Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  monoordxr Structured version   Visualization version   GIF version

Theorem monoordxr 45519
Description: Ordering relation for a monotonic sequence, increasing case. (Contributed by Glauco Siliprandi, 13-Feb-2022.)
Hypotheses
Ref Expression
monoordxr.p 𝑘𝜑
monoordxr.k 𝑘𝐹
monoordxr.n (𝜑𝑁 ∈ (ℤ𝑀))
monoordxr.x ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ*)
monoordxr.l ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
Assertion
Ref Expression
monoordxr (𝜑 → (𝐹𝑀) ≤ (𝐹𝑁))
Distinct variable groups:   𝑘,𝑀   𝑘,𝑁
Allowed substitution hints:   𝜑(𝑘)   𝐹(𝑘)

Proof of Theorem monoordxr
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 monoordxr.n . 2 (𝜑𝑁 ∈ (ℤ𝑀))
2 monoordxr.p . . . . 5 𝑘𝜑
3 nfv 1915 . . . . 5 𝑘 𝑗 ∈ (𝑀...𝑁)
42, 3nfan 1900 . . . 4 𝑘(𝜑𝑗 ∈ (𝑀...𝑁))
5 monoordxr.k . . . . . 6 𝑘𝐹
6 nfcv 2894 . . . . . 6 𝑘𝑗
75, 6nffv 6832 . . . . 5 𝑘(𝐹𝑗)
8 nfcv 2894 . . . . 5 𝑘*
97, 8nfel 2909 . . . 4 𝑘(𝐹𝑗) ∈ ℝ*
104, 9nfim 1897 . . 3 𝑘((𝜑𝑗 ∈ (𝑀...𝑁)) → (𝐹𝑗) ∈ ℝ*)
11 eleq1w 2814 . . . . 5 (𝑘 = 𝑗 → (𝑘 ∈ (𝑀...𝑁) ↔ 𝑗 ∈ (𝑀...𝑁)))
1211anbi2d 630 . . . 4 (𝑘 = 𝑗 → ((𝜑𝑘 ∈ (𝑀...𝑁)) ↔ (𝜑𝑗 ∈ (𝑀...𝑁))))
13 fveq2 6822 . . . . 5 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
1413eleq1d 2816 . . . 4 (𝑘 = 𝑗 → ((𝐹𝑘) ∈ ℝ* ↔ (𝐹𝑗) ∈ ℝ*))
1512, 14imbi12d 344 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ*) ↔ ((𝜑𝑗 ∈ (𝑀...𝑁)) → (𝐹𝑗) ∈ ℝ*)))
16 monoordxr.x . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ*)
1710, 15, 16chvarfv 2243 . 2 ((𝜑𝑗 ∈ (𝑀...𝑁)) → (𝐹𝑗) ∈ ℝ*)
18 nfv 1915 . . . . 5 𝑘 𝑗 ∈ (𝑀...(𝑁 − 1))
192, 18nfan 1900 . . . 4 𝑘(𝜑𝑗 ∈ (𝑀...(𝑁 − 1)))
20 nfcv 2894 . . . . 5 𝑘
21 nfcv 2894 . . . . . 6 𝑘(𝑗 + 1)
225, 21nffv 6832 . . . . 5 𝑘(𝐹‘(𝑗 + 1))
237, 20, 22nfbr 5138 . . . 4 𝑘(𝐹𝑗) ≤ (𝐹‘(𝑗 + 1))
2419, 23nfim 1897 . . 3 𝑘((𝜑𝑗 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑗) ≤ (𝐹‘(𝑗 + 1)))
25 eleq1w 2814 . . . . 5 (𝑘 = 𝑗 → (𝑘 ∈ (𝑀...(𝑁 − 1)) ↔ 𝑗 ∈ (𝑀...(𝑁 − 1))))
2625anbi2d 630 . . . 4 (𝑘 = 𝑗 → ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) ↔ (𝜑𝑗 ∈ (𝑀...(𝑁 − 1)))))
27 fvoveq1 7369 . . . . 5 (𝑘 = 𝑗 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑗 + 1)))
2813, 27breq12d 5104 . . . 4 (𝑘 = 𝑗 → ((𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)) ↔ (𝐹𝑗) ≤ (𝐹‘(𝑗 + 1))))
2926, 28imbi12d 344 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1))) ↔ ((𝜑𝑗 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑗) ≤ (𝐹‘(𝑗 + 1)))))
30 monoordxr.l . . 3 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
3124, 29, 30chvarfv 2243 . 2 ((𝜑𝑗 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑗) ≤ (𝐹‘(𝑗 + 1)))
321, 17, 31monoordxrv 45518 1 (𝜑 → (𝐹𝑀) ≤ (𝐹𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wnf 1784  wcel 2111  wnfc 2879   class class class wbr 5091  cfv 6481  (class class class)co 7346  1c1 11004   + caddc 11006  *cxr 11142  cle 11144  cmin 11341  cuz 12729  ...cfz 13404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-n0 12379  df-z 12466  df-uz 12730  df-fz 13405
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator