| Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cnndvlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for cnndv 36521. (Contributed by Asger C. Ipsen, 25-Aug-2021.) |
| Ref | Expression |
|---|---|
| cnndvlem1.t | ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
| cnndvlem1.f | ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ (((1 / 2)↑𝑛) · (𝑇‘(((2 · 3)↑𝑛) · 𝑦))))) |
| cnndvlem1.w | ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) |
| Ref | Expression |
|---|---|
| cnndvlem1 | ⊢ (𝑊 ∈ (ℝ–cn→ℝ) ∧ dom (ℝ D 𝑊) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnndvlem1.t | . . . 4 ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) | |
| 2 | cnndvlem1.f | . . . 4 ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ (((1 / 2)↑𝑛) · (𝑇‘(((2 · 3)↑𝑛) · 𝑦))))) | |
| 3 | cnndvlem1.w | . . . 4 ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) | |
| 4 | 3nn 12243 | . . . . 5 ⊢ 3 ∈ ℕ | |
| 5 | 4 | a1i 11 | . . . 4 ⊢ (⊤ → 3 ∈ ℕ) |
| 6 | neg1rr 12150 | . . . . . . . . 9 ⊢ -1 ∈ ℝ | |
| 7 | 6 | rexri 11210 | . . . . . . . 8 ⊢ -1 ∈ ℝ* |
| 8 | 1re 11152 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
| 9 | 8 | rexri 11210 | . . . . . . . 8 ⊢ 1 ∈ ℝ* |
| 10 | halfre 12373 | . . . . . . . . 9 ⊢ (1 / 2) ∈ ℝ | |
| 11 | 10 | rexri 11210 | . . . . . . . 8 ⊢ (1 / 2) ∈ ℝ* |
| 12 | 7, 9, 11 | 3pm3.2i 1340 | . . . . . . 7 ⊢ (-1 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ (1 / 2) ∈ ℝ*) |
| 13 | neg1lt0 12152 | . . . . . . . . . 10 ⊢ -1 < 0 | |
| 14 | halfgt0 12375 | . . . . . . . . . 10 ⊢ 0 < (1 / 2) | |
| 15 | 13, 14 | pm3.2i 470 | . . . . . . . . 9 ⊢ (-1 < 0 ∧ 0 < (1 / 2)) |
| 16 | 0re 11154 | . . . . . . . . . 10 ⊢ 0 ∈ ℝ | |
| 17 | 6, 16, 10 | lttri 11278 | . . . . . . . . 9 ⊢ ((-1 < 0 ∧ 0 < (1 / 2)) → -1 < (1 / 2)) |
| 18 | 15, 17 | ax-mp 5 | . . . . . . . 8 ⊢ -1 < (1 / 2) |
| 19 | halflt1 12377 | . . . . . . . 8 ⊢ (1 / 2) < 1 | |
| 20 | 18, 19 | pm3.2i 470 | . . . . . . 7 ⊢ (-1 < (1 / 2) ∧ (1 / 2) < 1) |
| 21 | 12, 20 | pm3.2i 470 | . . . . . 6 ⊢ ((-1 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ (1 / 2) ∈ ℝ*) ∧ (-1 < (1 / 2) ∧ (1 / 2) < 1)) |
| 22 | elioo3g 13313 | . . . . . 6 ⊢ ((1 / 2) ∈ (-1(,)1) ↔ ((-1 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ (1 / 2) ∈ ℝ*) ∧ (-1 < (1 / 2) ∧ (1 / 2) < 1))) | |
| 23 | 21, 22 | mpbir 231 | . . . . 5 ⊢ (1 / 2) ∈ (-1(,)1) |
| 24 | 23 | a1i 11 | . . . 4 ⊢ (⊤ → (1 / 2) ∈ (-1(,)1)) |
| 25 | 1, 2, 3, 5, 24 | knoppcn2 36518 | . . 3 ⊢ (⊤ → 𝑊 ∈ (ℝ–cn→ℝ)) |
| 26 | 25 | mptru 1547 | . 2 ⊢ 𝑊 ∈ (ℝ–cn→ℝ) |
| 27 | 2cn 12239 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
| 28 | 27 | mullidi 11157 | . . . . . . . 8 ⊢ (1 · 2) = 2 |
| 29 | 2lt3 12331 | . . . . . . . 8 ⊢ 2 < 3 | |
| 30 | 28, 29 | eqbrtri 5123 | . . . . . . 7 ⊢ (1 · 2) < 3 |
| 31 | 2pos 12267 | . . . . . . . 8 ⊢ 0 < 2 | |
| 32 | 4 | nnrei 12173 | . . . . . . . . 9 ⊢ 3 ∈ ℝ |
| 33 | 2re 12238 | . . . . . . . . 9 ⊢ 2 ∈ ℝ | |
| 34 | 8, 32, 33 | ltmuldivi 12081 | . . . . . . . 8 ⊢ (0 < 2 → ((1 · 2) < 3 ↔ 1 < (3 / 2))) |
| 35 | 31, 34 | ax-mp 5 | . . . . . . 7 ⊢ ((1 · 2) < 3 ↔ 1 < (3 / 2)) |
| 36 | 30, 35 | mpbi 230 | . . . . . 6 ⊢ 1 < (3 / 2) |
