| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > monoordxr | Structured version Visualization version GIF version | ||
| Description: Ordering relation for a monotonic sequence, increasing case. (Contributed by Glauco Siliprandi, 13-Feb-2022.) |
| Ref | Expression |
|---|---|
| monoordxr.p | ⊢ Ⅎ𝑘𝜑 |
| monoordxr.k | ⊢ Ⅎ𝑘𝐹 |
| monoordxr.n | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| monoordxr.x | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ*) |
| monoordxr.l | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) |
| Ref | Expression |
|---|---|
| monoordxr | ⊢ (𝜑 → (𝐹‘𝑀) ≤ (𝐹‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | monoordxr.n | . 2 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
| 2 | monoordxr.p | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
| 3 | nfv 1915 | . . . . 5 ⊢ Ⅎ𝑘 𝑗 ∈ (𝑀...𝑁) | |
| 4 | 2, 3 | nfan 1900 | . . . 4 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) |
| 5 | monoordxr.k | . . . . . 6 ⊢ Ⅎ𝑘𝐹 | |
| 6 | nfcv 2894 | . . . . . 6 ⊢ Ⅎ𝑘𝑗 | |
| 7 | 5, 6 | nffv 6832 | . . . . 5 ⊢ Ⅎ𝑘(𝐹‘𝑗) |
| 8 | nfcv 2894 | . . . . 5 ⊢ Ⅎ𝑘ℝ* | |
| 9 | 7, 8 | nfel 2909 | . . . 4 ⊢ Ⅎ𝑘(𝐹‘𝑗) ∈ ℝ* |
| 10 | 4, 9 | nfim 1897 | . . 3 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → (𝐹‘𝑗) ∈ ℝ*) |
| 11 | eleq1w 2814 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ (𝑀...𝑁) ↔ 𝑗 ∈ (𝑀...𝑁))) | |
| 12 | 11 | anbi2d 630 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) ↔ (𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)))) |
| 13 | fveq2 6822 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) | |
| 14 | 13 | eleq1d 2816 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) ∈ ℝ* ↔ (𝐹‘𝑗) ∈ ℝ*)) |
| 15 | 12, 14 | imbi12d 344 | . . 3 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ*) ↔ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → (𝐹‘𝑗) ∈ ℝ*))) |
| 16 | monoordxr.x | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ*) | |
| 17 | 10, 15, 16 | chvarfv 2243 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → (𝐹‘𝑗) ∈ ℝ*) |
| 18 | nfv 1915 | . . . . 5 ⊢ Ⅎ𝑘 𝑗 ∈ (𝑀...(𝑁 − 1)) | |
| 19 | 2, 18 | nfan 1900 | . . . 4 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ (𝑀...(𝑁 − 1))) |
| 20 | nfcv 2894 | . . . . 5 ⊢ Ⅎ𝑘 ≤ | |
| 21 | nfcv 2894 | . . . . . 6 ⊢ Ⅎ𝑘(𝑗 + 1) | |
| 22 | 5, 21 | nffv 6832 | . . . . 5 ⊢ Ⅎ𝑘(𝐹‘(𝑗 + 1)) |
| 23 | 7, 20, 22 | nfbr 5138 | . . . 4 ⊢ Ⅎ𝑘(𝐹‘𝑗) ≤ (𝐹‘(𝑗 + 1)) |
| 24 | 19, 23 | nfim 1897 | . . 3 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑗) ≤ (𝐹‘(𝑗 + 1))) |
| 25 | eleq1w 2814 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ (𝑀...(𝑁 − 1)) ↔ 𝑗 ∈ (𝑀...(𝑁 − 1)))) | |
| 26 | 25 | anbi2d 630 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) ↔ (𝜑 ∧ 𝑗 ∈ (𝑀...(𝑁 − 1))))) |
| 27 | fvoveq1 7369 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑗 + 1))) | |
| 28 | 13, 27 | breq12d 5104 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1)) ↔ (𝐹‘𝑗) ≤ (𝐹‘(𝑗 + 1)))) |
| 29 | 26, 28 | imbi12d 344 | . . 3 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) ↔ ((𝜑 ∧ 𝑗 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑗) ≤ (𝐹‘(𝑗 + 1))))) |
| 30 | monoordxr.l | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) | |
| 31 | 24, 29, 30 | chvarfv 2243 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑗) ≤ (𝐹‘(𝑗 + 1))) |
| 32 | 1, 17, 31 | monoordxrv 45518 | 1 ⊢ (𝜑 → (𝐹‘𝑀) ≤ (𝐹‘𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2111 Ⅎwnfc 2879 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 1c1 11004 + caddc 11006 ℝ*cxr 11142 ≤ cle 11144 − cmin 11341 ℤ≥cuz 12729 ...cfz 13404 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-n0 12379 df-z 12466 df-uz 12730 df-fz 13405 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |