Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > emcllem4 | Structured version Visualization version GIF version |
Description: Lemma for emcl 25732. The difference between series 𝐹 and 𝐺 tends to zero. (Contributed by Mario Carneiro, 11-Jul-2014.) |
Ref | Expression |
---|---|
emcl.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛))) |
emcl.2 | ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))) |
emcl.3 | ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛)))) |
Ref | Expression |
---|---|
emcllem4 | ⊢ 𝐻 ⇝ 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnuz 12356 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
2 | 1zzd 12087 | . . 3 ⊢ (⊤ → 1 ∈ ℤ) | |
3 | ax-1cn 10666 | . . . 4 ⊢ 1 ∈ ℂ | |
4 | divcnv 15294 | . . . 4 ⊢ (1 ∈ ℂ → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0) | |
5 | 3, 4 | mp1i 13 | . . 3 ⊢ (⊤ → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0) |
6 | emcl.3 | . . . . 5 ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛)))) | |
7 | nnex 11715 | . . . . . 6 ⊢ ℕ ∈ V | |
8 | 7 | mptex 6990 | . . . . 5 ⊢ (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛)))) ∈ V |
9 | 6, 8 | eqeltri 2829 | . . . 4 ⊢ 𝐻 ∈ V |
10 | 9 | a1i 11 | . . 3 ⊢ (⊤ → 𝐻 ∈ V) |
11 | oveq2 7172 | . . . . . 6 ⊢ (𝑛 = 𝑚 → (1 / 𝑛) = (1 / 𝑚)) | |
12 | eqid 2738 | . . . . . 6 ⊢ (𝑛 ∈ ℕ ↦ (1 / 𝑛)) = (𝑛 ∈ ℕ ↦ (1 / 𝑛)) | |
13 | ovex 7197 | . . . . . 6 ⊢ (1 / 𝑚) ∈ V | |
14 | 11, 12, 13 | fvmpt 6769 | . . . . 5 ⊢ (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑚) = (1 / 𝑚)) |
15 | 14 | adantl 485 | . . . 4 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑚) = (1 / 𝑚)) |
16 | nnrecre 11751 | . . . . 5 ⊢ (𝑚 ∈ ℕ → (1 / 𝑚) ∈ ℝ) | |
17 | 16 | adantl 485 | . . . 4 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (1 / 𝑚) ∈ ℝ) |
18 | 15, 17 | eqeltrd 2833 | . . 3 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑚) ∈ ℝ) |
19 | 11 | oveq2d 7180 | . . . . . . . 8 ⊢ (𝑛 = 𝑚 → (1 + (1 / 𝑛)) = (1 + (1 / 𝑚))) |
20 | 19 | fveq2d 6672 | . . . . . . 7 ⊢ (𝑛 = 𝑚 → (log‘(1 + (1 / 𝑛))) = (log‘(1 + (1 / 𝑚)))) |
21 | fvex 6681 | . . . . . . 7 ⊢ (log‘(1 + (1 / 𝑚))) ∈ V | |
22 | 20, 6, 21 | fvmpt 6769 | . . . . . 6 ⊢ (𝑚 ∈ ℕ → (𝐻‘𝑚) = (log‘(1 + (1 / 𝑚)))) |
23 | 22 | adantl 485 | . . . . 5 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (𝐻‘𝑚) = (log‘(1 + (1 / 𝑚)))) |
24 | 1rp 12469 | . . . . . . . 8 ⊢ 1 ∈ ℝ+ | |
25 | nnrp 12476 | . . . . . . . . . 10 ⊢ (𝑚 ∈ ℕ → 𝑚 ∈ ℝ+) | |
26 | 25 | adantl 485 | . . . . . . . . 9 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℝ+) |
27 | 26 | rpreccld 12517 | . . . . . . . 8 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (1 / 𝑚) ∈ ℝ+) |
28 | rpaddcl 12487 | . . . . . . . 8 ⊢ ((1 ∈ ℝ+ ∧ (1 / 𝑚) ∈ ℝ+) → (1 + (1 / 𝑚)) ∈ ℝ+) | |
29 | 24, 27, 28 | sylancr 590 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (1 + (1 / 𝑚)) ∈ ℝ+) |