| 37 | 16, 10, 14 | ltleii 11275 | . . . . . . . . 9 ⊢ 0 ≤ (1 / 2) |
| 38 | 10 | absidi 15321 | . . . . . . . . 9 ⊢ (0 ≤ (1 / 2) → (abs‘(1 / 2)) = (1 / 2)) |
| 39 | 37, 38 | ax-mp 5 | . . . . . . . 8 ⊢ (abs‘(1 / 2)) = (1 / 2) |
| 40 | 39 | oveq2i 7380 | . . . . . . 7 ⊢ (3 · (abs‘(1 / 2))) = (3 · (1 / 2)) |
| 41 | 4 | nncni 12174 | . . . . . . . . 9 ⊢ 3 ∈ ℂ |
| 42 | 2ne0 12268 | . . . . . . . . 9 ⊢ 2 ≠ 0 | |
| 43 | 41, 27, 42 | divreci 11905 | . . . . . . . 8 ⊢ (3 / 2) = (3 · (1 / 2)) |
| 44 | 43 | eqcomi 2738 | . . . . . . 7 ⊢ (3 · (1 / 2)) = (3 / 2) |
| 45 | 40, 44 | eqtri 2752 | . . . . . 6 ⊢ (3 · (abs‘(1 / 2))) = (3 / 2) |
| 46 | 36, 45 | breqtrri 5129 | . . . . 5 ⊢ 1 < (3 · (abs‘(1 / 2))) |
| 47 | 46 | a1i 11 | . . . 4 ⊢ (⊤ → 1 < (3 · (abs‘(1 / 2)))) |
| 48 | 1, 2, 3, 24, 5, 47 | knoppndv 36516 | . . 3 ⊢ (⊤ → dom (ℝ D 𝑊) = ∅) |
| 49 | 48 | mptru 1547 | . 2 ⊢ dom (ℝ D 𝑊) = ∅ |
| 50 | 26, 49 | pm3.2i 470 | 1 ⊢ (𝑊 ∈ (ℝ–cn→ℝ) ∧ dom (ℝ D 𝑊) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ∅c0 4292 class class class wbr 5102 ↦ cmpt 5183 dom cdm 5631 ‘cfv 6499 (class class class)co 7369 ℝcr 11045 0cc0 11046 1c1 11047 + caddc 11049 · cmul 11051 ℝ*cxr 11185 < clt 11186 ≤ cle 11187 − cmin 11383 -cneg 11384 / cdiv 11813 ℕcn 12164 2c2 12219 3c3 12220 ℕ0cn0 12420 (,)cioo 13284 ⌊cfl 13730 ↑cexp 14004 abscabs 15177 Σcsu 15629 –cn→ccncf 24803 D cdv 25798 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9572 ax-cnex 11102 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 ax-pre-sup 11124 ax-addf 11125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-fi 9338 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9870 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-div 11814 df-nn 12165 df-2 12227 df-3 12228 df-4 12229 df-5 12230 df-6 12231 df-7 12232 df-8 12233 df-9 12234 df-n0 12421 df-z 12508 df-dec 12628 df-uz 12772 df-q 12886 df-rp 12930 df-xneg 13050 df-xadd 13051 df-xmul 13052 df-ioo 13288 df-ico 13290 df-icc 13291 df-fz 13447 df-fzo 13594 df-fl 13732 df-seq 13945 df-exp 14005 df-hash 14274 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-limsup 15414 df-clim 15431 df-rlim 15432 df-sum 15630 df-dvds 16200 df-struct 17094 df-sets 17111 df-slot 17129 df-ndx 17141 df-base 17157 df-ress 17178 df-plusg 17210 df-mulr 17211 df-starv 17212 df-sca 17213 df-vsca 17214 df-ip 17215 df-tset 17216 df-ple 17217 df-ds 17219 df-unif 17220 df-hom 17221 df-cco 17222 df-rest 17362 df-topn 17363 df-0g 17381 df-gsum 17382 df-topgen 17383 df-pt 17384 df-prds 17387 df-xrs 17442 df-qtop 17447 df-imas 17448 df-xps 17450 df-mre 17524 df-mrc 17525 df-acs 17527 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-submnd 18694 df-mulg 18983 df-cntz 19232 df-cmn 19697 df-psmet 21289 df-xmet 21290 df-met 21291 df-bl 21292 df-mopn 21293 df-cnfld 21298 df-top 22815 df-topon 22832 df-topsp 22854 df-bases 22867 df-ntr 22941 df-cn 23148 df-cnp 23149 df-tx 23483 df-hmeo 23676 df-xms 24242 df-ms 24243 df-tms 24244 df-cncf 24805 df-limc 25801 df-dv 25802 df-ulm 26320 |
| This theorem is referenced by: cnndvlem2 36520 |
| Copyright terms: Public domain | W3C validator |