Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabdiophlem2 Structured version   Visualization version   GIF version

Theorem rabdiophlem2 42364
Description: Lemma for arithmetic diophantine sets. Reuse a polynomial expression under a new quantifier. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Hypothesis
Ref Expression
rabdiophlem2.1 𝑀 = (𝑁 + 1)
Assertion
Ref Expression
rabdiophlem2 ((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑡 ∈ (ℤ ↑m (1...𝑀)) ↦ (𝑡 ↾ (1...𝑁)) / 𝑢𝐴) ∈ (mzPoly‘(1...𝑀)))
Distinct variable groups:   𝑢,𝑁,𝑡   𝑢,𝑀,𝑡   𝑡,𝐴
Allowed substitution hint:   𝐴(𝑢)

Proof of Theorem rabdiophlem2
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2891 . . . . . 6 𝑎𝐴
2 nfcsb1v 3914 . . . . . 6 𝑢𝑎 / 𝑢𝐴
3 csbeq1a 3903 . . . . . 6 (𝑢 = 𝑎𝐴 = 𝑎 / 𝑢𝐴)
41, 2, 3cbvmpt 5260 . . . . 5 (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) = (𝑎 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝑎 / 𝑢𝐴)
54fveq1i 6897 . . . 4 ((𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘(𝑡 ↾ (1...𝑁))) = ((𝑎 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝑎 / 𝑢𝐴)‘(𝑡 ↾ (1...𝑁)))
6 eqid 2725 . . . . 5 (𝑎 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝑎 / 𝑢𝐴) = (𝑎 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝑎 / 𝑢𝐴)
7 csbeq1 3892 . . . . 5 (𝑎 = (𝑡 ↾ (1...𝑁)) → 𝑎 / 𝑢𝐴 = (𝑡 ↾ (1...𝑁)) / 𝑢𝐴)
8 rabdiophlem2.1 . . . . . . 7 𝑀 = (𝑁 + 1)
98mapfzcons1cl 42280 . . . . . 6 (𝑡 ∈ (ℤ ↑m (1...𝑀)) → (𝑡 ↾ (1...𝑁)) ∈ (ℤ ↑m (1...𝑁)))
109adantl 480 . . . . 5 (((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) ∧ 𝑡 ∈ (ℤ ↑m (1...𝑀))) → (𝑡 ↾ (1...𝑁)) ∈ (ℤ ↑m (1...𝑁)))
11 mzpf 42298 . . . . . . . 8 ((𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) → (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴):(ℤ ↑m (1...𝑁))⟶ℤ)
12 eqid 2725 . . . . . . . . 9 (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) = (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)
1312fmpt 7119 . . . . . . . 8 (∀𝑢 ∈ (ℤ ↑m (1...𝑁))𝐴 ∈ ℤ ↔ (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴):(ℤ ↑m (1...𝑁))⟶ℤ)
1411, 13sylibr 233 . . . . . . 7 ((𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) → ∀𝑢 ∈ (ℤ ↑m (1...𝑁))𝐴 ∈ ℤ)
1514ad2antlr 725 . . . . . 6 (((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) ∧ 𝑡 ∈ (ℤ ↑m (1...𝑀))) → ∀𝑢 ∈ (ℤ ↑m (1...𝑁))𝐴 ∈ ℤ)
16 nfcsb1v 3914 . . . . . . . 8 𝑢(𝑡 ↾ (1...𝑁)) / 𝑢𝐴
1716nfel1 2908 . . . . . . 7 𝑢(𝑡 ↾ (1...𝑁)) / 𝑢𝐴 ∈ ℤ
18 csbeq1a 3903 . . . . . . . 8 (𝑢 = (𝑡 ↾ (1...𝑁)) → 𝐴 = (𝑡 ↾ (1...𝑁)) / 𝑢𝐴)
1918eleq1d 2810 . . . . . . 7 (𝑢 = (𝑡 ↾ (1...𝑁)) → (𝐴 ∈ ℤ ↔ (𝑡 ↾ (1...𝑁)) / 𝑢𝐴 ∈ ℤ))
2017, 19rspc 3594 . . . . . 6 ((𝑡 ↾ (1...𝑁)) ∈ (ℤ ↑m (1...𝑁)) → (∀𝑢 ∈ (ℤ ↑m (1...𝑁))𝐴 ∈ ℤ → (𝑡 ↾ (1...𝑁)) / 𝑢𝐴 ∈ ℤ))
2110, 15, 20sylc 65 . . . . 5 (((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) ∧ 𝑡 ∈ (ℤ ↑m (1...𝑀))) → (𝑡 ↾ (1...𝑁)) / 𝑢𝐴 ∈ ℤ)
226, 7, 10, 21fvmptd3 7027 . . . 4 (((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) ∧ 𝑡 ∈ (ℤ ↑m (1...𝑀))) → ((𝑎 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝑎 / 𝑢𝐴)‘(𝑡 ↾ (1...𝑁))) = (𝑡 ↾ (1...𝑁)) / 𝑢𝐴)
235, 22eqtr2id 2778 . . 3 (((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) ∧ 𝑡 ∈ (ℤ ↑m (1...𝑀))) → (𝑡 ↾ (1...𝑁)) / 𝑢𝐴 = ((𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘(𝑡 ↾ (1...𝑁))))
2423mpteq2dva 5249 . 2 ((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑡 ∈ (ℤ ↑m (1...𝑀)) ↦ (𝑡 ↾ (1...𝑁)) / 𝑢𝐴) = (𝑡 ∈ (ℤ ↑m (1...𝑀)) ↦ ((𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘(𝑡 ↾ (1...𝑁)))))
25 ovexd 7454 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (1...𝑀) ∈ V)
26 fzssp1 13579 . . . . 5 (1...𝑁) ⊆ (1...(𝑁 + 1))
278oveq2i 7430 . . . . 5 (1...𝑀) = (1...(𝑁 + 1))
2826, 27sseqtrri 4014 . . . 4 (1...𝑁) ⊆ (1...𝑀)
2928a1i 11 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (1...𝑁) ⊆ (1...𝑀))
30 simpr 483 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)))
31 mzpresrename 42312 . . 3 (((1...𝑀) ∈ V ∧ (1...𝑁) ⊆ (1...𝑀) ∧ (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑡 ∈ (ℤ ↑m (1...𝑀)) ↦ ((𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘(𝑡 ↾ (1...𝑁)))) ∈ (mzPoly‘(1...𝑀)))
3225, 29, 30, 31syl3anc 1368 . 2 ((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑡 ∈ (ℤ ↑m (1...𝑀)) ↦ ((𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘(𝑡 ↾ (1...𝑁)))) ∈ (mzPoly‘(1...𝑀)))
3324, 32eqeltrd 2825 1 ((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑡 ∈ (ℤ ↑m (1...𝑀)) ↦ (𝑡 ↾ (1...𝑁)) / 𝑢𝐴) ∈ (mzPoly‘(1...𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wral 3050  Vcvv 3461  csb 3889  wss 3944  cmpt 5232  cres 5680  wf 6545  cfv 6549  (class class class)co 7419  m cmap 8845  1c1 11141   + caddc 11143  0cn0 12505  cz 12591  ...cfz 13519  mzPolycmzp 42284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-n0 12506  df-z 12592  df-uz 12856  df-fz 13520  df-mzpcl 42285  df-mzp 42286
This theorem is referenced by:  elnn0rabdioph  42365  dvdsrabdioph  42372
  Copyright terms: Public domain W3C validator