![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > znbaslemOLD | Structured version Visualization version GIF version |
Description: Obsolete version of znbaslem 21532 as of 3-Nov-2024. Lemma for znbas 21541. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 9-Sep-2021.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
znval2.s | ⊢ 𝑆 = (RSpan‘ℤring) |
znval2.u | ⊢ 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) |
znval2.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑁) |
znbaslemOLD.e | ⊢ 𝐸 = Slot 𝐾 |
znbaslemOLD.k | ⊢ 𝐾 ∈ ℕ |
znbaslemOLD.l | ⊢ 𝐾 < ;10 |
Ref | Expression |
---|---|
znbaslemOLD | ⊢ (𝑁 ∈ ℕ0 → (𝐸‘𝑈) = (𝐸‘𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | znbaslemOLD.e | . . . 4 ⊢ 𝐸 = Slot 𝐾 | |
2 | znbaslemOLD.k | . . . 4 ⊢ 𝐾 ∈ ℕ | |
3 | 1, 2 | ndxid 17199 | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) |
4 | 2 | nnrei 12273 | . . . . 5 ⊢ 𝐾 ∈ ℝ |
5 | znbaslemOLD.l | . . . . 5 ⊢ 𝐾 < ;10 | |
6 | 4, 5 | ltneii 11377 | . . . 4 ⊢ 𝐾 ≠ ;10 |
7 | 1, 2 | ndxarg 17198 | . . . . 5 ⊢ (𝐸‘ndx) = 𝐾 |
8 | plendx 17380 | . . . . 5 ⊢ (le‘ndx) = ;10 | |
9 | 7, 8 | neeq12i 2997 | . . . 4 ⊢ ((𝐸‘ndx) ≠ (le‘ndx) ↔ 𝐾 ≠ ;10) |
10 | 6, 9 | mpbir 230 | . . 3 ⊢ (𝐸‘ndx) ≠ (le‘ndx) |
11 | 3, 10 | setsnid 17211 | . 2 ⊢ (𝐸‘𝑈) = (𝐸‘(𝑈 sSet 〈(le‘ndx), (le‘𝑌)〉)) |
12 | znval2.s | . . . 4 ⊢ 𝑆 = (RSpan‘ℤring) | |
13 | znval2.u | . . . 4 ⊢ 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) | |
14 | znval2.y | . . . 4 ⊢ 𝑌 = (ℤ/nℤ‘𝑁) | |
15 | eqid 2726 | . . . 4 ⊢ (le‘𝑌) = (le‘𝑌) | |
16 | 12, 13, 14, 15 | znval2 21531 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑌 = (𝑈 sSet 〈(le‘ndx), (le‘𝑌)〉)) |
17 | 16 | fveq2d 6905 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝐸‘𝑌) = (𝐸‘(𝑈 sSet 〈(le‘ndx), (le‘𝑌)〉))) |
18 | 11, 17 | eqtr4id 2785 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝐸‘𝑈) = (𝐸‘𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 {csn 4633 〈cop 4639 class class class wbr 5153 ‘cfv 6554 (class class class)co 7424 0cc0 11158 1c1 11159 < clt 11298 ℕcn 12264 ℕ0cn0 12524 ;cdc 12729 sSet csts 17165 Slot cslot 17183 ndxcnx 17195 lecple 17273 /s cqus 17520 ~QG cqg 19116 RSpancrsp 21196 ℤringczring 21436 ℤ/nℤczn 21492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 ax-addf 11237 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-tp 4638 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12611 df-dec 12730 df-uz 12875 df-fz 13539 df-struct 17149 df-sets 17166 df-slot 17184 df-ndx 17196 df-base 17214 df-ress 17243 df-plusg 17279 df-mulr 17280 df-starv 17281 df-tset 17285 df-ple 17286 df-ds 17288 df-unif 17289 df-0g 17456 df-mgm 18633 df-sgrp 18712 df-mnd 18728 df-grp 18931 df-minusg 18932 df-subg 19117 df-cmn 19780 df-abl 19781 df-mgp 20118 df-rng 20136 df-ur 20165 df-ring 20218 df-cring 20219 df-subrng 20528 df-subrg 20553 df-cnfld 21344 df-zring 21437 df-zn 21496 |
This theorem is referenced by: znbas2OLD 21535 znaddOLD 21537 znmulOLD 21539 |
Copyright terms: Public domain | W3C validator |