![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > znbaslemOLD | Structured version Visualization version GIF version |
Description: Obsolete version of znbaslem 21310 as of 3-Nov-2024. Lemma for znbas 21319. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 9-Sep-2021.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
znval2.s | β’ π = (RSpanββ€ring) |
znval2.u | β’ π = (β€ring /s (β€ring ~QG (πβ{π}))) |
znval2.y | β’ π = (β€/nβ€βπ) |
znbaslemOLD.e | β’ πΈ = Slot πΎ |
znbaslemOLD.k | β’ πΎ β β |
znbaslemOLD.l | β’ πΎ < ;10 |
Ref | Expression |
---|---|
znbaslemOLD | β’ (π β β0 β (πΈβπ) = (πΈβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | znbaslemOLD.e | . . . 4 β’ πΈ = Slot πΎ | |
2 | znbaslemOLD.k | . . . 4 β’ πΎ β β | |
3 | 1, 2 | ndxid 17135 | . . 3 β’ πΈ = Slot (πΈβndx) |
4 | 2 | nnrei 12226 | . . . . 5 β’ πΎ β β |
5 | znbaslemOLD.l | . . . . 5 β’ πΎ < ;10 | |
6 | 4, 5 | ltneii 11332 | . . . 4 β’ πΎ β ;10 |
7 | 1, 2 | ndxarg 17134 | . . . . 5 β’ (πΈβndx) = πΎ |
8 | plendx 17316 | . . . . 5 β’ (leβndx) = ;10 | |
9 | 7, 8 | neeq12i 3006 | . . . 4 β’ ((πΈβndx) β (leβndx) β πΎ β ;10) |
10 | 6, 9 | mpbir 230 | . . 3 β’ (πΈβndx) β (leβndx) |
11 | 3, 10 | setsnid 17147 | . 2 β’ (πΈβπ) = (πΈβ(π sSet β¨(leβndx), (leβπ)β©)) |
12 | znval2.s | . . . 4 β’ π = (RSpanββ€ring) | |
13 | znval2.u | . . . 4 β’ π = (β€ring /s (β€ring ~QG (πβ{π}))) | |
14 | znval2.y | . . . 4 β’ π = (β€/nβ€βπ) | |
15 | eqid 2731 | . . . 4 β’ (leβπ) = (leβπ) | |
16 | 12, 13, 14, 15 | znval2 21309 | . . 3 β’ (π β β0 β π = (π sSet β¨(leβndx), (leβπ)β©)) |
17 | 16 | fveq2d 6896 | . 2 β’ (π β β0 β (πΈβπ) = (πΈβ(π sSet β¨(leβndx), (leβπ)β©))) |
18 | 11, 17 | eqtr4id 2790 | 1 β’ (π β β0 β (πΈβπ) = (πΈβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1540 β wcel 2105 β wne 2939 {csn 4629 β¨cop 4635 class class class wbr 5149 βcfv 6544 (class class class)co 7412 0cc0 11113 1c1 11114 < clt 11253 βcn 12217 β0cn0 12477 ;cdc 12682 sSet csts 17101 Slot cslot 17119 ndxcnx 17131 lecple 17209 /s cqus 17456 ~QG cqg 19039 RSpancrsp 20930 β€ringczring 21218 β€/nβ€czn 21272 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 ax-addf 11192 ax-mulf 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-uz 12828 df-fz 13490 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-starv 17217 df-tset 17221 df-ple 17222 df-ds 17224 df-unif 17225 df-0g 17392 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-grp 18859 df-minusg 18860 df-subg 19040 df-cmn 19692 df-abl 19693 df-mgp 20030 df-rng 20048 df-ur 20077 df-ring 20130 df-cring 20131 df-subrng 20435 df-subrg 20460 df-cnfld 21146 df-zring 21219 df-zn 21276 |
This theorem is referenced by: znbas2OLD 21313 znaddOLD 21315 znmulOLD 21317 |
Copyright terms: Public domain | W3C validator |