Step | Hyp | Ref
| Expression |
1 | | nfcv 2907 |
. . . . . 6
⊢
Ⅎ𝑎𝐴 |
2 | | nfcsb1v 3857 |
. . . . . 6
⊢
Ⅎ𝑢⦋𝑎 / 𝑢⦌𝐴 |
3 | | csbeq1a 3846 |
. . . . . 6
⊢ (𝑢 = 𝑎 → 𝐴 = ⦋𝑎 / 𝑢⦌𝐴) |
4 | 1, 2, 3 | cbvmpt 5185 |
. . . . 5
⊢ (𝑢 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) = (𝑎 ∈ (ℤ
↑m (1...𝑁))
↦ ⦋𝑎 /
𝑢⦌𝐴) |
5 | 4 | fveq1i 6775 |
. . . 4
⊢ ((𝑢 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴)‘(𝑡 ↾ (1...𝑁))) = ((𝑎 ∈ (ℤ ↑m
(1...𝑁)) ↦
⦋𝑎 / 𝑢⦌𝐴)‘(𝑡 ↾ (1...𝑁))) |
6 | | eqid 2738 |
. . . . 5
⊢ (𝑎 ∈ (ℤ
↑m (1...𝑁))
↦ ⦋𝑎 /
𝑢⦌𝐴) = (𝑎 ∈ (ℤ ↑m
(1...𝑁)) ↦
⦋𝑎 / 𝑢⦌𝐴) |
7 | | csbeq1 3835 |
. . . . 5
⊢ (𝑎 = (𝑡 ↾ (1...𝑁)) → ⦋𝑎 / 𝑢⦌𝐴 = ⦋(𝑡 ↾ (1...𝑁)) / 𝑢⦌𝐴) |
8 | | rabdiophlem2.1 |
. . . . . . 7
⊢ 𝑀 = (𝑁 + 1) |
9 | 8 | mapfzcons1cl 40540 |
. . . . . 6
⊢ (𝑡 ∈ (ℤ
↑m (1...𝑀))
→ (𝑡 ↾
(1...𝑁)) ∈ (ℤ
↑m (1...𝑁))) |
10 | 9 | adantl 482 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ (𝑢 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁)))
∧ 𝑡 ∈ (ℤ
↑m (1...𝑀))) → (𝑡 ↾ (1...𝑁)) ∈ (ℤ ↑m
(1...𝑁))) |
11 | | mzpf 40558 |
. . . . . . . 8
⊢ ((𝑢 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁))
→ (𝑢 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴):(ℤ
↑m (1...𝑁))⟶ℤ) |
12 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑢 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) = (𝑢 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) |
13 | 12 | fmpt 6984 |
. . . . . . . 8
⊢
(∀𝑢 ∈
(ℤ ↑m (1...𝑁))𝐴 ∈ ℤ ↔ (𝑢 ∈ (ℤ ↑m
(1...𝑁)) ↦ 𝐴):(ℤ ↑m
(1...𝑁))⟶ℤ) |
14 | 11, 13 | sylibr 233 |
. . . . . . 7
⊢ ((𝑢 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁))
→ ∀𝑢 ∈
(ℤ ↑m (1...𝑁))𝐴 ∈ ℤ) |
15 | 14 | ad2antlr 724 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ (𝑢 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁)))
∧ 𝑡 ∈ (ℤ
↑m (1...𝑀))) → ∀𝑢 ∈ (ℤ ↑m
(1...𝑁))𝐴 ∈ ℤ) |
16 | | nfcsb1v 3857 |
. . . . . . . 8
⊢
Ⅎ𝑢⦋(𝑡 ↾ (1...𝑁)) / 𝑢⦌𝐴 |
17 | 16 | nfel1 2923 |
. . . . . . 7
⊢
Ⅎ𝑢⦋(𝑡 ↾ (1...𝑁)) / 𝑢⦌𝐴 ∈ ℤ |
18 | | csbeq1a 3846 |
. . . . . . . 8
⊢ (𝑢 = (𝑡 ↾ (1...𝑁)) → 𝐴 = ⦋(𝑡 ↾ (1...𝑁)) / 𝑢⦌𝐴) |
19 | 18 | eleq1d 2823 |
. . . . . . 7
⊢ (𝑢 = (𝑡 ↾ (1...𝑁)) → (𝐴 ∈ ℤ ↔ ⦋(𝑡 ↾ (1...𝑁)) / 𝑢⦌𝐴 ∈ ℤ)) |
20 | 17, 19 | rspc 3549 |
. . . . . 6
⊢ ((𝑡 ↾ (1...𝑁)) ∈ (ℤ ↑m
(1...𝑁)) →
(∀𝑢 ∈ (ℤ
↑m (1...𝑁))𝐴 ∈ ℤ → ⦋(𝑡 ↾ (1...𝑁)) / 𝑢⦌𝐴 ∈ ℤ)) |