30 | 29 | rpred 12507 | . . . . . 6 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (1 + (1 / 𝑚)) ∈ ℝ) |
31 | 1re 10712 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
32 | ltaddrp 12502 | . . . . . . 7 ⊢ ((1 ∈ ℝ ∧ (1 / 𝑚) ∈ ℝ+) → 1 < (1 + (1 / 𝑚))) | |
33 | 31, 27, 32 | sylancr 590 | . . . . . 6 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → 1 < (1 + (1 / 𝑚))) |
34 | 30, 33 | rplogcld 25364 | . . . . 5 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (log‘(1 + (1 / 𝑚))) ∈ ℝ+) |
35 | 23, 34 | eqeltrd 2833 | . . . 4 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (𝐻‘𝑚) ∈ ℝ+) |
36 | 35 | rpred 12507 | . . 3 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (𝐻‘𝑚) ∈ ℝ) |
37 | 29 | relogcld 25358 | . . . . 5 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (log‘(1 + (1 / 𝑚))) ∈ ℝ) |
38 | efgt1p 15553 | . . . . . . . 8 ⊢ ((1 / 𝑚) ∈ ℝ+ → (1 + (1 / 𝑚)) < (exp‘(1 / 𝑚))) | |
39 | 27, 38 | syl 17 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (1 + (1 / 𝑚)) < (exp‘(1 / 𝑚))) |
40 | 17 | rpefcld 15543 | . . . . . . . 8 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (exp‘(1 / 𝑚)) ∈ ℝ+) |
41 | logltb 25335 | . . . . . . . 8 ⊢ (((1 + (1 / 𝑚)) ∈ ℝ+ ∧ (exp‘(1 / 𝑚)) ∈ ℝ+) → ((1 + (1 / 𝑚)) < (exp‘(1 / 𝑚)) ↔ (log‘(1 + (1 / 𝑚))) < (log‘(exp‘(1 / 𝑚))))) | |
42 | 29, 40, 41 | syl2anc 587 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → ((1 + (1 / 𝑚)) < (exp‘(1 / 𝑚)) ↔ (log‘(1 + (1 / 𝑚))) < (log‘(exp‘(1 / 𝑚))))) |
43 | 39, 42 | mpbid 235 | . . . . . 6 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (log‘(1 + (1 / 𝑚))) < (log‘(exp‘(1 / 𝑚)))) |
44 | 17 | relogefd 25363 | . . . . . 6 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (log‘(exp‘(1 / 𝑚))) = (1 / 𝑚)) |
45 | 43, 44 | breqtrd 5053 | . . . . 5 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (log‘(1 + (1 / 𝑚))) < (1 / 𝑚)) |
46 | 37, 17, 45 | ltled 10859 | . . . 4 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (log‘(1 + (1 / 𝑚))) ≤ (1 / 𝑚)) |
47 | 46, 23, 15 | 3brtr4d 5059 | . . 3 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → (𝐻‘𝑚) ≤ ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑚)) |
48 | 35 | rpge0d 12511 | . . 3 ⊢ ((⊤ ∧ 𝑚 ∈ ℕ) → 0 ≤ (𝐻‘𝑚)) |
49 | 1, 2, 5, 10, 18, 36, 47, 48 | climsqz2 15082 | . 2 ⊢ (⊤ → 𝐻 ⇝ 0) |
50 | 49 | mptru 1549 | 1 ⊢ 𝐻 ⇝ 0 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 = wceq 1542 ⊤wtru 1543 ∈ wcel 2113 Vcvv 3397 class class class wbr 5027 ↦ cmpt 5107 ‘cfv 6333 (class class class)co 7164 ℂcc 10606 ℝcr 10607 0cc0 10608 1c1 10609 + caddc 10611 < clt 10746 ≤ cle 10747 − cmin 10941 / cdiv 11368 ℕcn 11709 ℝ+crp 12465 ...cfz 12974 ⇝ cli 14924 Σcsu 15128 expce 15500 logclog 25290 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-rep 5151 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 ax-inf2 9170 ax-cnex 10664 ax-resscn 10665 ax-1cn 10666 ax-icn 10667 ax-addcl 10668 ax-addrcl 10669 ax-mulcl 10670 ax-mulrcl 10671 ax-mulcom 10672 ax-addass 10673 ax-mulass 10674 ax-distr 10675 ax-i2m1 10676 ax-1ne0 10677 ax-1rid 10678 ax-rnegex 10679 ax-rrecex 10680 ax-cnre 10681 ax-pre-lttri 10682 ax-pre-lttrn 10683 ax-pre-ltadd 10684 ax-pre-mulgt0 10685 ax-pre-sup 10686 ax-addf 10687 ax-mulf 10688 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-pss 3860 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-tp 4518 df-op 4520 df-uni 4794 df-int 4834 df-iun 4880 df-iin 4881 df-br 5028 df-opab 5090 df-mpt 5108 df-tr 5134 df-id 5425 df-eprel 5430 df-po 5438 df-so 5439 df-fr 5478 df-se 5479 df-we 5480 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-pred 6123 df-ord 6169 df-on 6170 df-lim 6171 df-suc 6172 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-isom 6342 df-riota 7121 df-ov 7167 df-oprab 7168 df-mpo 7169 df-of 7419 df-om 7594 df-1st 7707 df-2nd 7708 df-supp 7850 df-wrecs 7969 df-recs 8030 df-rdg 8068 df-1o 8124 df-2o 8125 df-er 8313 df-map 8432 df-pm 8433 df-ixp 8501 df-en 8549 df-dom 8550 df-sdom 8551 df-fin 8552 df-fsupp 8900 df-fi 8941 df-sup 8972 df-inf 8973 df-oi 9040 df-card 9434 df-pnf 10748 df-mnf 10749 df-xr 10750 df-ltxr 10751 df-le 10752 df-sub 10943 df-neg 10944 df-div 11369 df-nn 11710 df-2 11772 df-3 11773 df-4 11774 df-5 11775 df-6 11776 df-7 11777 df-8 11778 df-9 11779 df-n0 11970 df-z 12056 df-dec 12173 df-uz 12318 df-q 12424 df-rp 12466 df-xneg 12583 df-xadd 12584 df-xmul 12585 df-ioo 12818 df-ioc 12819 df-ico 12820 df-icc 12821 df-fz 12975 df-fzo 13118 df-fl 13246 df-mod 13322 df-seq 13454 df-exp 13515 df-fac 13719 df-bc 13748 df-hash 13776 df-shft 14509 df-cj 14541 df-re 14542 df-im 14543 df-sqrt 14677 df-abs 14678 df-limsup 14911 df-clim 14928 df-rlim 14929 df-sum 15129 df-ef 15506 df-sin 15508 df-cos 15509 df-pi 15511 df-struct 16581 df-ndx 16582 df-slot 16583 df-base 16585 df-sets 16586 df-ress 16587 df-plusg 16674 df-mulr 16675 df-starv 16676 df-sca 16677 df-vsca 16678 df-ip 16679 df-tset 16680 df-ple 16681 df-ds 16683 df-unif 16684 df-hom 16685 df-cco 16686 df-rest 16792 df-topn 16793 df-0g 16811 df-gsum 16812 df-topgen 16813 df-pt 16814 df-prds 16817 df-xrs 16871 df-qtop 16876 df-imas 16877 df-xps 16879 df-mre 16953 df-mrc 16954 df-acs 16956 df-mgm 17961 df-sgrp 18010 df-mnd 18021 df-submnd 18066 df-mulg 18336 df-cntz 18558 df-cmn 19019 df-psmet 20202 df-xmet 20203 df-met 20204 df-bl 20205 df-mopn 20206 df-fbas 20207 df-fg 20208 df-cnfld 20211 df-top 21638 df-topon 21655 df-topsp 21677 df-bases 21690 df-cld 21763 df-ntr 21764 df-cls 21765 df-nei 21842 df-lp 21880 df-perf 21881 df-cn 21971 df-cnp 21972 df-haus 22059 df-tx 22306 df-hmeo 22499 df-fil 22590 df-fm 22682 df-flim 22683 df-flf 22684 df-xms 23066 df-ms 23067 df-tms 23068 df-cncf 23623 df-limc 24610 df-dv 24611 df-log 25292 |
This theorem is referenced by: emcllem6 25730 |
Copyright terms: Public domain | W3C validator |