![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > emcllem4 | Structured version Visualization version GIF version |
Description: Lemma for emcl 26980. The difference between series 𝐹 and 𝐺 tends to zero. (Contributed by Mario Carneiro, 11-Jul-2014.) |
Ref | Expression |
---|---|
emcl.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛))) |
emcl.2 | ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))) |
emcl.3 | ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛)))) |
Ref | Expression |
---|---|
emcllem4 | ⊢ 𝐻 ⇝ 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnuz 12898 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
2 | 1zzd 12626 | . . 3 ⊢ (⊤ → 1 ∈ ℤ) | |
3 | ax-1cn 11198 | . . . 4 ⊢ 1 ∈ ℂ | |
4 | divcnv 15835 | . . . 4 ⊢ (1 ∈ ℂ → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0) | |
5 | 3, 4 | mp1i 13 | . . 3 ⊢ (⊤ → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0) |
6 | emcl.3 | . . . . 5 ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛)))) | |
7 | nnex 12251 | . . . . . 6 ⊢ ℕ ∈ V | |
8 | 7 | mptex 7235 | . . . . 5 ⊢ (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛)))) ∈ V |
9 | 6, 8 | eqeltri 2821 | . . . 4 ⊢ 𝐻 ∈ V |
10 | 9 | a1i 11 | . . 3 ⊢ (⊤ → 𝐻 ∈ V) |
11 | oveq2 7427 | . . . . . 6 ⊢ (𝑛 = 𝑚 → (1 / 𝑛) = (1 / 𝑚)) | |
12 | eqid 2725 | . . . . . 6 ⊢ (𝑛 ∈ ℕ ↦ (1 / 𝑛)) = (𝑛 ∈ ℕ ↦ (1 / 𝑛)) | |
13 | ovex 7452 | . . . . . 6 ⊢ (1 / 𝑚) ∈ V | |
14 | 11, 12, 13 | fvmpt 7004 | . . . . 5 ⊢ (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑚) = (1 / 𝑚)) |
15 | 14 | adantl 480 | . . . 4 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑚) = (1 / 𝑚)) |
16 | nnrecre 12287 | . . . . 5 ⊢ (𝑚 ∈ ℕ → (1 / 𝑚) ∈ ℝ) | |
17 | 16 | adantl 480 | . . . 4 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (1 / 𝑚) ∈ ℝ) |
18 | 15, 17 | eqeltrd 2825 | . . 3 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑚) ∈ ℝ) |
19 | 11 | oveq2d 7435 | . . . . . . . 8 ⊢ (𝑛 = 𝑚 → (1 + (1 / 𝑛)) = (1 + (1 / 𝑚))) |
20 | 19 | fveq2d 6900 | . . . . . . 7 ⊢ (𝑛 = 𝑚 → (log‘(1 + (1 / 𝑛))) = (log‘(1 + (1 / 𝑚)))) |
21 | fvex 6909 | . . . . . . 7 ⊢ (log‘(1 + (1 / 𝑚))) ∈ V | |
22 | 20, 6, 21 | fvmpt 7004 | . . . . . 6 ⊢ (𝑚 ∈ ℕ → (𝐻‘𝑚) = (log‘(1 + (1 / 𝑚)))) |
23 | 22 | adantl 480 | . . . . 5 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (𝐻‘𝑚) = (log‘(1 + (1 / 𝑚)))) |
24 | 1rp 13013 | . . . . . . . 8 ⊢ 1 ∈ ℝ+ | |
25 | nnrp 13020 | . . . . . . . . . 10 ⊢ (𝑚 ∈ ℕ → 𝑚 ∈ ℝ+) | |
26 | 25 | adantl 480 | . . . . . . . . 9 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℝ+) |
27 | 26 | rpreccld 13061 | . . . . . . . 8 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (1 / 𝑚) ∈ ℝ+) |
28 | rpaddcl 13031 | . . . . . . . 8 ⊢ ((1 ∈ ℝ+ ∧ (1 / 𝑚) ∈ ℝ+) → (1 + (1 / 𝑚)) ∈ ℝ+) | |
29 | 24, 27, 28 | sylancr 585 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (1 + (1 / 𝑚)) ∈ ℝ+) |
30 | 29 | rpred 13051 | . . . . . 6 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (1 + (1 / 𝑚)) ∈ ℝ) |
31 | 1re 11246 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
32 | ltaddrp 13046 | . . . . . . 7 ⊢ ((1 ∈ ℝ ∧ (1 / 𝑚) ∈ ℝ+) → 1 < (1 + (1 / 𝑚))) | |
33 | 31, 27, 32 | sylancr 585 | . . . . . 6 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → 1 < (1 + (1 / 𝑚))) |
34 | 30, 33 | rplogcld 26608 | . . . . 5 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (log‘(1 + (1 / 𝑚))) ∈ ℝ+) |
35 | 23, 34 | eqeltrd 2825 | . . . 4 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (𝐻‘𝑚) ∈ ℝ+) |
36 | 35 | rpred 13051 | . . 3 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (𝐻‘𝑚) ∈ ℝ) |
37 | 29 | relogcld 26602 | . . . . 5 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (log‘(1 + (1 / 𝑚))) ∈ ℝ) |
38 | efgt1p 16095 | . . . . . . . 8 ⊢ ((1 / 𝑚) ∈ ℝ+ → (1 + (1 / 𝑚)) < (exp‘(1 / 𝑚))) | |
39 | 27, 38 | syl 17 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (1 + (1 / 𝑚)) < (exp‘(1 / 𝑚))) |
