Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmod1lem4 Structured version   Visualization version   GIF version

Theorem lmod1lem4 43944
Description: Lemma 4 for lmod1 43946. (Contributed by AV, 29-Apr-2019.)
Hypothesis
Ref Expression
lmod1.m 𝑀 = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)⟩})
Assertion
Ref Expression
lmod1lem4 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → ((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼)))
Distinct variable groups:   𝐼,𝑟,𝑥,𝑦   𝑅,𝑟,𝑥,𝑦   𝑉,𝑟,𝑥,𝑦   𝐼,𝑞   𝑅,𝑞   𝑉,𝑞   𝑥,𝑀,𝑦   𝑥,𝑞,𝑦
Allowed substitution hints:   𝑀(𝑟,𝑞)

Proof of Theorem lmod1lem4
StepHypRef Expression
1 fvex 6509 . . . . . . 7 (Base‘𝑅) ∈ V
2 snex 5184 . . . . . . 7 {𝐼} ∈ V
31, 2pm3.2i 463 . . . . . 6 ((Base‘𝑅) ∈ V ∧ {𝐼} ∈ V)
43a1i 11 . . . . 5 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → ((Base‘𝑅) ∈ V ∧ {𝐼} ∈ V))
5 mpoexga 7581 . . . . 5 (((Base‘𝑅) ∈ V ∧ {𝐼} ∈ V) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦) ∈ V)
6 lmod1.m . . . . . 6 𝑀 = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)⟩})
76lmodvsca 16494 . . . . 5 ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦) ∈ V → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦) = ( ·𝑠𝑀))
84, 5, 73syl 18 . . . 4 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦) = ( ·𝑠𝑀))
98eqcomd 2777 . . 3 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → ( ·𝑠𝑀) = (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦))
10 simprr 761 . . 3 ((((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) ∧ (𝑥 = 𝑞𝑦 = 𝐼)) → 𝑦 = 𝐼)
11 simprl 759 . . 3 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → 𝑞 ∈ (Base‘𝑅))
12 snidg 4467 . . . 4 (𝐼𝑉𝐼 ∈ {𝐼})
1312ad2antrr 714 . . 3 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → 𝐼 ∈ {𝐼})
149, 10, 11, 13, 13ovmpod 7116 . 2 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (𝑞( ·𝑠𝑀)𝐼) = 𝐼)
15 simprr 761 . . . 4 ((((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) ∧ (𝑥 = 𝑟𝑦 = 𝐼)) → 𝑦 = 𝐼)
16 simprr 761 . . . 4 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → 𝑟 ∈ (Base‘𝑅))
179, 15, 16, 13, 13ovmpod 7116 . . 3 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (𝑟( ·𝑠𝑀)𝐼) = 𝐼)
1817oveq2d 6990 . 2 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼)) = (𝑞( ·𝑠𝑀)𝐼))
19 simprr 761 . . 3 ((((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) ∧ (𝑥 = (𝑞(.r‘(Scalar‘𝑀))𝑟) ∧ 𝑦 = 𝐼)) → 𝑦 = 𝐼)
20 simplr 757 . . . . . . 7 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → 𝑅 ∈ Ring)
216lmodsca 16493 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑀))
2221fveq2d 6500 . . . . . . 7 (𝑅 ∈ Ring → (.r𝑅) = (.r‘(Scalar‘𝑀)))
2320, 22syl 17 . . . . . 6 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (.r𝑅) = (.r‘(Scalar‘𝑀)))
2423eqcomd 2777 . . . . 5 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (.r‘(Scalar‘𝑀)) = (.r𝑅))
2524oveqd 6991 . . . 4 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (𝑞(.r‘(Scalar‘𝑀))𝑟) = (𝑞(.r𝑅)𝑟))
26 eqid 2771 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
27 eqid 2771 . . . . . 6 (.r𝑅) = (.r𝑅)
2826, 27ringcl 19046 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅)) → (𝑞(.r𝑅)𝑟) ∈ (Base‘𝑅))
2920, 11, 16, 28syl3anc 1352 . . . 4 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (𝑞(.r𝑅)𝑟) ∈ (Base‘𝑅))
3025, 29eqeltrd 2859 . . 3 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (𝑞(.r‘(Scalar‘𝑀))𝑟) ∈ (Base‘𝑅))
319, 19, 30, 13, 13ovmpod 7116 . 2 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → ((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = 𝐼)
3214, 18, 313eqtr4rd 2818 1 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → ((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1508  wcel 2051  Vcvv 3408  cun 3820  {csn 4435  {ctp 4439  cop 4441  cfv 6185  (class class class)co 6974  cmpo 6976  ndxcnx 16334  Basecbs 16337  +gcplusg 16419  .rcmulr 16420  Scalarcsca 16422   ·𝑠 cvsca 16423  Ringcrg 19032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-rep 5045  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-cnex 10389  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409  ax-pre-mulgt0 10410
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-nel 3067  df-ral 3086  df-rex 3087  df-reu 3088  df-rab 3090  df-v 3410  df-sbc 3675  df-csb 3780  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-pss 3838  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4709  df-int 4746  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-tr 5027  df-id 5308  df-eprel 5313  df-po 5322  df-so 5323  df-fr 5362  df-we 5364  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-pred 5983  df-ord 6029  df-on 6030  df-lim 6031  df-suc 6032  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-om 7395  df-1st 7499  df-2nd 7500  df-wrecs 7748  df-recs 7810  df-rdg 7848  df-1o 7903  df-oadd 7907  df-er 8087  df-en 8305  df-dom 8306  df-sdom 8307  df-fin 8308  df-pnf 10474  df-mnf 10475  df-xr 10476  df-ltxr 10477  df-le 10478  df-sub 10670  df-neg 10671  df-nn 11438  df-2 11501  df-3 11502  df-4 11503  df-5 11504  df-6 11505  df-n0 11706  df-z 11792  df-uz 12057  df-fz 12707  df-struct 16339  df-ndx 16340  df-slot 16341  df-base 16343  df-sets 16344  df-plusg 16432  df-sca 16435  df-vsca 16436  df-mgm 17722  df-sgrp 17764  df-mnd 17775  df-mgp 18975  df-ring 19034
This theorem is referenced by:  lmod1  43946
  Copyright terms: Public domain W3C validator