) → (𝐻𝑚) ∈ ℝ)
3729relogcld 26602 . . . . 5 ((⊤ ∧ 𝑚 ∈ ℕ) → (log‘(1 + (1 / 𝑚))) ∈ ℝ)
38 efgt1p 16095 . . . . . . . 8 ((1 / 𝑚) ∈ ℝ+ → (1 + (1 / 𝑚)) < (exp‘(1 / 𝑚)))
3927, 38syl 17 . . . . . . 7 ((⊤ ∧ 𝑚 ∈ ℕ) → (1 + (1 / 𝑚)) < (exp‘(1 / 𝑚)))
4017rpefcld 16085 . . . . . . . 8 ((⊤ ∧ 𝑚 ∈ ℕ) → (exp‘(1 / 𝑚)) ∈ ℝ+)
41 logltb 26579 . . . . . . . 8 (((1 + (1 / 𝑚)) ∈ ℝ+ ∧ (exp‘(1 / 𝑚)) ∈ ℝ+) → ((1 + (1 / 𝑚)) < (exp‘(1 / 𝑚)) ↔ (log‘(1 + (1 / 𝑚))) < (log‘(exp‘(1 / 𝑚)))))
4229, 40, 41syl2anc 582 . . . . . . 7 ((⊤ ∧ 𝑚 ∈ ℕ) → ((1 + (1 / 𝑚)) < (exp‘(1 / 𝑚)) ↔ (log‘(1 + (1 / 𝑚))) < (log‘(exp‘(1 / 𝑚)))))
4339, 42mpbid 231 . . . . . 6 ((⊤ ∧ 𝑚 ∈ ℕ) → (log‘(1 + (1 / 𝑚))) < (log‘(exp‘(1 / 𝑚))))
4417relogefd 26607 . . . . . 6 ((⊤ ∧ 𝑚 ∈ ℕ) → (log‘(exp‘(1 / 𝑚))) = (1 / 𝑚))
4543, 44breqtrd 5175 . . . . 5 ((⊤ ∧ 𝑚 ∈ ℕ) → (log‘(1 + (1 / 𝑚))) < (1 / 𝑚))
4637, 17, 45ltled 11394 . . . 4 ((⊤ ∧ 𝑚 ∈ ℕ) → (log‘(1 + (1 / 𝑚))) ≤ (1 / 𝑚))
4746, 23, 153brtr4d 5181 . . 3 ((⊤ ∧ 𝑚 ∈ ℕ) → (𝐻𝑚) ≤ ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑚))
4835rpge0d 13055 . . 3 ((⊤ ∧ 𝑚 ∈ ℕ) → 0 ≤ (𝐻𝑚))
491, 2, 5, 10, 18, 36, 47, 48climsqz2 15622 . 2 (⊤ → 𝐻 ⇝ 0)
5049mptru 1540 1 𝐻 ⇝ 0
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394   = wceq 1533  wtru 1534  wcel 2098  Vcvv 3461   class class class wbr 5149  cmpt 5232  cfv 6549  (class class class)co 7419  cc 11138  cr 11139  0cc0 11140  1c1 11141   + caddc 11143   < clt 11280  cle 11281  cmin 11476   / cdiv 11903  cn 12245  +crp 13009  ...cfz 13519  cli 15464  Σcsu 15668  expce 16041  logclog 26533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9666  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218  ax-addf 11219
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8725  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-fi 9436  df-sup 9467  df-inf 9468  df-oi 9535  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-q 12966  df-rp 13010  df-xneg 13127  df-xadd 13128  df-xmul 13129  df-ioo 13363  df-ioc 13364  df-ico 13365  df-icc 13366  df-fz 13520  df-fzo 13663  df-fl 13793  df-mod 13871  df-seq 14003  df-exp 14063  df-fac 14269  df-bc 14298  df-hash 14326  df-shft 15050  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-limsup 15451  df-clim 15468  df-rlim 15469  df-sum 15669  df-ef 16047  df-sin 16049  df-cos 16050  df-pi 16052  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-starv 17251  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-unif 17259  df-hom 17260  df-cco 17261  df-rest 17407  df-topn 17408  df-0g 17426  df-gsum 17427  df-topgen 17428  df-pt 17429  df-prds 17432  df-xrs 17487  df-qtop 17492  df-imas 17493  df-xps 17495  df-mre 17569  df-mrc 17570  df-acs 17572  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-submnd 18744  df-mulg 19032  df-cntz 19280  df-cmn 19749  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22840  df-topon 22857  df-topsp 22879  df-bases 22893  df-cld 22967  df-ntr 22968  df-cls 22969  df-nei 23046  df-lp 23084  df-perf 23085  df-cn 23175  df-cnp 23176  df-haus 23263  df-tx 23510  df-hmeo 23703  df-fil 23794  df-fm 23886  df-flim 23887  df-flf 23888  df-xms 24270  df-ms 24271  df-tms 24272  df-cncf 24842  df-limc 25839  df-dv 25840  df-log 26535
This theorem is referenced by:  emcllem6  26978
  Copyright terms: Public domain W3C validator