![]() |
Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnndvlem1 | Structured version Visualization version GIF version |
Description: Lemma for cnndv 36505. (Contributed by Asger C. Ipsen, 25-Aug-2021.) |
Ref | Expression |
---|---|
cnndvlem1.t | ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
cnndvlem1.f | ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ (((1 / 2)↑𝑛) · (𝑇‘(((2 · 3)↑𝑛) · 𝑦))))) |
cnndvlem1.w | ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) |
Ref | Expression |
---|---|
cnndvlem1 | ⊢ (𝑊 ∈ (ℝ–cn→ℝ) ∧ dom (ℝ D 𝑊) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnndvlem1.t | . . . 4 ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) | |
2 | cnndvlem1.f | . . . 4 ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ (((1 / 2)↑𝑛) · (𝑇‘(((2 · 3)↑𝑛) · 𝑦))))) | |
3 | cnndvlem1.w | . . . 4 ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) | |
4 | 3nn 12372 | . . . . 5 ⊢ 3 ∈ ℕ | |
5 | 4 | a1i 11 | . . . 4 ⊢ (⊤ → 3 ∈ ℕ) |
6 | neg1rr 12408 | . . . . . . . . 9 ⊢ -1 ∈ ℝ | |
7 | 6 | rexri 11348 | . . . . . . . 8 ⊢ -1 ∈ ℝ* |
8 | 1re 11290 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
9 | 8 | rexri 11348 | . . . . . . . 8 ⊢ 1 ∈ ℝ* |
10 | halfre 12507 | . . . . . . . . 9 ⊢ (1 / 2) ∈ ℝ | |
11 | 10 | rexri 11348 | . . . . . . . 8 ⊢ (1 / 2) ∈ ℝ* |
12 | 7, 9, 11 | 3pm3.2i 1339 | . . . . . . 7 ⊢ (-1 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ (1 / 2) ∈ ℝ*) |
13 | neg1lt0 12410 | . . . . . . . . . 10 ⊢ -1 < 0 | |
14 | halfgt0 12509 | . . . . . . . . . 10 ⊢ 0 < (1 / 2) | |
15 | 13, 14 | pm3.2i 470 | . . . . . . . . 9 ⊢ (-1 < 0 ∧ 0 < (1 / 2)) |
16 | 0re 11292 | . . . . . . . . . 10 ⊢ 0 ∈ ℝ | |
17 | 6, 16, 10 | lttri 11416 | . . . . . . . . 9 ⊢ ((-1 < 0 ∧ 0 < (1 / 2)) → -1 < (1 / 2)) |
18 | 15, 17 | ax-mp 5 | . . . . . . . 8 ⊢ -1 < (1 / 2) |
19 | halflt1 12511 | . . . . . . . 8 ⊢ (1 / 2) < 1 | |
20 | 18, 19 | pm3.2i 470 | . . . . . . 7 ⊢ (-1 < (1 / 2) ∧ (1 / 2) < 1) |
21 | 12, 20 | pm3.2i 470 | . . . . . 6 ⊢ ((-1 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ (1 / 2) ∈ ℝ*) ∧ (-1 < (1 / 2) ∧ (1 / 2) < 1)) |
22 | elioo3g 13436 | . . . . . 6 ⊢ ((1 / 2) ∈ (-1(,)1) ↔ ((-1 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ (1 / 2) ∈ ℝ*) ∧ (-1 < (1 / 2) ∧ (1 / 2) < 1))) | |
23 | 21, 22 | mpbir 231 | . . . . 5 ⊢ (1 / 2) ∈ (-1(,)1) |
24 | 23 | a1i 11 | . . . 4 ⊢ (⊤ → (1 / 2) ∈ (-1(,)1)) |
25 | 1, 2, 3, 5, 24 | knoppcn2 36502 | . . 3 ⊢ (⊤ → 𝑊 ∈ (ℝ–cn→ℝ)) |
26 | 25 | mptru 1544 | . 2 ⊢ 𝑊 ∈ (ℝ–cn→ℝ) |
27 | 2cn 12368 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
