Step | Hyp | Ref
| Expression |
1 | | nfcv 2902 |
. . . . . 6
β’
β²ππ΄ |
2 | | nfcsb1v 3919 |
. . . . . 6
β’
β²π’β¦π / π’β¦π΄ |
3 | | csbeq1a 3908 |
. . . . . 6
β’ (π’ = π β π΄ = β¦π / π’β¦π΄) |
4 | 1, 2, 3 | cbvmpt 5260 |
. . . . 5
β’ (π’ β (β€
βm (1...π))
β¦ π΄) = (π β (β€
βm (1...π))
β¦ β¦π /
π’β¦π΄) |
5 | 4 | fveq1i 6893 |
. . . 4
β’ ((π’ β (β€
βm (1...π))
β¦ π΄)β(π‘ βΎ (1...π))) = ((π β (β€ βm
(1...π)) β¦
β¦π / π’β¦π΄)β(π‘ βΎ (1...π))) |
6 | | eqid 2731 |
. . . . 5
β’ (π β (β€
βm (1...π))
β¦ β¦π /
π’β¦π΄) = (π β (β€ βm
(1...π)) β¦
β¦π / π’β¦π΄) |
7 | | csbeq1 3897 |
. . . . 5
β’ (π = (π‘ βΎ (1...π)) β β¦π / π’β¦π΄ = β¦(π‘ βΎ (1...π)) / π’β¦π΄) |
8 | | rabdiophlem2.1 |
. . . . . . 7
β’ π = (π + 1) |
9 | 8 | mapfzcons1cl 41759 |
. . . . . 6
β’ (π‘ β (β€
βm (1...π))
β (π‘ βΎ
(1...π)) β (β€
βm (1...π))) |
10 | 9 | adantl 481 |
. . . . 5
β’ (((π β β0
β§ (π’ β (β€
βm (1...π))
β¦ π΄) β
(mzPolyβ(1...π)))
β§ π‘ β (β€
βm (1...π))) β (π‘ βΎ (1...π)) β (β€ βm
(1...π))) |
11 | | mzpf 41777 |
. . . . . . . 8
β’ ((π’ β (β€
βm (1...π))
β¦ π΄) β
(mzPolyβ(1...π))
β (π’ β (β€
βm (1...π))
β¦ π΄):(β€
βm (1...π))βΆβ€) |
12 | | eqid 2731 |
. . . . . . . . 9
β’ (π’ β (β€
βm (1...π))
β¦ π΄) = (π’ β (β€
βm (1...π))
β¦ π΄) |
13 | 12 | fmpt 7112 |
. . . . . . . 8
β’
(βπ’ β
(β€ βm (1...π))π΄ β β€ β (π’ β (β€ βm
(1...π)) β¦ π΄):(β€ βm
(1...π))βΆβ€) |
14 | 11, 13 | sylibr 233 |
. . . . . . 7
β’ ((π’ β (β€
βm (1...π))
β¦ π΄) β
(mzPolyβ(1...π))
β βπ’ β
(β€ βm (1...π))π΄ β β€) |
15 | 14 | ad2antlr 724 |
. . . . . 6
β’ (((π β β0
β§ (π’ β (β€
βm (1...π))
β¦ π΄) β
(mzPolyβ(1...π)))
β§ π‘ β (β€
βm (1...π))) β βπ’ β (β€ βm
(1...π))π΄ β β€) |
16 | | nfcsb1v 3919 |
. . . . . . . 8
β’
β²π’β¦(π‘ βΎ (1...π)) / π’β¦π΄ |
17 | 16 | nfel1 2918 |
. . . . . . 7
β’
β²π’β¦(π‘ βΎ (1...π)) / π’β¦π΄ β β€ |
18 | | csbeq1a 3908 |
. . . . . . . 8
β’ (π’ = (π‘ βΎ (1...π)) β π΄ = β¦(π‘ βΎ (1...π)) / π’β¦π΄) |
19 | 18 | eleq1d 2817 |
. . . . . . 7
β’ (π’ = (π‘ βΎ (1...π)) β (π΄ β β€ β β¦(π‘ βΎ (1...π)) / π’β¦π΄ β β€)) |
20 | 17, 19 | rspc 3601 |
. . . . . 6
β’ ((π‘ βΎ (1...π)) β (β€ βm
