Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > emcllem4 | Structured version Visualization version GIF version |
Description: Lemma for emcl 26057. The difference between series 𝐹 and 𝐺 tends to zero. (Contributed by Mario Carneiro, 11-Jul-2014.) |
Ref | Expression |
---|---|
emcl.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛))) |
emcl.2 | ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))) |
emcl.3 | ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛)))) |
Ref | Expression |
---|---|
emcllem4 | ⊢ 𝐻 ⇝ 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnuz 12550 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
2 | 1zzd 12281 | . . 3 ⊢ (⊤ → 1 ∈ ℤ) | |
3 | ax-1cn 10860 | . . . 4 ⊢ 1 ∈ ℂ | |
4 | divcnv 15493 | . . . 4 ⊢ (1 ∈ ℂ → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0) | |
5 | 3, 4 | mp1i 13 | . . 3 ⊢ (⊤ → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0) |
6 | emcl.3 | . . . . 5 ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛)))) | |
7 | nnex 11909 | . . . . . 6 ⊢ ℕ ∈ V | |
8 | 7 | mptex 7081 | . . . . 5 ⊢ (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛)))) ∈ V |
9 | 6, 8 | eqeltri 2835 | . . . 4 ⊢ 𝐻 ∈ V |
10 | 9 | a1i 11 | . . 3 ⊢ (⊤ → 𝐻 ∈ V) |
11 | oveq2 7263 | . . . . . 6 ⊢ (𝑛 = 𝑚 → (1 / 𝑛) = (1 / 𝑚)) | |
12 | eqid 2738 | . . . . . 6 ⊢ (𝑛 ∈ ℕ ↦ (1 / 𝑛)) = (𝑛 ∈ ℕ ↦ (1 / 𝑛)) | |
13 | ovex 7288 | . . . . . 6 ⊢ (1 / 𝑚) ∈ V | |
14 | 11, 12, 13 | fvmpt 6857 | . . . . 5 ⊢ (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑚) = (1 / 𝑚)) |
15 | 14 | adantl 481 | . . . 4 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑚) = (1 / 𝑚)) |
16 | nnrecre 11945 | . . . . 5 ⊢ (𝑚 ∈ ℕ → (1 / 𝑚) ∈ ℝ) | |
17 | 16 | adantl 481 | . . . 4 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (1 / 𝑚) ∈ ℝ) |
18 | 15, 17 | eqeltrd 2839 | . . 3 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑚) ∈ ℝ) |
19 | 11 | oveq2d 7271 | . . . . . . . 8 ⊢ (𝑛 = 𝑚 → (1 + (1 / 𝑛)) = (1 + (1 / 𝑚))) |
20 | 19 | fveq2d 6760 | . . . . . . 7 ⊢ (𝑛 = 𝑚 → (log‘(1 + (1 / 𝑛))) = (log‘(1 + (1 / 𝑚)))) |
21 | fvex 6769 | . . . . . . 7 ⊢ (log‘(1 + (1 / 𝑚))) ∈ V | |
22 | 20, 6, 21 | fvmpt 6857 | . . . . . 6 ⊢ (𝑚 ∈ ℕ → (𝐻‘𝑚) = (log‘(1 + (1 / 𝑚)))) |
23 | 22 | adantl 481 | . . . . 5 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (𝐻‘𝑚) = (log‘(1 + (1 / 𝑚)))) |
24 | 1rp 12663 | . . . . . . . 8 ⊢ 1 ∈ ℝ+ | |
25 | nnrp 12670 | . . . . . . . . . 10 ⊢ (𝑚 ∈ ℕ → 𝑚 ∈ ℝ+) | |
26 | 25 | adantl 481 | . . . . . . . . 9 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℝ+) |
27 | 26 | rpreccld 12711 | . . . . . . . 8 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (1 / 𝑚) ∈ ℝ+) |
28 | rpaddcl 12681 | . . . . . . . 8 ⊢ ((1 ∈ ℝ+ ∧ (1 / 𝑚) ∈ ℝ+) → (1 + (1 / 𝑚)) ∈ ℝ+) | |
29 | 24, 27, 28 | sylancr 586 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (1 + (1 / 𝑚)) ∈ ℝ+) |
30 | 29 | rpred 12701 | . . . . . 6 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (1 + (1 / 𝑚)) ∈ ℝ) |
31 | 1re 10906 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
32 | ltaddrp 12696 | . . . . . . 7 ⊢ ((1 ∈ ℝ ∧ (1 / 𝑚) ∈ ℝ+) → 1 < (1 + (1 / 𝑚))) | |
33 | 31, 27, 32 | sylancr 586 | . . . . . 6 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → 1 < (1 + (1 / 𝑚))) |
