| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lmod1lem5 | Structured version Visualization version GIF version | ||
| Description: Lemma 5 for lmod1 48355. (Contributed by AV, 28-Apr-2019.) |
| Ref | Expression |
|---|---|
| lmod1.m | ⊢ 𝑀 = ({〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)〉}) |
| Ref | Expression |
|---|---|
| lmod1lem5 | ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → ((1r‘(Scalar‘𝑀))( ·𝑠 ‘𝑀)𝐼) = 𝐼) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6900 | . . . . . 6 ⊢ (Base‘𝑅) ∈ V | |
| 2 | snex 5418 | . . . . . 6 ⊢ {𝐼} ∈ V | |
| 3 | 1, 2 | pm3.2i 470 | . . . . 5 ⊢ ((Base‘𝑅) ∈ V ∧ {𝐼} ∈ V) |
| 4 | 3 | a1i 11 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → ((Base‘𝑅) ∈ V ∧ {𝐼} ∈ V)) |
| 5 | mpoexga 8085 | . . . 4 ⊢ (((Base‘𝑅) ∈ V ∧ {𝐼} ∈ V) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦) ∈ V) | |
| 6 | lmod1.m | . . . . 5 ⊢ 𝑀 = ({〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)〉}) | |
| 7 | 6 | lmodvsca 17350 | . . . 4 ⊢ ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦) ∈ V → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦) = ( ·𝑠 ‘𝑀)) |
| 8 | 4, 5, 7 | 3syl 18 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦) = ( ·𝑠 ‘𝑀)) |
| 9 | 8 | eqcomd 2740 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → ( ·𝑠 ‘𝑀) = (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)) |
| 10 | simprr 772 | . 2 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑥 = (1r‘(Scalar‘𝑀)) ∧ 𝑦 = 𝐼)) → 𝑦 = 𝐼) | |
| 11 | 6 | lmodsca 17349 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑀)) |
| 12 | 11 | adantl 481 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → 𝑅 = (Scalar‘𝑀)) |
| 13 | 12 | eqcomd 2740 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → (Scalar‘𝑀) = 𝑅) |
| 14 | 13 | fveq2d 6891 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → (1r‘(Scalar‘𝑀)) = (1r‘𝑅)) |
| 15 | eqid 2734 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 16 | eqid 2734 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 17 | 15, 16 | ringidcl 20235 | . . . 4 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 18 | 17 | adantl 481 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 19 | 14, 18 | eqeltrd 2833 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → (1r‘(Scalar‘𝑀)) ∈ (Base‘𝑅)) |
| 20 | snidg 4642 | . . 3 ⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ {𝐼}) | |
| 21 | 20 | adantr 480 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → 𝐼 ∈ {𝐼}) |
| 22 | 9, 10, 19, 21, 21 | ovmpod 7568 | 1 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → ((1r‘(Scalar‘𝑀))( ·𝑠 ‘𝑀)𝐼) = 𝐼) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3464 ∪ cun 3931 {csn 4608 {ctp 4612 〈cop 4614 ‘cfv 6542 (class class class)co 7414 ∈ cmpo 7416 ndxcnx 17213 Basecbs 17230 +gcplusg 17277 Scalarcsca 17280 ·𝑠 cvsca 17281 1rcur 20151 Ringcrg 20203 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-tp 4613 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-er 8728 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-nn 12250 df-2 12312 df-3 12313 df-4 12314 df-5 12315 df-6 12316 df-n0 12511 df-z 12598 df-uz 12862 df-fz 13531 df-struct 17167 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-plusg 17290 df-sca 17293 df-vsca 17294 df-0g 17462 df-mgm 18627 df-sgrp 18706 df-mnd 18722 df-mgp 20111 df-ur 20152 df-ring 20205 |
| This theorem is referenced by: lmod1 48355 |
| Copyright terms: Public domain | W3C validator |