MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  emcllem4 Structured version   Visualization version   GIF version

Theorem emcllem4 26727
Description: Lemma for emcl 26731. The difference between series 𝐹 and 𝐺 tends to zero. (Contributed by Mario Carneiro, 11-Jul-2014.)
Hypotheses
Ref Expression
emcl.1 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)))
emcl.2 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))))
emcl.3 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛))))
Assertion
Ref Expression
emcllem4 𝐻 ⇝ 0
Distinct variable groups:   𝑚,𝐻   𝑚,𝑛
Allowed substitution hints:   𝐹(𝑚,𝑛)   𝐺(𝑚,𝑛)   𝐻(𝑛)

Proof of Theorem emcllem4
StepHypRef Expression
1 nnuz 12869 . . 3 ℕ = (ℤ‘1)
2 1zzd 12597 . . 3 (⊤ → 1 ∈ ℤ)
3 ax-1cn 11170 . . . 4 1 ∈ ℂ
4 divcnv 15803 . . . 4 (1 ∈ ℂ → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0)
53, 4mp1i 13 . . 3 (⊤ → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0)
6 emcl.3 . . . . 5 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛))))
7 nnex 12222 . . . . . 6 ℕ ∈ V
87mptex 7227 . . . . 5 (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛)))) ∈ V
96, 8eqeltri 2829 . . . 4 𝐻 ∈ V
109a1i 11 . . 3 (⊤ → 𝐻 ∈ V)
11 oveq2 7419 . . . . . 6 (𝑛 = 𝑚 → (1 / 𝑛) = (1 / 𝑚))
12 eqid 2732 . . . . . 6 (𝑛 ∈ ℕ ↦ (1 / 𝑛)) = (𝑛 ∈ ℕ ↦ (1 / 𝑛))
13 ovex 7444 . . . . . 6 (1 / 𝑚) ∈ V
1411, 12, 13fvmpt 6998 . . . . 5 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑚) = (1 / 𝑚))
1514adantl 482 . . . 4 ((⊤ ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑚) = (1 / 𝑚))
16 nnrecre 12258 . . . . 5 (𝑚 ∈ ℕ → (1 / 𝑚) ∈ ℝ)
1716adantl 482 . . . 4 ((⊤ ∧ 𝑚 ∈ ℕ) → (1 / 𝑚) ∈ ℝ)
1815, 17eqeltrd 2833 . . 3 ((⊤ ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑚) ∈ ℝ)
1911oveq2d 7427 . . . . . . . 8 (𝑛 = 𝑚 → (1 + (1 / 𝑛)) = (1 + (1 / 𝑚)))
2019fveq2d 6895 . . . . . . 7 (𝑛 = 𝑚 → (log‘(1 + (1 / 𝑛))) = (log‘(1 + (1 / 𝑚))))
21 fvex 6904 . . . . . . 7 (log‘(1 + (1 / 𝑚))) ∈ V
2220, 6, 21fvmpt 6998 . . . . . 6 (𝑚 ∈ ℕ → (𝐻𝑚) = (log‘(1 + (1 / 𝑚))))
2322adantl 482 . . . . 5 ((⊤ ∧ 𝑚 ∈ ℕ) → (𝐻𝑚) = (log‘(1 + (1 / 𝑚))))
24 1rp 12982 . . . . . . . 8 1 ∈ ℝ+
25 nnrp 12989 . . . . . . . . . 10 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ+)
2625adantl 482 . . . . . . . . 9 ((⊤ ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℝ+)
2726rpreccld 13030 . . . . . . . 8 ((⊤ ∧ 𝑚 ∈ ℕ) → (1 / 𝑚) ∈ ℝ+)
28 rpaddcl 13000 . . . . . . . 8 ((1 ∈ ℝ+ ∧ (1 / 𝑚) ∈ ℝ+) → (1 + (1 / 𝑚)) ∈ ℝ+)
2924, 27, 28sylancr 587 . . . . . . 7 ((⊤ ∧ 𝑚 ∈ ℕ) → (1 + (1 / 𝑚)) ∈ ℝ+)
3029rpred 13020 . . . . . 6 ((⊤ ∧ 𝑚 ∈ ℕ) → (1 + (1 / 𝑚)) ∈ ℝ)
31 1re 11218 . . . . . . 7 1 ∈ ℝ
32 ltaddrp 13015 . . . . . . 7 ((1 ∈ ℝ ∧ (1 / 𝑚) ∈ ℝ+) → 1 < (1 + (1 / 𝑚)))
3331, 27, 32sylancr 587 . . . . . 6 ((⊤ ∧ 𝑚 ∈ ℕ) → 1 < (1 + (1 / 𝑚)))
3430, 33rplogcld 26361 . . . . 5 ((⊤ ∧ 𝑚 ∈ ℕ) → (log‘(1 + (1 / 𝑚))) ∈ ℝ+)
3523, 34eqeltrd 2833 . . . 4 ((⊤ ∧ 𝑚 ∈ ℕ) → (𝐻𝑚) ∈ ℝ+)
3635rpred 13020 . . 3 ((⊤ ∧ 𝑚 ∈ ℕ) → (𝐻𝑚) ∈ ℝ)
3729relogcld 26355 . . . . 5 ((⊤ ∧ 𝑚 ∈ ℕ) → (log‘(1 + (1 / 𝑚))) ∈ ℝ)
38 efgt1p 16062 . . . . . . . 8 ((1 / 𝑚) ∈ ℝ+ → (1 + (1 / 𝑚)) < (exp‘(1 / 𝑚)))
3927, 38syl 17 . . . . . . 7 ((⊤ ∧ 𝑚 ∈ ℕ) → (1 + (1 / 𝑚)) < (exp‘(1 / 𝑚)))
4017rpefcld 16052 . . . . . . . 8 ((⊤ ∧ 𝑚 ∈ ℕ) → (exp‘(1 / 𝑚)) ∈ ℝ+)