28 | 27 | mullidi 11295 | . . . . . . . 8 ⊢ (1 · 2) = 2 |
29 | 2lt3 12465 | . . . . . . . 8 ⊢ 2 < 3 | |
30 | 28, 29 | eqbrtri 5187 | . . . . . . 7 ⊢ (1 · 2) < 3 |
31 | 2pos 12396 | . . . . . . . 8 ⊢ 0 < 2 | |
32 | 4 | nnrei 12302 | . . . . . . . . 9 ⊢ 3 ∈ ℝ |
33 | 2re 12367 | . . . . . . . . 9 ⊢ 2 ∈ ℝ | |
34 | 8, 32, 33 | ltmuldivi 12215 | . . . . . . . 8 ⊢ (0 < 2 → ((1 · 2) < 3 ↔ 1 < (3 / 2))) |
35 | 31, 34 | ax-mp 5 | . . . . . . 7 ⊢ ((1 · 2) < 3 ↔ 1 < (3 / 2)) |
36 | 30, 35 | mpbi 230 | . . . . . 6 ⊢ 1 < (3 / 2) |
37 | 16, 10, 14 | ltleii 11413 | . . . . . . . . 9 ⊢ 0 ≤ (1 / 2) |
38 | 10 | absidi 15426 | . . . . . . . . 9 ⊢ (0 ≤ (1 / 2) → (abs‘(1 / 2)) = (1 / 2)) |
39 | 37, 38 | ax-mp 5 | . . . . . . . 8 ⊢ (abs‘(1 / 2)) = (1 / 2) |
40 | 39 | oveq2i 7459 | . . . . . . 7 ⊢ (3 · (abs‘(1 / 2))) = (3 · (1 / 2)) |
41 | 4 | nncni 12303 | . . . . . . . . 9 ⊢ 3 ∈ ℂ |
42 | 2ne0 12397 | . . . . . . . . 9 ⊢ 2 ≠ 0 | |
43 | 41, 27, 42 | divreci 12039 | . . . . . . . 8 ⊢ (3 / 2) = (3 · (1 / 2)) |
44 | 43 | eqcomi 2749 | . . . . . . 7 ⊢ (3 · (1 / 2)) = (3 / 2) |
45 | 40, 44 | eqtri 2768 | . . . . . 6 ⊢ (3 · (abs‘(1 / 2))) = (3 / 2) |
46 | 36, 45 | breqtrri 5193 | . . . . 5 ⊢ 1 < (3 · (abs‘(1 / 2))) |
47 | 46 | a1i 11 | . . . 4 ⊢ (⊤ → 1 < (3 · (abs‘(1 / 2)))) |
48 | 1, 2, 3, 24, 5, 47 | knoppndv 36500 | . . 3 ⊢ (⊤ → dom (ℝ D 𝑊) = ∅) |
49 | 48 | mptru 1544 | . 2 ⊢ dom (ℝ D 𝑊) = ∅ |
50 | 26, 49 | pm3.2i 470 | 1 ⊢ (𝑊 ∈ (ℝ–cn→ℝ) ∧ dom (ℝ D 𝑊) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ⊤wtru 1538 ∈ wcel 2108 ∅c0 4352 class class class wbr 5166 ↦ cmpt 5249 dom cdm 5700 ‘cfv 6573 (class class class)co 7448 ℝcr 11183 0cc0 11184 1c1 11185 + caddc 11187 · cmul 11189 ℝ*cxr 11323 < clt 11324 ≤ cle 11325 − cmin 11520 -cneg 11521 / cdiv 11947 ℕcn 12293 2c2 12348 3c3 12349 ℕ0cn0 12553 (,)cioo 13407 ⌊cfl 13841 ↑cexp 14112 abscabs 15283 Σcsu 15734 –cn→ccncf 24921 D cdv 25918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-limsup 15517 df-clim 15534 df-rlim 15535 df-sum 15735 df-dvds 16303 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-pt 17504 df-prds 17507 df-xrs 17562 df-qtop 17567 df-imas 17568 df-xps 17570 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-mulg 19108 df-cntz 19357 df-cmn 19824 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-ntr 23049 df-cn 23256 df-cnp 23257 df-tx 23591 df-hmeo 23784 df-xms 24351 df-ms 24352 df-tms 24353 df-cncf 24923 df-limc 25921 df-dv 25922 df-ulm 26438 |
This theorem is referenced by: cnndvlem2 36504 |
Copyright terms: Public domain | W3C validator |