Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lmod1lem5 | Structured version Visualization version GIF version |
Description: Lemma 5 for lmod1 45891. (Contributed by AV, 28-Apr-2019.) |
Ref | Expression |
---|---|
lmod1.m | ⊢ 𝑀 = ({〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)〉}) |
Ref | Expression |
---|---|
lmod1lem5 | ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → ((1r‘(Scalar‘𝑀))( ·𝑠 ‘𝑀)𝐼) = 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6817 | . . . . . 6 ⊢ (Base‘𝑅) ∈ V | |
2 | snex 5363 | . . . . . 6 ⊢ {𝐼} ∈ V | |
3 | 1, 2 | pm3.2i 472 | . . . . 5 ⊢ ((Base‘𝑅) ∈ V ∧ {𝐼} ∈ V) |
4 | 3 | a1i 11 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → ((Base‘𝑅) ∈ V ∧ {𝐼} ∈ V)) |
5 | mpoexga 7950 | . . . 4 ⊢ (((Base‘𝑅) ∈ V ∧ {𝐼} ∈ V) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦) ∈ V) | |
6 | lmod1.m | . . . . 5 ⊢ 𝑀 = ({〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)〉}) | |
7 | 6 | lmodvsca 17084 | . . . 4 ⊢ ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦) ∈ V → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦) = ( ·𝑠 ‘𝑀)) |
8 | 4, 5, 7 | 3syl 18 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦) = ( ·𝑠 ‘𝑀)) |
9 | 8 | eqcomd 2742 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → ( ·𝑠 ‘𝑀) = (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)) |
10 | simprr 771 | . 2 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑥 = (1r‘(Scalar‘𝑀)) ∧ 𝑦 = 𝐼)) → 𝑦 = 𝐼) | |
11 | 6 | lmodsca 17083 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑀)) |
12 | 11 | adantl 483 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → 𝑅 = (Scalar‘𝑀)) |
13 | 12 | eqcomd 2742 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → (Scalar‘𝑀) = 𝑅) |
14 | 13 | fveq2d 6808 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → (1r‘(Scalar‘𝑀)) = (1r‘𝑅)) |
15 | eqid 2736 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
16 | eqid 2736 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
17 | 15, 16 | ringidcl 19852 | . . . 4 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ (Base‘𝑅)) |
18 | 17 | adantl 483 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → (1r‘𝑅) ∈ (Base‘𝑅)) |
19 | 14, 18 | eqeltrd 2837 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → (1r‘(Scalar‘𝑀)) ∈ (Base‘𝑅)) |
20 | snidg 4599 | . . 3 ⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ {𝐼}) | |
21 | 20 | adantr 482 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → 𝐼 ∈ {𝐼}) |
22 | 9, 10, 19, 21, 21 | ovmpod 7457 | 1 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → ((1r‘(Scalar‘𝑀))( ·𝑠 ‘𝑀)𝐼) = 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 Vcvv 3437 ∪ cun 3890 {csn 4565 {ctp 4569 〈cop 4571 ‘cfv 6458 (class class class)co 7307 ∈ cmpo 7309 ndxcnx 16939 Basecbs 16957 +gcplusg 17007 Scalarcsca 17010 ·𝑠 cvsca 17011 1rcur 19782 Ringcrg 19828 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-nn 12020 df-2 12082 df-3 12083 df-4 12084 df-5 12085 df-6 12086 df-n0 12280 df-z 12366 df-uz 12629 df-fz 13286 df-struct 16893 df-sets 16910 df-slot 16928 df-ndx 16940 df-base 16958 df-plusg 17020 df-sca 17023 df-vsca 17024 df-0g 17197 df-mgm 18371 df-sgrp 18420 df-mnd 18431 df-mgp 19766 df-ur 19783 df-ring 19830 |
This theorem is referenced by: lmod1 45891 |
Copyright terms: Public domain | W3C validator |