Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  monoordxr Structured version   Visualization version   GIF version

Theorem monoordxr 45476
Description: Ordering relation for a monotonic sequence, increasing case. (Contributed by Glauco Siliprandi, 13-Feb-2022.)
Hypotheses
Ref Expression
monoordxr.p 𝑘𝜑
monoordxr.k 𝑘𝐹
monoordxr.n (𝜑𝑁 ∈ (ℤ𝑀))
monoordxr.x ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ*)
monoordxr.l ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
Assertion
Ref Expression
monoordxr (𝜑 → (𝐹𝑀) ≤ (𝐹𝑁))
Distinct variable groups:   𝑘,𝑀   𝑘,𝑁
Allowed substitution hints:   𝜑(𝑘)   𝐹(𝑘)

Proof of Theorem monoordxr
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 monoordxr.n . 2 (𝜑𝑁 ∈ (ℤ𝑀))
2 monoordxr.p . . . . 5 𝑘𝜑
3 nfv 1914 . . . . 5 𝑘 𝑗 ∈ (𝑀...𝑁)
42, 3nfan 1899 . . . 4 𝑘(𝜑𝑗 ∈ (𝑀...𝑁))
5 monoordxr.k . . . . . 6 𝑘𝐹
6 nfcv 2899 . . . . . 6 𝑘𝑗
75, 6nffv 6891 . . . . 5 𝑘(𝐹𝑗)
8 nfcv 2899 . . . . 5 𝑘*
97, 8nfel 2914 . . . 4 𝑘(𝐹𝑗) ∈ ℝ*
104, 9nfim 1896 . . 3 𝑘((𝜑𝑗 ∈ (𝑀...𝑁)) → (𝐹𝑗) ∈ ℝ*)
11 eleq1w 2818 . . . . 5 (𝑘 = 𝑗 → (𝑘 ∈ (𝑀...𝑁) ↔ 𝑗 ∈ (𝑀...𝑁)))
1211anbi2d 630 . . . 4 (𝑘 = 𝑗 → ((𝜑𝑘 ∈ (𝑀...𝑁)) ↔ (𝜑𝑗 ∈ (𝑀...𝑁))))
13 fveq2 6881 . . . . 5 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
1413eleq1d 2820 . . . 4 (𝑘 = 𝑗 → ((𝐹𝑘) ∈ ℝ* ↔ (𝐹𝑗) ∈ ℝ*))
1512, 14imbi12d 344 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ*) ↔ ((𝜑𝑗 ∈ (𝑀...𝑁)) → (𝐹𝑗) ∈ ℝ*)))
16 monoordxr.x . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ*)
1710, 15, 16chvarfv 2241 . 2 ((𝜑𝑗 ∈ (𝑀...𝑁)) → (𝐹𝑗) ∈ ℝ*)
18 nfv 1914 . . . . 5 𝑘 𝑗 ∈ (𝑀...(𝑁 − 1))
192, 18nfan 1899 . . . 4 𝑘(𝜑𝑗 ∈ (𝑀...(𝑁 − 1)))
20 nfcv 2899 . . . . 5 𝑘
21 nfcv 2899 . . . . . 6 𝑘(𝑗 + 1)
225, 21nffv 6891 . . . . 5 𝑘(𝐹‘(𝑗 + 1))
237, 20, 22nfbr 5171 . . . 4 𝑘(𝐹𝑗) ≤ (𝐹‘(𝑗 + 1))
2419, 23nfim 1896 . . 3 𝑘((𝜑𝑗 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑗) ≤ (𝐹‘(𝑗 + 1)))
25 eleq1w 2818 . . . . 5 (𝑘 = 𝑗 → (𝑘 ∈ (𝑀...(𝑁 − 1)) ↔ 𝑗 ∈ (𝑀...(𝑁 − 1))))
2625anbi2d 630 . . . 4 (𝑘 = 𝑗 → ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) ↔ (𝜑𝑗 ∈ (𝑀...(𝑁 − 1)))))
27 fvoveq1 7433 . . . . 5 (𝑘 = 𝑗 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑗 + 1)))
2813, 27breq12d 5137 . . . 4 (𝑘 = 𝑗 → ((𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)) ↔ (𝐹𝑗) ≤ (𝐹‘(𝑗 + 1))))
2926, 28imbi12d 344 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1))) ↔ ((𝜑𝑗 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑗) ≤ (𝐹‘(𝑗 + 1)))))
30 monoordxr.l . . 3 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
3124, 29, 30chvarfv 2241 . 2 ((𝜑𝑗 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑗) ≤ (𝐹‘(𝑗 + 1)))
321, 17, 31monoordxrv 45475 1 (𝜑 → (𝐹𝑀) ≤ (𝐹𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  wnfc 2884   class class class wbr 5124  cfv 6536  (class class class)co 7410  1c1 11135   + caddc 11137  *cxr 11273  cle 11275  cmin 11471  cuz 12857  ...cfz 13529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator