Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnndvlem1 | Structured version Visualization version GIF version |
Description: Lemma for cnndv 34646. (Contributed by Asger C. Ipsen, 25-Aug-2021.) |
Ref | Expression |
---|---|
cnndvlem1.t | ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
cnndvlem1.f | ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ (((1 / 2)↑𝑛) · (𝑇‘(((2 · 3)↑𝑛) · 𝑦))))) |
cnndvlem1.w | ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) |
Ref | Expression |
---|---|
cnndvlem1 | ⊢ (𝑊 ∈ (ℝ–cn→ℝ) ∧ dom (ℝ D 𝑊) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnndvlem1.t | . . . 4 ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) | |
2 | cnndvlem1.f | . . . 4 ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ (((1 / 2)↑𝑛) · (𝑇‘(((2 · 3)↑𝑛) · 𝑦))))) | |
3 | cnndvlem1.w | . . . 4 ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) | |
4 | 3nn 11982 | . . . . 5 ⊢ 3 ∈ ℕ | |
5 | 4 | a1i 11 | . . . 4 ⊢ (⊤ → 3 ∈ ℕ) |
6 | neg1rr 12018 | . . . . . . . . 9 ⊢ -1 ∈ ℝ | |
7 | 6 | rexri 10964 | . . . . . . . 8 ⊢ -1 ∈ ℝ* |
8 | 1re 10906 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
9 | 8 | rexri 10964 | . . . . . . . 8 ⊢ 1 ∈ ℝ* |
10 | halfre 12117 | . . . . . . . . 9 ⊢ (1 / 2) ∈ ℝ | |
11 | 10 | rexri 10964 | . . . . . . . 8 ⊢ (1 / 2) ∈ ℝ* |
12 | 7, 9, 11 | 3pm3.2i 1337 | . . . . . . 7 ⊢ (-1 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ (1 / 2) ∈ ℝ*) |
13 | neg1lt0 12020 | . . . . . . . . . 10 ⊢ -1 < 0 | |
14 | halfgt0 12119 | . . . . . . . . . 10 ⊢ 0 < (1 / 2) | |
15 | 13, 14 | pm3.2i 470 | . . . . . . . . 9 ⊢ (-1 < 0 ∧ 0 < (1 / 2)) |
16 | 0re 10908 | . . . . . . . . . 10 ⊢ 0 ∈ ℝ | |
17 | 6, 16, 10 | lttri 11031 | . . . . . . . . 9 ⊢ ((-1 < 0 ∧ 0 < (1 / 2)) → -1 < (1 / 2)) |
18 | 15, 17 | ax-mp 5 | . . . . . . . 8 ⊢ -1 < (1 / 2) |
19 | halflt1 12121 | . . . . . . . 8 ⊢ (1 / 2) < 1 | |
20 | 18, 19 | pm3.2i 470 | . . . . . . 7 ⊢ (-1 < (1 / 2) ∧ (1 / 2) < 1) |
21 | 12, 20 | pm3.2i 470 | . . . . . 6 ⊢ ((-1 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ (1 / 2) ∈ ℝ*) ∧ (-1 < (1 / 2) ∧ (1 / 2) < 1)) |
22 | elioo3g 13037 | . . . . . 6 ⊢ ((1 / 2) ∈ (-1(,)1) ↔ ((-1 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ (1 / 2) ∈ ℝ*) ∧ (-1 < (1 / 2) ∧ (1 / 2) < 1))) | |
23 | 21, 22 | mpbir 230 | . . . . 5 ⊢ (1 / 2) ∈ (-1(,)1) |
24 | 23 | a1i 11 | . . . 4 ⊢ (⊤ → (1 / 2) ∈ (-1(,)1)) |
25 | 1, 2, 3, 5, 24 | knoppcn2 34643 | . . 3 ⊢ (⊤ → 𝑊 ∈ (ℝ–cn→ℝ)) |
26 | 25 | mptru 1546 | . 2 ⊢ 𝑊 ∈ (ℝ–cn→ℝ) |