21 | 10, 15, 20 | sylc 65 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ (𝑢 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁)))
∧ 𝑡 ∈ (ℤ
↑m (1...𝑀))) → ⦋(𝑡 ↾ (1...𝑁)) / 𝑢⦌𝐴 ∈ ℤ) |
22 | 6, 7, 10, 21 | fvmptd3 6898 |
. . . 4
⊢ (((𝑁 ∈ ℕ0
∧ (𝑢 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁)))
∧ 𝑡 ∈ (ℤ
↑m (1...𝑀))) → ((𝑎 ∈ (ℤ ↑m
(1...𝑁)) ↦
⦋𝑎 / 𝑢⦌𝐴)‘(𝑡 ↾ (1...𝑁))) = ⦋(𝑡 ↾ (1...𝑁)) / 𝑢⦌𝐴) |
23 | 5, 22 | eqtr2id 2791 |
. . 3
⊢ (((𝑁 ∈ ℕ0
∧ (𝑢 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁)))
∧ 𝑡 ∈ (ℤ
↑m (1...𝑀))) → ⦋(𝑡 ↾ (1...𝑁)) / 𝑢⦌𝐴 = ((𝑢 ∈ (ℤ ↑m
(1...𝑁)) ↦ 𝐴)‘(𝑡 ↾ (1...𝑁)))) |
24 | 23 | mpteq2dva 5174 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ (𝑢 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁)))
→ (𝑡 ∈ (ℤ
↑m (1...𝑀))
↦ ⦋(𝑡
↾ (1...𝑁)) / 𝑢⦌𝐴) = (𝑡 ∈ (ℤ ↑m
(1...𝑀)) ↦ ((𝑢 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴)‘(𝑡 ↾ (1...𝑁))))) |
25 | | ovexd 7310 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ (𝑢 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁)))
→ (1...𝑀) ∈
V) |
26 | | fzssp1 13299 |
. . . . 5
⊢
(1...𝑁) ⊆
(1...(𝑁 +
1)) |
27 | 8 | oveq2i 7286 |
. . . . 5
⊢
(1...𝑀) =
(1...(𝑁 +
1)) |
28 | 26, 27 | sseqtrri 3958 |
. . . 4
⊢
(1...𝑁) ⊆
(1...𝑀) |
29 | 28 | a1i 11 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ (𝑢 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁)))
→ (1...𝑁) ⊆
(1...𝑀)) |
30 | | simpr 485 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ (𝑢 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁)))
→ (𝑢 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁))) |
31 | | mzpresrename 40572 |
. . 3
⊢
(((1...𝑀) ∈ V
∧ (1...𝑁) ⊆
(1...𝑀) ∧ (𝑢 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁)))
→ (𝑡 ∈ (ℤ
↑m (1...𝑀))
↦ ((𝑢 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴)‘(𝑡 ↾ (1...𝑁)))) ∈ (mzPoly‘(1...𝑀))) |
32 | 25, 29, 30, 31 | syl3anc 1370 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ (𝑢 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁)))
→ (𝑡 ∈ (ℤ
↑m (1...𝑀))
↦ ((𝑢 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴)‘(𝑡 ↾ (1...𝑁)))) ∈ (mzPoly‘(1...𝑀))) |
33 | 24, 32 | eqeltrd 2839 |
1
⊢ ((𝑁 ∈ ℕ0
∧ (𝑢 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁)))
→ (𝑡 ∈ (ℤ
↑m (1...𝑀))
↦ ⦋(𝑡
↾ (1...𝑁)) / 𝑢⦌𝐴) ∈ (mzPoly‘(1...𝑀))) |