Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabdiophlem2 Structured version   Visualization version   GIF version

Theorem rabdiophlem2 39743
Description: Lemma for arithmetic diophantine sets. Reuse a polynomial expression under a new quantifier. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Hypothesis
Ref Expression
rabdiophlem2.1 𝑀 = (𝑁 + 1)
Assertion
Ref Expression
rabdiophlem2 ((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑡 ∈ (ℤ ↑m (1...𝑀)) ↦ (𝑡 ↾ (1...𝑁)) / 𝑢𝐴) ∈ (mzPoly‘(1...𝑀)))
Distinct variable groups:   𝑢,𝑁,𝑡   𝑢,𝑀,𝑡   𝑡,𝐴
Allowed substitution hint:   𝐴(𝑢)

Proof of Theorem rabdiophlem2
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2955 . . . . . 6 𝑎𝐴
2 nfcsb1v 3852 . . . . . 6 𝑢𝑎 / 𝑢𝐴
3 csbeq1a 3842 . . . . . 6 (𝑢 = 𝑎𝐴 = 𝑎 / 𝑢𝐴)
41, 2, 3cbvmpt 5131 . . . . 5 (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) = (𝑎 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝑎 / 𝑢𝐴)
54fveq1i 6646 . . . 4 ((𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘(𝑡 ↾ (1...𝑁))) = ((𝑎 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝑎 / 𝑢𝐴)‘(𝑡 ↾ (1...𝑁)))
6 eqid 2798 . . . . 5 (𝑎 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝑎 / 𝑢𝐴) = (𝑎 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝑎 / 𝑢𝐴)
7 csbeq1 3831 . . . . 5 (𝑎 = (𝑡 ↾ (1...𝑁)) → 𝑎 / 𝑢𝐴 = (𝑡 ↾ (1...𝑁)) / 𝑢𝐴)
8 rabdiophlem2.1 . . . . . . 7 𝑀 = (𝑁 + 1)
98mapfzcons1cl 39659 . . . . . 6 (𝑡 ∈ (ℤ ↑m (1...𝑀)) → (𝑡 ↾ (1...𝑁)) ∈ (ℤ ↑m (1...𝑁)))
109adantl 485 . . . . 5 (((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) ∧ 𝑡 ∈ (ℤ ↑m (1...𝑀))) → (𝑡 ↾ (1...𝑁)) ∈ (ℤ ↑m (1...𝑁)))
11 mzpf 39677 . . . . . . . 8 ((𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) → (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴):(ℤ ↑m (1...𝑁))⟶ℤ)
12 eqid 2798 . . . . . . . . 9 (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) = (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)
1312fmpt 6851 . . . . . . . 8 (∀𝑢 ∈ (ℤ ↑m (1...𝑁))𝐴 ∈ ℤ ↔ (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴):(ℤ ↑m (1...𝑁))⟶ℤ)
1411, 13sylibr 237 . . . . . . 7 ((𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) → ∀𝑢 ∈ (ℤ ↑m (1...𝑁))𝐴 ∈ ℤ)
1514ad2antlr 726 . . . . . 6 (((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) ∧ 𝑡 ∈ (ℤ ↑m (1...𝑀))) → ∀𝑢 ∈ (ℤ ↑m (1...𝑁))𝐴 ∈ ℤ)
16 nfcsb1v 3852 . . . . . . . 8 𝑢(𝑡 ↾ (1...𝑁)) / 𝑢𝐴
1716nfel1 2971 . . . . . . 7 𝑢(𝑡 ↾ (1...𝑁)) / 𝑢𝐴 ∈ ℤ
18 csbeq1a 3842 . . . . . . . 8 (𝑢 = (𝑡 ↾ (1...𝑁)) → 𝐴 = (𝑡 ↾ (1...𝑁)) / 𝑢𝐴)
1918eleq1d 2874 . . . . . . 7 (𝑢 = (𝑡 ↾ (1...𝑁)) → (𝐴 ∈ ℤ ↔ (𝑡 ↾ (1...𝑁)) / 𝑢𝐴 ∈ ℤ))
2017, 19rspc 3559 . . . . . 6 ((𝑡 ↾ (1...𝑁)) ∈ (ℤ ↑m (1...𝑁)) → (∀𝑢 ∈ (ℤ ↑m (1...𝑁))𝐴 ∈ ℤ → (𝑡 ↾ (1...𝑁)) / 𝑢𝐴 ∈ ℤ))
2110, 15, 20sylc 65 . . . . 5 (((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) ∧ 𝑡 ∈ (ℤ ↑m (1...𝑀))) → (𝑡 ↾ (1...𝑁)) / 𝑢𝐴 ∈ ℤ)
226, 7, 10, 21fvmptd3 6768 . . . 4 (((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) ∧ 𝑡 ∈ (ℤ ↑m (1...𝑀))) → ((𝑎 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝑎 / 𝑢𝐴)‘(𝑡 ↾ (1...𝑁))) = (𝑡 ↾ (1...𝑁)) / 𝑢𝐴)
235, 22syl5req 2846 . . 3 (((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) ∧ 𝑡 ∈ (ℤ ↑m (1...𝑀))) → (𝑡 ↾ (1...𝑁)) / 𝑢𝐴 = ((𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘(𝑡 ↾ (1...𝑁))))
2423mpteq2dva 5125 . 2 ((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑡 ∈ (ℤ ↑m (1...𝑀)) ↦ (𝑡 ↾ (1...𝑁)) / 𝑢𝐴) = (𝑡 ∈ (ℤ ↑m (1...𝑀)) ↦ ((𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘(𝑡 ↾ (1...𝑁)))))
25 ovexd 7170 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (1...𝑀) ∈ V)
26 fzssp1 12945 . . . . 5 (1...𝑁) ⊆ (1...(𝑁 + 1))
278oveq2i 7146 . . . . 5 (1...𝑀) = (1...(𝑁 + 1))
2826, 27sseqtrri 3952 . . . 4 (1...𝑁) ⊆ (1...𝑀)
2928a1i 11 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (1...𝑁) ⊆ (1...𝑀))
30 simpr 488 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)))
31 mzpresrename 39691 . . 3 (((1...𝑀) ∈ V ∧ (1...𝑁) ⊆ (1...𝑀) ∧ (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑡 ∈ (ℤ ↑m (1...𝑀)) ↦ ((𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘(𝑡 ↾ (1...𝑁)))) ∈ (mzPoly‘(1...𝑀)))
3225, 29, 30, 31syl3anc 1368 . 2 ((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑡 ∈ (ℤ ↑m (1...𝑀)) ↦ ((𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘(𝑡 ↾ (1...𝑁)))) ∈ (mzPoly‘(1...𝑀)))
3324, 32eqeltrd 2890 1 ((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑡 ∈ (ℤ ↑m (1...𝑀)) ↦ (𝑡 ↾ (1...𝑁)) / 𝑢𝐴) ∈ (mzPoly‘(1...𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wral 3106  Vcvv 3441  csb 3828  wss 3881  cmpt 5110  cres 5521  wf 6320  cfv 6324  (class class class)co 7135  m cmap 8389  1c1 10527   + caddc 10529  0cn0 11885  cz 11969  ...cfz 12885  mzPolycmzp 39663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-mzpcl 39664  df-mzp 39665
This theorem is referenced by:  elnn0rabdioph  39744  dvdsrabdioph  39751
  Copyright terms: Public domain W3C validator