27 | 2cn 11978 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
28 | 27 | mulid2i 10911 | . . . . . . . 8 ⊢ (1 · 2) = 2 |
29 | 2lt3 12075 | . . . . . . . 8 ⊢ 2 < 3 | |
30 | 28, 29 | eqbrtri 5091 | . . . . . . 7 ⊢ (1 · 2) < 3 |
31 | 2pos 12006 | . . . . . . . 8 ⊢ 0 < 2 | |
32 | 4 | nnrei 11912 | . . . . . . . . 9 ⊢ 3 ∈ ℝ |
33 | 2re 11977 | . . . . . . . . 9 ⊢ 2 ∈ ℝ | |
34 | 8, 32, 33 | ltmuldivi 11825 | . . . . . . . 8 ⊢ (0 < 2 → ((1 · 2) < 3 ↔ 1 < (3 / 2))) |
35 | 31, 34 | ax-mp 5 | . . . . . . 7 ⊢ ((1 · 2) < 3 ↔ 1 < (3 / 2)) |
36 | 30, 35 | mpbi 229 | . . . . . 6 ⊢ 1 < (3 / 2) |
37 | 16, 10, 14 | ltleii 11028 | . . . . . . . . 9 ⊢ 0 ≤ (1 / 2) |
38 | 10 | absidi 15017 | . . . . . . . . 9 ⊢ (0 ≤ (1 / 2) → (abs‘(1 / 2)) = (1 / 2)) |
39 | 37, 38 | ax-mp 5 | . . . . . . . 8 ⊢ (abs‘(1 / 2)) = (1 / 2) |
40 | 39 | oveq2i 7266 | . . . . . . 7 ⊢ (3 · (abs‘(1 / 2))) = (3 · (1 / 2)) |
41 | 4 | nncni 11913 | . . . . . . . . 9 ⊢ 3 ∈ ℂ |
42 | 2ne0 12007 | . . . . . . . . 9 ⊢ 2 ≠ 0 | |
43 | 41, 27, 42 | divreci 11650 | . . . . . . . 8 ⊢ (3 / 2) = (3 · (1 / 2)) |
44 | 43 | eqcomi 2747 | . . . . . . 7 ⊢ (3 · (1 / 2)) = (3 / 2) |
45 | 40, 44 | eqtri 2766 | . . . . . 6 ⊢ (3 · (abs‘(1 / 2))) = (3 / 2) |
46 | 36, 45 | breqtrri 5097 | . . . . 5 ⊢ 1 < (3 · (abs‘(1 / 2))) |
47 | 46 | a1i 11 | . . . 4 ⊢ (⊤ → 1 < (3 · (abs‘(1 / 2)))) |
48 | 1, 2, 3, 24, 5, 47 | knoppndv 34641 | . . 3 ⊢ (⊤ → dom (ℝ D 𝑊) = ∅) |
49 | 48 | mptru 1546 | . 2 ⊢ dom (ℝ D 𝑊) = ∅ |
50 | 26, 49 | pm3.2i 470 | 1 ⊢ (𝑊 ∈ (ℝ–cn→ℝ) ∧ dom (ℝ D 𝑊) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ⊤wtru 1540 ∈ wcel 2108 ∅c0 4253 class class class wbr 5070 ↦ cmpt 5153 dom cdm 5580 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 0cc0 10802 1c1 10803 + caddc 10805 · cmul 10807 ℝ*cxr 10939 < clt 10940 ≤ cle 10941 − cmin 11135 -cneg 11136 / cdiv 11562 ℕcn 11903 2c2 11958 3c3 11959 ℕ0cn0 12163 (,)cioo 13008 ⌊cfl 13438 ↑cexp 13710 abscabs 14873 Σcsu 15325 –cn→ccncf 23945 D cdv 24932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-limsup 15108 df-clim 15125 df-rlim 15126 df-sum 15326 df-dvds 15892 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-mulg 18616 df-cntz 18838 df-cmn 19303 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-ntr 22079 df-cn 22286 df-cnp 22287 df-tx 22621 df-hmeo 22814 df-xms 23381 df-ms 23382 df-tms 23383 df-cncf 23947 df-limc 24935 df-dv 24936 df-ulm 25441 |
This theorem is referenced by: cnndvlem2 34645 |
Copyright terms: Public domain | W3C validator |