MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  emcllem4 Structured version   Visualization version   GIF version

Theorem emcllem4 27042
Description: Lemma for emcl 27046. The difference between series 𝐹 and 𝐺 tends to zero. (Contributed by Mario Carneiro, 11-Jul-2014.)
Hypotheses
Ref Expression
emcl.1 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)))
emcl.2 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))))
emcl.3 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛))))
Assertion
Ref Expression
emcllem4 𝐻 ⇝ 0
Distinct variable groups:   𝑚,𝐻   𝑚,𝑛
Allowed substitution hints:   𝐹(𝑚,𝑛)   𝐺(𝑚,𝑛)   𝐻(𝑛)

Proof of Theorem emcllem4
StepHypRef Expression
1 nnuz 12921 . . 3 ℕ = (ℤ‘1)
2 1zzd 12648 . . 3 (⊤ → 1 ∈ ℤ)
3 ax-1cn 11213 . . . 4 1 ∈ ℂ
4 divcnv 15889 . . . 4 (1 ∈ ℂ → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0)
53, 4mp1i 13 . . 3 (⊤ → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0)
6 emcl.3 . . . . 5 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛))))
7 nnex 12272 . . . . . 6 ℕ ∈ V
87mptex 7243 . . . . 5 (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛)))) ∈ V
96, 8eqeltri 2837 . . . 4 𝐻 ∈ V
109a1i 11 . . 3 (⊤ → 𝐻 ∈ V)
11 oveq2 7439 . . . . . 6 (𝑛 = 𝑚 → (1 / 𝑛) = (1 / 𝑚))
12 eqid 2737 . . . . . 6 (𝑛 ∈ ℕ ↦ (1 / 𝑛)) = (𝑛 ∈ ℕ ↦ (1 / 𝑛))
13 ovex 7464 . . . . . 6 (1 / 𝑚) ∈ V
1411, 12, 13fvmpt 7016 . . . . 5 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑚) = (1 / 𝑚))
1514adantl 481 . . . 4 ((⊤ ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑚) = (1 / 𝑚))
16 nnrecre 12308 . . . . 5 (𝑚 ∈ ℕ → (1 / 𝑚) ∈ ℝ)
1716adantl 481 . . . 4 ((⊤ ∧ 𝑚 ∈ ℕ) → (1 / 𝑚) ∈ ℝ)
1815, 17eqeltrd 2841 . . 3 ((⊤ ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑚) ∈ ℝ)
1911oveq2d 7447 . . . . . . . 8 (𝑛 = 𝑚 → (1 + (1 / 𝑛)) = (1 + (1 / 𝑚)))
2019fveq2d 6910 . . . . . . 7 (𝑛 = 𝑚 → (log‘(1 + (1 / 𝑛))) = (log‘(1 + (1 / 𝑚))))
21 fvex 6919 . . . . . . 7 (log‘(1 + (1 / 𝑚))) ∈ V
2220, 6, 21fvmpt 7016 . . . . . 6 (𝑚 ∈ ℕ → (𝐻𝑚) = (log‘(1 + (1 / 𝑚))))
2322adantl 481 . . . . 5 ((⊤ ∧ 𝑚 ∈ ℕ) → (𝐻𝑚) = (log‘(1 + (1 / 𝑚))))
24 1rp 13038 . . . . . . . 8 1 ∈ ℝ+
25 nnrp 13046 . . . . . . . . . 10 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ+)
2625adantl 481 . . . . . . . . 9 ((⊤ ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℝ+)