(1...π)) β
(βπ’ β (β€
βm (1...π))π΄ β β€ β β¦(π‘ βΎ (1...π)) / π’β¦π΄ β β€)) |
21 | 10, 15, 20 | sylc 65 |
. . . . 5
β’ (((π β β0
β§ (π’ β (β€
βm (1...π))
β¦ π΄) β
(mzPolyβ(1...π)))
β§ π‘ β (β€
βm (1...π))) β β¦(π‘ βΎ (1...π)) / π’β¦π΄ β β€) |
22 | 6, 7, 10, 21 | fvmptd3 7022 |
. . . 4
β’ (((π β β0
β§ (π’ β (β€
βm (1...π))
β¦ π΄) β
(mzPolyβ(1...π)))
β§ π‘ β (β€
βm (1...π))) β ((π β (β€ βm
(1...π)) β¦
β¦π / π’β¦π΄)β(π‘ βΎ (1...π))) = β¦(π‘ βΎ (1...π)) / π’β¦π΄) |
23 | 5, 22 | eqtr2id 2784 |
. . 3
β’ (((π β β0
β§ (π’ β (β€
βm (1...π))
β¦ π΄) β
(mzPolyβ(1...π)))
β§ π‘ β (β€
βm (1...π))) β β¦(π‘ βΎ (1...π)) / π’β¦π΄ = ((π’ β (β€ βm
(1...π)) β¦ π΄)β(π‘ βΎ (1...π)))) |
24 | 23 | mpteq2dva 5249 |
. 2
β’ ((π β β0
β§ (π’ β (β€
βm (1...π))
β¦ π΄) β
(mzPolyβ(1...π)))
β (π‘ β (β€
βm (1...π))
β¦ β¦(π‘
βΎ (1...π)) / π’β¦π΄) = (π‘ β (β€ βm
(1...π)) β¦ ((π’ β (β€
βm (1...π))
β¦ π΄)β(π‘ βΎ (1...π))))) |
25 | | ovexd 7447 |
. . 3
β’ ((π β β0
β§ (π’ β (β€
βm (1...π))
β¦ π΄) β
(mzPolyβ(1...π)))
β (1...π) β
V) |
26 | | fzssp1 13549 |
. . . . 5
β’
(1...π) β
(1...(π +
1)) |
27 | 8 | oveq2i 7423 |
. . . . 5
β’
(1...π) =
(1...(π +
1)) |
28 | 26, 27 | sseqtrri 4020 |
. . . 4
β’
(1...π) β
(1...π) |
29 | 28 | a1i 11 |
. . 3
β’ ((π β β0
β§ (π’ β (β€
βm (1...π))
β¦ π΄) β
(mzPolyβ(1...π)))
β (1...π) β
(1...π)) |
30 | | simpr 484 |
. . 3
β’ ((π β β0
β§ (π’ β (β€
βm (1...π))
β¦ π΄) β
(mzPolyβ(1...π)))
β (π’ β (β€
βm (1...π))
β¦ π΄) β
(mzPolyβ(1...π))) |
31 | | mzpresrename 41791 |
. . 3
β’
(((1...π) β V
β§ (1...π) β
(1...π) β§ (π’ β (β€
βm (1...π))
β¦ π΄) β
(mzPolyβ(1...π)))
β (π‘ β (β€
βm (1...π))
β¦ ((π’ β (β€
βm (1...π))
β¦ π΄)β(π‘ βΎ (1...π)))) β (mzPolyβ(1...π))) |
32 | 25, 29, 30, 31 | syl3anc 1370 |
. 2
β’ ((π β β0
β§ (π’ β (β€
βm (1...π))
β¦ π΄) β
(mzPolyβ(1...π)))
β (π‘ β (β€
βm (1...π))
β¦ ((π’ β (β€
βm (1...π))
β¦ π΄)β(π‘ βΎ (1...π)))) β (mzPolyβ(1...π))) |
33 | 24, 32 | eqeltrd 2832 |
1
β’ ((π β β0
β§ (π’ β (β€
βm (1...π))
β¦ π΄) β
(mzPolyβ(1...π)))
β (π‘ β (β€
βm (1...π))
β¦ β¦(π‘
βΎ (1...π)) / π’β¦π΄) β (mzPolyβ(1...π))) |