Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabdiophlem2 Structured version   Visualization version   GIF version

Theorem rabdiophlem2 42758
Description: Lemma for arithmetic diophantine sets. Reuse a polynomial expression under a new quantifier. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Hypothesis
Ref Expression
rabdiophlem2.1 𝑀 = (𝑁 + 1)
Assertion
Ref Expression
rabdiophlem2 ((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑡 ∈ (ℤ ↑m (1...𝑀)) ↦ (𝑡 ↾ (1...𝑁)) / 𝑢𝐴) ∈ (mzPoly‘(1...𝑀)))
Distinct variable groups:   𝑢,𝑁,𝑡   𝑢,𝑀,𝑡   𝑡,𝐴
Allowed substitution hint:   𝐴(𝑢)

Proof of Theorem rabdiophlem2
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2908 . . . . . 6 𝑎𝐴
2 nfcsb1v 3946 . . . . . 6 𝑢𝑎 / 𝑢𝐴
3 csbeq1a 3935 . . . . . 6 (𝑢 = 𝑎𝐴 = 𝑎 / 𝑢𝐴)
41, 2, 3cbvmpt 5277 . . . . 5 (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) = (𝑎 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝑎 / 𝑢𝐴)
54fveq1i 6921 . . . 4 ((𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘(𝑡 ↾ (1...𝑁))) = ((𝑎 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝑎 / 𝑢𝐴)‘(𝑡 ↾ (1...𝑁)))
6 eqid 2740 . . . . 5 (𝑎 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝑎 / 𝑢𝐴) = (𝑎 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝑎 / 𝑢𝐴)
7 csbeq1 3924 . . . . 5 (𝑎 = (𝑡 ↾ (1...𝑁)) → 𝑎 / 𝑢𝐴 = (𝑡 ↾ (1...𝑁)) / 𝑢𝐴)
8 rabdiophlem2.1 . . . . . . 7 𝑀 = (𝑁 + 1)
98mapfzcons1cl 42674 . . . . . 6 (𝑡 ∈ (ℤ ↑m (1...𝑀)) → (𝑡 ↾ (1...𝑁)) ∈ (ℤ ↑m (1...𝑁)))
109adantl 481 . . . . 5 (((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) ∧ 𝑡 ∈ (ℤ ↑m (1...𝑀))) → (𝑡 ↾ (1...𝑁)) ∈ (ℤ ↑m (1...𝑁)))
11 mzpf 42692 . . . . . . . 8 ((𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) → (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴):(ℤ ↑m (1...𝑁))⟶ℤ)
12 eqid 2740 . . . . . . . . 9 (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) = (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)
1312fmpt 7144 . . . . . . . 8 (∀𝑢 ∈ (ℤ ↑m (1...𝑁))𝐴 ∈ ℤ ↔ (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴):(ℤ ↑m (1...𝑁))⟶ℤ)
1411, 13sylibr 234 . . . . . . 7 ((𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) → ∀𝑢 ∈ (ℤ ↑m (1...𝑁))𝐴 ∈ ℤ)
1514ad2antlr 726 . . . . . 6 (((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) ∧ 𝑡 ∈ (ℤ ↑m (1...𝑀))) → ∀𝑢 ∈ (ℤ ↑m (1...𝑁))𝐴 ∈ ℤ)
16 nfcsb1v 3946 . . . . . . . 8 𝑢(𝑡 ↾ (1...𝑁)) / 𝑢𝐴
1716nfel1 2925 . . . . . . 7 𝑢(𝑡 ↾ (1...𝑁)) / 𝑢𝐴 ∈ ℤ
18 csbeq1a 3935 . . . . . . . 8 (𝑢 = (𝑡 ↾ (1...𝑁)) → 𝐴 = (𝑡 ↾ (1...𝑁)) / 𝑢𝐴)
1918eleq1d 2829 . . . . . . 7 (𝑢 = (𝑡 ↾ (1...𝑁)) → (𝐴 ∈ ℤ ↔ (𝑡 ↾ (1...𝑁)) / 𝑢𝐴 ∈ ℤ))
2017, 19rspc 3623 . . . . . 6 ((𝑡 ↾ (1...𝑁)) ∈ (ℤ ↑m (1...𝑁)) → (∀𝑢 ∈ (ℤ ↑m (1...𝑁))𝐴 ∈ ℤ → (𝑡 ↾ (1...𝑁)) / 𝑢𝐴 ∈ ℤ))
2110, 15, 20sylc 65 . . . . 5 (((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) ∧ 𝑡 ∈ (ℤ ↑m (1...𝑀))) → (𝑡 ↾ (1...𝑁)) / 𝑢𝐴 ∈ ℤ)
226, 7, 10, 21fvmptd3 7052 . . . 4 (((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) ∧ 𝑡 ∈ (ℤ ↑m (1...𝑀))) → ((𝑎 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝑎 / 𝑢𝐴)‘(𝑡 ↾ (1...𝑁))) = (𝑡 ↾ (1...𝑁)) / 𝑢𝐴)
235, 22eqtr2id 2793 . . 3 (((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) ∧ 𝑡 ∈ (ℤ ↑m (1...𝑀))) → (𝑡 ↾ (1...𝑁)) / 𝑢𝐴 = ((𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘(𝑡 ↾ (1...𝑁))))
2423mpteq2dva 5266 . 2 ((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑡 ∈ (ℤ ↑m (1...𝑀)) ↦ (𝑡 ↾ (1...𝑁)) / 𝑢𝐴) = (𝑡 ∈ (ℤ ↑m (1...𝑀)) ↦ ((𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘(𝑡 ↾ (1...𝑁)))))
25 ovexd 7483 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (1...𝑀) ∈ V)
26 fzssp1 13627 . . . . 5 (1...𝑁) ⊆ (1...(𝑁 + 1))
278oveq2i 7459 . . . . 5 (1...𝑀) = (1...(𝑁 + 1))
2826, 27sseqtrri 4046 . . . 4 (1...𝑁) ⊆ (1...𝑀)
2928a1i 11 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (1...𝑁) ⊆ (1...𝑀))
30 simpr 484 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)))
31 mzpresrename 42706 . . 3 (((1...𝑀) ∈ V ∧ (1...𝑁) ⊆ (1...𝑀) ∧ (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑡 ∈ (ℤ ↑m (1...𝑀)) ↦ ((𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘(𝑡 ↾ (1...𝑁)))) ∈ (mzPoly‘(1...𝑀)))
3225, 29, 30, 31syl3anc 1371 . 2 ((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑡 ∈ (ℤ ↑m (1...𝑀)) ↦ ((𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘(𝑡 ↾ (1...𝑁)))) ∈ (mzPoly‘(1...𝑀)))
3324, 32eqeltrd 2844 1 ((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑡 ∈ (ℤ ↑m (1...𝑀)) ↦ (𝑡 ↾ (1...𝑁)) / 𝑢𝐴) ∈ (mzPoly‘(1...𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  csb 3921  wss 3976  cmpt 5249  cres 5702  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  1c1 11185   + caddc 11187  0cn0 12553  cz 12639  ...cfz 13567  mzPolycmzp 42678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-mzpcl 42679  df-mzp 42680
This theorem is referenced by:  elnn0rabdioph  42759  dvdsrabdioph  42766
  Copyright terms: Public domain W3C validator