2726rpreccld 13087 . . . . . . . 8 ((⊤ ∧ 𝑚 ∈ ℕ) → (1 / 𝑚) ∈ ℝ+)
28 rpaddcl 13057 . . . . . . . 8 ((1 ∈ ℝ+ ∧ (1 / 𝑚) ∈ ℝ+) → (1 + (1 / 𝑚)) ∈ ℝ+)
2924, 27, 28sylancr 587 . . . . . . 7 ((⊤ ∧ 𝑚 ∈ ℕ) → (1 + (1 / 𝑚)) ∈ ℝ+)
3029rpred 13077 . . . . . 6 ((⊤ ∧ 𝑚 ∈ ℕ) → (1 + (1 / 𝑚)) ∈ ℝ)
31 1re 11261 . . . . . . 7 1 ∈ ℝ
32 ltaddrp 13072 . . . . . . 7 ((1 ∈ ℝ ∧ (1 / 𝑚) ∈ ℝ+) → 1 < (1 + (1 / 𝑚)))
3331, 27, 32sylancr 587 . . . . . 6 ((⊤ ∧ 𝑚 ∈ ℕ) → 1 < (1 + (1 / 𝑚)))
3430, 33rplogcld 26671 . . . . 5 ((⊤ ∧ 𝑚 ∈ ℕ) → (log‘(1 + (1 / 𝑚))) ∈ ℝ+)
3523, 34eqeltrd 2841 . . . 4 ((⊤ ∧ 𝑚 ∈ ℕ) → (𝐻𝑚) ∈ ℝ+)
3635rpred 13077 . . 3 ((⊤ ∧ 𝑚 ∈ ℕ) → (𝐻𝑚) ∈ ℝ)
3729relogcld 26665 . . . . 5 ((⊤ ∧ 𝑚 ∈ ℕ) → (log‘(1 + (1 / 𝑚))) ∈ ℝ)
38 efgt1p 16151 . . . . . . . 8 ((1 / 𝑚) ∈ ℝ+ → (1 + (1 / 𝑚)) < (exp‘(1 / 𝑚)))
3927, 38syl 17 . . . . . . 7 ((⊤ ∧ 𝑚 ∈ ℕ) → (1 + (1 / 𝑚)) < (exp‘(1 / 𝑚)))
4017rpefcld 16141 . . . . . . . 8 ((⊤ ∧ 𝑚 ∈ ℕ) → (exp‘(1 / 𝑚)) ∈ ℝ+)
41 logltb 26642 . . . . . . . 8 (((1 + (1 / 𝑚)) ∈ ℝ+ ∧ (exp‘(1 / 𝑚)) ∈ ℝ+) → ((1 + (1 / 𝑚)) < (exp‘(1 / 𝑚)) ↔ (log‘(1 + (1 / 𝑚))) < (log‘(exp‘(1 / 𝑚)))))
4229, 40, 41syl2anc 584 . . . . . . 7 ((⊤ ∧ 𝑚 ∈ ℕ) → ((1 + (1 / 𝑚)) < (exp‘(1 / 𝑚)) ↔ (log‘(1 + (1 / 𝑚))) < (log‘(exp‘(1 / 𝑚)))))
4339, 42mpbid 232 . . . . . 6 ((⊤ ∧ 𝑚 ∈ ℕ) → (log‘(1 + (1 / 𝑚))) < (log‘(exp‘(1 / 𝑚))))
4417relogefd 26670 . . . . . 6 ((⊤ ∧ 𝑚 ∈ ℕ) → (log‘(exp‘(1 / 𝑚))) = (1 / 𝑚))
4543, 44breqtrd 5169 . . . . 5 ((⊤ ∧ 𝑚 ∈ ℕ) → (log‘(1 + (1 / 𝑚))) < (1 / 𝑚))
4637, 17, 45ltled 11409 . . . 4 ((⊤ ∧ 𝑚 ∈ ℕ) → (log‘(1 + (1 / 𝑚))) ≤ (1 / 𝑚))
4746, 23, 153brtr4d 5175 . . 3 ((⊤ ∧ 𝑚 ∈ ℕ) → (𝐻𝑚) ≤ ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑚))
4835rpge0d 13081 . . 3 ((⊤ ∧ 𝑚 ∈ ℕ) → 0 ≤ (𝐻𝑚))
491, 2, 5, 10, 18, 36, 47, 48climsqz2 15678 . 2 (⊤ → 𝐻 ⇝ 0)
5049mptru 1547 1 𝐻 ⇝ 0
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wtru 1541  wcel 2108  Vcvv 3480   class class class wbr 5143  cmpt 5225  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   < clt 11295  cle 11296  cmin 11492   / cdiv 11920  cn 12266  +crp 13034  ...cfz 13547  cli 15520  Σcsu 15722  expce 16097  logclog 26596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-sin 16105  df-cos 16106  df-pi 16108  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902  df-log 26598
This theorem is referenced by:  emcllem6  27044
  Copyright terms: Public domain W3C validator