40 | 17 | rpefcld 16085 | . . . . . . . 8 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (exp‘(1 / 𝑚)) ∈ ℝ+) |
41 | logltb 26579 | . . . . . . . 8 ⊢ (((1 + (1 / 𝑚)) ∈ ℝ+ ∧ (exp‘(1 / 𝑚)) ∈ ℝ+) → ((1 + (1 / 𝑚)) < (exp‘(1 / 𝑚)) ↔ (log‘(1 + (1 / 𝑚))) < (log‘(exp‘(1 / 𝑚))))) | |
42 | 29, 40, 41 | syl2anc 582 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → ((1 + (1 / 𝑚)) < (exp‘(1 / 𝑚)) ↔ (log‘(1 + (1 / 𝑚))) < (log‘(exp‘(1 / 𝑚))))) |
43 | 39, 42 | mpbid 231 | . . . . . 6 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (log‘(1 + (1 / 𝑚))) < (log‘(exp‘(1 / 𝑚)))) |
44 | 17 | relogefd 26607 | . . . . . 6 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (log‘(exp‘(1 / 𝑚))) = (1 / 𝑚)) |
45 | 43, 44 | breqtrd 5175 | . . . . 5 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (log‘(1 + (1 / 𝑚))) < (1 / 𝑚)) |
46 | 37, 17, 45 | ltled 11394 | . . . 4 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (log‘(1 + (1 / 𝑚))) ≤ (1 / 𝑚)) |
47 | 46, 23, 15 | 3brtr4d 5181 | . . 3 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (𝐻‘𝑚) ≤ ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑚)) |
48 | 35 | rpge0d 13055 | . . 3 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → 0 ≤ (𝐻‘𝑚)) |
49 | 1, 2, 5, 10, 18, 36, 47, 48 | climsqz2 15622 | . 2 ⊢ (⊤ → 𝐻 ⇝ 0) |
50 | 49 | mptru 1540 | 1 ⊢ 𝐻 ⇝ 0 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 = wceq 1533 ⊤wtru 1534 ∈ wcel 2098 Vcvv 3461 class class class wbr 5149 ↦ cmpt 5232 ‘cfv 6549 (class class class)co 7419 ℂcc 11138 ℝcr 11139 0cc0 11140 1c1 11141 + caddc 11143 < clt 11280 ≤ cle 11281 − cmin 11476 / cdiv 11903 ℕcn 12245 ℝ+crp 13009 ...cfz 13519 ⇝ cli 15464 Σcsu 15668 expce 16041 logclog 26533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-inf2 9666 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 ax-pre-sup 11218 ax-addf 11219 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-of 7685 df-om 7872 df-1st 7994 df-2nd 7995 df-supp 8166 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-er 8725 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9388 df-fi 9436 df-sup 9467 df-inf 9468 df-oi 9535 df-card 9964 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-div 11904 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12506 df-z 12592 df-dec 12711 df-uz 12856 df-q 12966 df-rp 13010 df-xneg 13127 df-xadd 13128 df-xmul 13129 df-ioo 13363 df-ioc 13364 df-ico 13365 df-icc 13366 df-fz 13520 df-fzo 13663 df-fl 13793 df-mod 13871 df-seq 14003 df-exp 14063 df-fac 14269 df-bc 14298 df-hash 14326 df-shft 15050 df-cj 15082 df-re 15083 df-im 15084 df-sqrt 15218 df-abs 15219 df-limsup 15451 df-clim 15468 df-rlim 15469 df-sum 15669 df-ef 16047 df-sin 16049 df-cos 16050 df-pi 16052 df-struct 17119 df-sets 17136 df-slot 17154 df-ndx 17166 df-base 17184 df-ress 17213 df-plusg 17249 df-mulr 17250 df-starv 17251 df-sca 17252 df-vsca 17253 df-ip 17254 df-tset 17255 df-ple 17256 df-ds 17258 df-unif 17259 df-hom 17260 df-cco 17261 df-rest 17407 df-topn 17408 df-0g 17426 df-gsum 17427 df-topgen 17428 df-pt 17429 df-prds 17432 df-xrs 17487 df-qtop 17492 df-imas 17493 df-xps 17495 df-mre 17569 df-mrc 17570 df-acs 17572 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-submnd 18744 df-mulg 19032 df-cntz 19280 df-cmn 19749 df-psmet 21288 df-xmet 21289 df-met 21290 df-bl 21291 df-mopn 21292 df-fbas 21293 df-fg 21294 df-cnfld 21297 df-top 22840 df-topon 22857 df-topsp 22879 df-bases 22893 df-cld 22967 df-ntr 22968 df-cls 22969 df-nei 23046 df-lp 23084 df-perf 23085 df-cn 23175 df-cnp 23176 df-haus 23263 df-tx 23510 df-hmeo 23703 df-fil 23794 df-fm 23886 df-flim 23887 df-flf 23888 df-xms 24270 df-ms 24271 df-tms 24272 df-cncf 24842 df-limc 25839 df-dv 25840 df-log 26535 |
This theorem is referenced by: emcllem6 26978 |
Copyright terms: Public domain | W3C validator |