Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  monoordxr Structured version   Visualization version   GIF version

Theorem monoordxr 44180
Description: Ordering relation for a monotonic sequence, increasing case. (Contributed by Glauco Siliprandi, 13-Feb-2022.)
Hypotheses
Ref Expression
monoordxr.p 𝑘𝜑
monoordxr.k 𝑘𝐹
monoordxr.n (𝜑𝑁 ∈ (ℤ𝑀))
monoordxr.x ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ*)
monoordxr.l ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
Assertion
Ref Expression
monoordxr (𝜑 → (𝐹𝑀) ≤ (𝐹𝑁))
Distinct variable groups:   𝑘,𝑀   𝑘,𝑁
Allowed substitution hints:   𝜑(𝑘)   𝐹(𝑘)

Proof of Theorem monoordxr
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 monoordxr.n . 2 (𝜑𝑁 ∈ (ℤ𝑀))
2 monoordxr.p . . . . 5 𝑘𝜑
3 nfv 1918 . . . . 5 𝑘 𝑗 ∈ (𝑀...𝑁)
42, 3nfan 1903 . . . 4 𝑘(𝜑𝑗 ∈ (𝑀...𝑁))
5 monoordxr.k . . . . . 6 𝑘𝐹
6 nfcv 2904 . . . . . 6 𝑘𝑗
75, 6nffv 6899 . . . . 5 𝑘(𝐹𝑗)
8 nfcv 2904 . . . . 5 𝑘*
97, 8nfel 2918 . . . 4 𝑘(𝐹𝑗) ∈ ℝ*
104, 9nfim 1900 . . 3 𝑘((𝜑𝑗 ∈ (𝑀...𝑁)) → (𝐹𝑗) ∈ ℝ*)
11 eleq1w 2817 . . . . 5 (𝑘 = 𝑗 → (𝑘 ∈ (𝑀...𝑁) ↔ 𝑗 ∈ (𝑀...𝑁)))
1211anbi2d 630 . . . 4 (𝑘 = 𝑗 → ((𝜑𝑘 ∈ (𝑀...𝑁)) ↔ (𝜑𝑗 ∈ (𝑀...𝑁))))
13 fveq2 6889 . . . . 5 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
1413eleq1d 2819 . . . 4 (𝑘 = 𝑗 → ((𝐹𝑘) ∈ ℝ* ↔ (𝐹𝑗) ∈ ℝ*))
1512, 14imbi12d 345 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ*) ↔ ((𝜑𝑗 ∈ (𝑀...𝑁)) → (𝐹𝑗) ∈ ℝ*)))
16 monoordxr.x . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ*)
1710, 15, 16chvarfv 2234 . 2 ((𝜑𝑗 ∈ (𝑀...𝑁)) → (𝐹𝑗) ∈ ℝ*)
18 nfv 1918 . . . . 5 𝑘 𝑗 ∈ (𝑀...(𝑁 − 1))
192, 18nfan 1903 . . . 4 𝑘(𝜑𝑗 ∈ (𝑀...(𝑁 − 1)))
20 nfcv 2904 . . . . 5 𝑘
21 nfcv 2904 . . . . . 6 𝑘(𝑗 + 1)
225, 21nffv 6899 . . . . 5 𝑘(𝐹‘(𝑗 + 1))
237, 20, 22nfbr 5195 . . . 4 𝑘(𝐹𝑗) ≤ (𝐹‘(𝑗 + 1))
2419, 23nfim 1900 . . 3 𝑘((𝜑𝑗 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑗) ≤ (𝐹‘(𝑗 + 1)))
25 eleq1w 2817 . . . . 5 (𝑘 = 𝑗 → (𝑘 ∈ (𝑀...(𝑁 − 1)) ↔ 𝑗 ∈ (𝑀...(𝑁 − 1))))
2625anbi2d 630 . . . 4 (𝑘 = 𝑗 → ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) ↔ (𝜑𝑗 ∈ (𝑀...(𝑁 − 1)))))
27 fvoveq1 7429 . . . . 5 (𝑘 = 𝑗 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑗 + 1)))
2813, 27breq12d 5161 . . . 4 (𝑘 = 𝑗 → ((𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)) ↔ (𝐹𝑗) ≤ (𝐹‘(𝑗 + 1))))
2926, 28imbi12d 345 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1))) ↔ ((𝜑𝑗 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑗) ≤ (𝐹‘(𝑗 + 1)))))
30 monoordxr.l . . 3 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
3124, 29, 30chvarfv 2234 . 2 ((𝜑𝑗 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑗) ≤ (𝐹‘(𝑗 + 1)))
321, 17, 31monoordxrv 44179 1 (𝜑 → (𝐹𝑀) ≤ (𝐹𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wnf 1786  wcel 2107  wnfc 2884   class class class wbr 5148  cfv 6541  (class class class)co 7406  1c1 11108   + caddc 11110  *cxr 11244  cle 11246  cmin 11441  cuz 12819  ...cfz 13481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-om 7853  df-1st 7972  df-2nd 7973  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-n0 12470  df-z 12556  df-uz 12820  df-fz 13482
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator