Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > metakunt23 | Structured version Visualization version GIF version |
Description: B coincides on the union of bijections of functions. (Contributed by metakunt, 28-May-2024.) |
Ref | Expression |
---|---|
metakunt23.1 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
metakunt23.2 | ⊢ (𝜑 → 𝐼 ∈ ℕ) |
metakunt23.3 | ⊢ (𝜑 → 𝐼 ≤ 𝑀) |
metakunt23.4 | ⊢ 𝐵 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀 − 𝐼)), (𝑥 + (1 − 𝐼))))) |
metakunt23.5 | ⊢ 𝐶 = (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀 − 𝐼))) |
metakunt23.6 | ⊢ 𝐷 = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼))) |
metakunt23.7 | ⊢ (𝜑 → 𝑋 ∈ (1...𝑀)) |
Ref | Expression |
---|---|
metakunt23 | ⊢ (𝜑 → (𝐵‘𝑋) = (((𝐶 ∪ 𝐷) ∪ {〈𝑀, 𝑀〉})‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metakunt23.1 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
2 | 1 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑀) → 𝑀 ∈ ℕ) |
3 | metakunt23.2 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ ℕ) | |
4 | 3 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑀) → 𝐼 ∈ ℕ) |
5 | metakunt23.3 | . . . 4 ⊢ (𝜑 → 𝐼 ≤ 𝑀) | |
6 | 5 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑀) → 𝐼 ≤ 𝑀) |
7 | metakunt23.4 | . . 3 ⊢ 𝐵 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀 − 𝐼)), (𝑥 + (1 − 𝐼))))) | |
8 | metakunt23.5 | . . 3 ⊢ 𝐶 = (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀 − 𝐼))) | |
9 | metakunt23.6 | . . 3 ⊢ 𝐷 = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼))) | |
10 | metakunt23.7 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (1...𝑀)) | |
11 | 10 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑀) → 𝑋 ∈ (1...𝑀)) |
12 | simpr 488 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑀) → 𝑋 = 𝑀) | |
13 | 2, 4, 6, 7, 8, 9, 11, 12 | metakunt20 39688 | . 2 ⊢ ((𝜑 ∧ 𝑋 = 𝑀) → (𝐵‘𝑋) = (((𝐶 ∪ 𝐷) ∪ {〈𝑀, 𝑀〉})‘𝑋)) |
14 | 1 | ad2antrr 725 | . . . 4 ⊢ (((𝜑 ∧ ¬ 𝑋 = 𝑀) ∧ 𝑋 < 𝐼) → 𝑀 ∈ ℕ) |
15 | 3 | ad2antrr 725 | . . . 4 ⊢ (((𝜑 ∧ ¬ 𝑋 = 𝑀) ∧ 𝑋 < 𝐼) → 𝐼 ∈ ℕ) |
16 | 5 | ad2antrr 725 | . . . 4 ⊢ (((𝜑 ∧ ¬ 𝑋 = 𝑀) ∧ 𝑋 < 𝐼) → 𝐼 ≤ 𝑀) |
17 | 10 | ad2antrr 725 | . . . 4 ⊢ (((𝜑 ∧ ¬ 𝑋 = 𝑀) ∧ 𝑋 < 𝐼) → 𝑋 ∈ (1...𝑀)) |
18 | simplr 768 | . . . 4 ⊢ (((𝜑 ∧ ¬ 𝑋 = 𝑀) ∧ 𝑋 < 𝐼) → ¬ 𝑋 = 𝑀) | |
19 | simpr 488 | . . . 4 ⊢ (((𝜑 ∧ ¬ 𝑋 = 𝑀) ∧ 𝑋 < 𝐼) → 𝑋 < 𝐼) | |
20 | 14, 15, 16, 7, 8, 9, 17, 18, 19 | metakunt21 39689 | . . 3 ⊢ (((𝜑 ∧ ¬ 𝑋 = 𝑀) ∧ 𝑋 < 𝐼) → (𝐵‘𝑋) = (((𝐶 ∪ 𝐷) ∪ {〈𝑀, 𝑀〉})‘𝑋)) |
21 | 1 | ad2antrr 725 | . . . 4 ⊢ (((𝜑 ∧ ¬ 𝑋 = 𝑀) ∧ ¬ 𝑋 < 𝐼) → 𝑀 ∈ ℕ) |
22 | 3 | ad2antrr 725 | . . . 4 ⊢ (((𝜑 ∧ ¬ 𝑋 = 𝑀) ∧ ¬ 𝑋 < 𝐼) → 𝐼 ∈ ℕ) |
23 | 5 | ad2antrr 725 | . . . 4 ⊢ (((𝜑 ∧ ¬ 𝑋 = 𝑀) ∧ ¬ 𝑋 < 𝐼) → 𝐼 ≤ 𝑀) |
24 | 10 | ad2antrr 725 | . . . 4 ⊢ (((𝜑 ∧ ¬ 𝑋 = 𝑀) ∧ ¬ 𝑋 < 𝐼) → 𝑋 ∈ (1...𝑀)) |
25 | simplr 768 | . . . 4 ⊢ (((𝜑 ∧ ¬ 𝑋 = 𝑀) ∧ ¬ 𝑋 < 𝐼) → ¬ 𝑋 = 𝑀) | |
26 | simpr 488 | . . . 4 ⊢ (((𝜑 ∧ ¬ 𝑋 = 𝑀) ∧ ¬ 𝑋 < 𝐼) → ¬ 𝑋 < 𝐼) | |
27 | 21, 22, 23, 7, 8, 9, 24, 25, 26 | metakunt22 39690 | . . 3 ⊢ (((𝜑 ∧ ¬ 𝑋 = 𝑀) ∧ ¬ 𝑋 < 𝐼) → (𝐵‘𝑋) = (((𝐶 ∪ 𝐷) ∪ {〈𝑀, 𝑀〉})‘𝑋)) |
28 | 20, 27 | pm2.61dan 812 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑋 = 𝑀) → (𝐵‘𝑋) = (((𝐶 ∪ 𝐷) ∪ {〈𝑀, 𝑀〉})‘𝑋)) |
29 | 13, 28 | pm2.61dan 812 | 1 ⊢ (𝜑 → (𝐵‘𝑋) = (((𝐶 ∪ 𝐷) ∪ {〈𝑀, 𝑀〉})‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∪ cun 3856 ifcif 4420 {csn 4522 〈cop 4528 class class class wbr 5032 ↦ cmpt 5112 ‘cfv 6335 (class class class)co 7150 1c1 10576 + caddc 10578 < clt 10713 ≤ cle 10714 − cmin 10908 ℕcn 11674 ...cfz 12939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-n0 11935 df-z 12021 df-uz 12283 df-rp 12431 df-fz 12940 df-fzo 13083 |
This theorem is referenced by: metakunt25 39693 |
Copyright terms: Public domain | W3C validator |