Proof of Theorem lmod1lem4
Step | Hyp | Ref
| Expression |
1 | | fvex 6769 |
. . . . . . 7
⊢
(Base‘𝑅)
∈ V |
2 | | snex 5349 |
. . . . . . 7
⊢ {𝐼} ∈ V |
3 | 1, 2 | pm3.2i 470 |
. . . . . 6
⊢
((Base‘𝑅)
∈ V ∧ {𝐼} ∈
V) |
4 | 3 | a1i 11 |
. . . . 5
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → ((Base‘𝑅) ∈ V ∧ {𝐼} ∈ V)) |
5 | | mpoexga 7891 |
. . . . 5
⊢
(((Base‘𝑅)
∈ V ∧ {𝐼} ∈
V) → (𝑥 ∈
(Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦) ∈ V) |
6 | | lmod1.m |
. . . . . 6
⊢ 𝑀 = ({〈(Base‘ndx),
{𝐼}〉,
〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉, 〈(Scalar‘ndx),
𝑅〉} ∪ {〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)〉}) |
7 | 6 | lmodvsca 16965 |
. . . . 5
⊢ ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦) ∈ V → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦) = ( ·𝑠
‘𝑀)) |
8 | 4, 5, 7 | 3syl 18 |
. . . 4
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦) = ( ·𝑠
‘𝑀)) |
9 | 8 | eqcomd 2744 |
. . 3
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (
·𝑠 ‘𝑀) = (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)) |
10 | | simprr 769 |
. . 3
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) ∧ (𝑥 = 𝑞 ∧ 𝑦 = 𝐼)) → 𝑦 = 𝐼) |
11 | | simprl 767 |
. . 3
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → 𝑞 ∈ (Base‘𝑅)) |
12 | | snidg 4592 |
. . . 4
⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ {𝐼}) |
13 | 12 | ad2antrr 722 |
. . 3
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → 𝐼 ∈ {𝐼}) |
14 | 9, 10, 11, 13, 13 | ovmpod 7403 |
. 2
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (𝑞( ·𝑠
‘𝑀)𝐼) = 𝐼) |
15 | | simprr 769 |
. . . 4
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) ∧ (𝑥 = 𝑟 ∧ 𝑦 = 𝐼)) → 𝑦 = 𝐼) |
16 | | simprr 769 |
. . . 4
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → 𝑟 ∈ (Base‘𝑅)) |
17 | 9, 15, 16, 13, 13 | ovmpod 7403 |
. . 3
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (𝑟( ·𝑠
‘𝑀)𝐼) = 𝐼) |
18 | 17 | oveq2d 7271 |
. 2
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (𝑞( ·𝑠
‘𝑀)(𝑟(
·𝑠 ‘𝑀)𝐼)) = (𝑞( ·𝑠
‘𝑀)𝐼)) |
19 | | simprr 769 |
. . 3
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) ∧ (𝑥 = (𝑞(.r‘(Scalar‘𝑀))𝑟) ∧ 𝑦 = 𝐼)) → 𝑦 = 𝐼) |
20 | | simplr 765 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → 𝑅 ∈ Ring) |
21 | 6 | lmodsca 16964 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑀)) |
22 | 21 | fveq2d 6760 |
. . . . . . 7
⊢ (𝑅 ∈ Ring →
(.r‘𝑅) =
(.r‘(Scalar‘𝑀))) |
23 | 20, 22 | syl 17 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (.r‘𝑅) =
(.r‘(Scalar‘𝑀))) |
24 | 23 | eqcomd 2744 |
. . . . 5
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) →
(.r‘(Scalar‘𝑀)) = (.r‘𝑅)) |
25 | 24 | oveqd 7272 |
. . . 4
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (𝑞(.r‘(Scalar‘𝑀))𝑟) = (𝑞(.r‘𝑅)𝑟)) |
26 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑅) |
27 | | eqid 2738 |
. . . . . 6
⊢
(.r‘𝑅) = (.r‘𝑅) |
28 | 26, 27 | ringcl 19715 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅)) → (𝑞(.r‘𝑅)𝑟) ∈ (Base‘𝑅)) |
29 | 20, 11, 16, 28 | syl3anc 1369 |
. . . 4
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (𝑞(.r‘𝑅)𝑟) ∈ (Base‘𝑅)) |
30 | 25, 29 | eqeltrd 2839 |
. . 3
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (𝑞(.r‘(Scalar‘𝑀))𝑟) ∈ (Base‘𝑅)) |
31 | 9, 19, 30, 13, 13 | ovmpod 7403 |
. 2
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → ((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠
‘𝑀)𝐼) = 𝐼) |
32 | 14, 18, 31 | 3eqtr4rd 2789 |
1
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → ((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠
‘𝑀)𝐼) = (𝑞( ·𝑠
‘𝑀)(𝑟(
·𝑠 ‘𝑀)𝐼))) |