41 logltb 26332 . . . . . . . 8 (((1 + (1 / 𝑚)) ∈ ℝ+ ∧ (exp‘(1 / 𝑚)) ∈ ℝ+) → ((1 + (1 / 𝑚)) < (exp‘(1 / 𝑚)) ↔ (log‘(1 + (1 / 𝑚))) < (log‘(exp‘(1 / 𝑚)))))
4229, 40, 41syl2anc 584 . . . . . . 7 ((⊤ ∧ 𝑚 ∈ ℕ) → ((1 + (1 / 𝑚)) < (exp‘(1 / 𝑚)) ↔ (log‘(1 + (1 / 𝑚))) < (log‘(exp‘(1 / 𝑚)))))
4339, 42mpbid 231 . . . . . 6 ((⊤ ∧ 𝑚 ∈ ℕ) → (log‘(1 + (1 / 𝑚))) < (log‘(exp‘(1 / 𝑚))))
4417relogefd 26360 . . . . . 6 ((⊤ ∧ 𝑚 ∈ ℕ) → (log‘(exp‘(1 / 𝑚))) = (1 / 𝑚))
4543, 44breqtrd 5174 . . . . 5 ((⊤ ∧ 𝑚 ∈ ℕ) → (log‘(1 + (1 / 𝑚))) < (1 / 𝑚))
4637, 17, 45ltled 11366 . . . 4 ((⊤ ∧ 𝑚 ∈ ℕ) → (log‘(1 + (1 / 𝑚))) ≤ (1 / 𝑚))
4746, 23, 153brtr4d 5180 . . 3 ((⊤ ∧ 𝑚 ∈ ℕ) → (𝐻𝑚) ≤ ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑚))
4835rpge0d 13024 . . 3 ((⊤ ∧ 𝑚 ∈ ℕ) → 0 ≤ (𝐻𝑚))
491, 2, 5, 10, 18, 36, 47, 48climsqz2 15590 . 2 (⊤ → 𝐻 ⇝ 0)
5049mptru 1548 1 𝐻 ⇝ 0
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1541  wtru 1542  wcel 2106  Vcvv 3474   class class class wbr 5148  cmpt 5231  cfv 6543  (class class class)co 7411  cc 11110  cr 11111  0cc0 11112  1c1 11113   + caddc 11115   < clt 11252  cle 11253  cmin 11448   / cdiv 11875  cn 12216  +crp 12978  ...cfz 13488  cli 15432  Σcsu 15636  expce 16009  logclog 26287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-inf2 9638  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190  ax-addf 11191  ax-mulf 11192
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-of 7672  df-om 7858  df-1st 7977  df-2nd 7978  df-supp 8149  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-er 8705  df-map 8824  df-pm 8825  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-fi 9408  df-sup 9439  df-inf 9440  df-oi 9507  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-z 12563  df-dec 12682  df-uz 12827  df-q 12937  df-rp 12979  df-xneg 13096  df-xadd 13097  df-xmul 13098  df-ioo 13332  df-ioc 13333  df-ico 13334  df-icc 13335  df-fz 13489  df-fzo 13632  df-fl 13761  df-mod 13839  df-seq 13971  df-exp 14032  df-fac 14238  df-bc 14267  df-hash 14295  df-shft 15018  df-cj 15050  df-re 15051  df-im 15052  df-sqrt 15186  df-abs 15187  df-limsup 15419  df-clim 15436  df-rlim 15437  df-sum 15637  df-ef 16015  df-sin 16017  df-cos 16018  df-pi 16020  df-struct 17084  df-sets 17101  df-slot 17119  df-ndx 17131  df-base 17149  df-ress 17178  df-plusg 17214  df-mulr 17215  df-starv 17216  df-sca 17217  df-vsca 17218  df-ip 17219  df-tset 17220  df-ple 17221  df-ds 17223  df-unif 17224  df-hom 17225  df-cco 17226  df-rest 17372  df-topn 17373  df-0g 17391  df-gsum 17392  df-topgen 17393  df-pt 17394  df-prds 17397  df-xrs 17452  df-qtop 17457  df-imas 17458  df-xps 17460  df-mre 17534  df-mrc 17535  df-acs 17537  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-submnd 18706  df-mulg 18987  df-cntz 19222  df-cmn 19691  df-psmet 21136  df-xmet 21137  df-met 21138  df-bl 21139  df-mopn 21140  df-fbas 21141  df-fg 21142  df-cnfld 21145  df-top 22616  df-topon 22633  df-topsp 22655  df-bases 22669  df-cld 22743  df-ntr 22744  df-cls 22745  df-nei 22822  df-lp 22860  df-perf 22861  df-cn 22951  df-cnp 22952  df-haus 23039  df-tx 23286  df-hmeo 23479  df-fil 23570  df-fm 23662  df-flim 23663  df-flf 23664  df-xms 24046  df-ms 24047  df-tms 24048  df-cncf 24618  df-limc 25607  df-dv 25608  df-log 26289
This theorem is referenced by:  emcllem6  26729
  Copyright terms: Public domain W3C validator