34 | 30, 33 | rplogcld 25689 | . . . . 5 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (log‘(1 + (1 / 𝑚))) ∈ ℝ+) |
35 | 23, 34 | eqeltrd 2839 | . . . 4 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (𝐻‘𝑚) ∈ ℝ+) |
36 | 35 | rpred 12701 | . . 3 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (𝐻‘𝑚) ∈ ℝ) |
37 | 29 | relogcld 25683 | . . . . 5 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (log‘(1 + (1 / 𝑚))) ∈ ℝ) |
38 | efgt1p 15752 | . . . . . . . 8 ⊢ ((1 / 𝑚) ∈ ℝ+ → (1 + (1 / 𝑚)) < (exp‘(1 / 𝑚))) | |
39 | 27, 38 | syl 17 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (1 + (1 / 𝑚)) < (exp‘(1 / 𝑚))) |
40 | 17 | rpefcld 15742 | . . . . . . . 8 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (exp‘(1 / 𝑚)) ∈ ℝ+) |
41 | logltb 25660 | . . . . . . . 8 ⊢ (((1 + (1 / 𝑚)) ∈ ℝ+ ∧ (exp‘(1 / 𝑚)) ∈ ℝ+) → ((1 + (1 / 𝑚)) < (exp‘(1 / 𝑚)) ↔ (log‘(1 + (1 / 𝑚))) < (log‘(exp‘(1 / 𝑚))))) | |
42 | 29, 40, 41 | syl2anc 583 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → ((1 + (1 / 𝑚)) < (exp‘(1 / 𝑚)) ↔ (log‘(1 + (1 / 𝑚))) < (log‘(exp‘(1 / 𝑚))))) |
43 | 39, 42 | mpbid 231 | . . . . . 6 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (log‘(1 + (1 / 𝑚))) < (log‘(exp‘(1 / 𝑚)))) |
44 | 17 | relogefd 25688 | . . . . . 6 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (log‘(exp‘(1 / 𝑚))) = (1 / 𝑚)) |
45 | 43, 44 | breqtrd 5096 | . . . . 5 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (log‘(1 + (1 / 𝑚))) < (1 / 𝑚)) |
46 | 37, 17, 45 | ltled 11053 | . . . 4 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (log‘(1 + (1 / 𝑚))) ≤ (1 / 𝑚)) |
47 | 46, 23, 15 | 3brtr4d 5102 | . . 3 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (𝐻‘𝑚) ≤ ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑚)) |
48 | 35 | rpge0d 12705 | . . 3 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → 0 ≤ (𝐻‘𝑚)) |
49 | 1, 2, 5, 10, 18, 36, 47, 48 | climsqz2 15279 | . 2 ⊢ (⊤ → 𝐻 ⇝ 0) |
50 | 49 | mptru 1546 | 1 ⊢ 𝐻 ⇝ 0 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ⊤wtru 1540 ∈ wcel 2108 Vcvv 3422 class class class wbr 5070 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 ℝcr 10801 0cc0 10802 1c1 10803 + caddc 10805 < clt 10940 ≤ cle 10941 − cmin 11135 / cdiv 11562 ℕcn 11903 ℝ+crp 12659 ...cfz 13168 ⇝ cli 15121 Σcsu 15325 expce 15699 logclog 25615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ioc 13013 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-fac 13916 df-bc 13945 df-hash 13973 df-shft 14706 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-limsup 15108 df-clim 15125 df-rlim 15126 df-sum 15326 df-ef 15705 df-sin 15707 df-cos 15708 df-pi 15710 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-mulg 18616 df-cntz 18838 df-cmn 19303 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-fbas 20507 df-fg 20508 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-lp 22195 df-perf 22196 df-cn 22286 df-cnp 22287 df-haus 22374 df-tx 22621 df-hmeo 22814 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-xms 23381 df-ms 23382 df-tms 23383 df-cncf 23947 df-limc 24935 df-dv 24936 df-log 25617 |
This theorem is referenced by: emcllem6 26055 |
Copyright terms: Public domain | W3C validator |