Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnndvlem1 Structured version   Visualization version   GIF version

Theorem cnndvlem1 36519
Description: Lemma for cnndv 36521. (Contributed by Asger C. Ipsen, 25-Aug-2021.)
Hypotheses
Ref Expression
cnndvlem1.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
cnndvlem1.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ (((1 / 2)↑𝑛) · (𝑇‘(((2 · 3)↑𝑛) · 𝑦)))))
cnndvlem1.w 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
Assertion
Ref Expression
cnndvlem1 (𝑊 ∈ (ℝ–cn→ℝ) ∧ dom (ℝ D 𝑊) = ∅)
Distinct variable groups:   𝑖,𝐹,𝑤   𝑇,𝑛,𝑦   𝑖,𝑛,𝑦,𝑤   𝑥,𝑖,𝑤
Allowed substitution hints:   𝑇(𝑥,𝑤,𝑖)   𝐹(𝑥,𝑦,𝑛)   𝑊(𝑥,𝑦,𝑤,𝑖,𝑛)

Proof of Theorem cnndvlem1
StepHypRef Expression
1 cnndvlem1.t . . . 4 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
2 cnndvlem1.f . . . 4 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ (((1 / 2)↑𝑛) · (𝑇‘(((2 · 3)↑𝑛) · 𝑦)))))
3 cnndvlem1.w . . . 4 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
4 3nn 12243 . . . . 5 3 ∈ ℕ
54a1i 11 . . . 4 (⊤ → 3 ∈ ℕ)
6 neg1rr 12150 . . . . . . . . 9 -1 ∈ ℝ
76rexri 11210 . . . . . . . 8 -1 ∈ ℝ*
8 1re 11152 . . . . . . . . 9 1 ∈ ℝ
98rexri 11210 . . . . . . . 8 1 ∈ ℝ*
10 halfre 12373 . . . . . . . . 9 (1 / 2) ∈ ℝ
1110rexri 11210 . . . . . . . 8 (1 / 2) ∈ ℝ*
127, 9, 113pm3.2i 1340 . . . . . . 7 (-1 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ (1 / 2) ∈ ℝ*)
13 neg1lt0 12152 . . . . . . . . . 10 -1 < 0
14 halfgt0 12375 . . . . . . . . . 10 0 < (1 / 2)
1513, 14pm3.2i 470 . . . . . . . . 9 (-1 < 0 ∧ 0 < (1 / 2))
16 0re 11154 . . . . . . . . . 10 0 ∈ ℝ
176, 16, 10lttri 11278 . . . . . . . . 9 ((-1 < 0 ∧ 0 < (1 / 2)) → -1 < (1 / 2))
1815, 17ax-mp 5 . . . . . . . 8 -1 < (1 / 2)
19 halflt1 12377 . . . . . . . 8 (1 / 2) < 1
2018, 19pm3.2i 470 . . . . . . 7 (-1 < (1 / 2) ∧ (1 / 2) < 1)
2112, 20pm3.2i 470 . . . . . 6 ((-1 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ (1 / 2) ∈ ℝ*) ∧ (-1 < (1 / 2) ∧ (1 / 2) < 1))
22 elioo3g 13313 . . . . . 6 ((1 / 2) ∈ (-1(,)1) ↔ ((-1 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ (1 / 2) ∈ ℝ*) ∧ (-1 < (1 / 2) ∧ (1 / 2) < 1)))
2321, 22mpbir 231 . . . . 5 (1 / 2) ∈ (-1(,)1)
2423a1i 11 . . . 4 (⊤ → (1 / 2) ∈ (-1(,)1))
251, 2, 3, 5, 24knoppcn2 36518 . . 3 (⊤ → 𝑊 ∈ (ℝ–cn→ℝ))
2625mptru 1547 . 2 𝑊 ∈ (ℝ–cn→ℝ)
27 2cn 12239 . . . . . . . . 9 2 ∈ ℂ
2827mullidi 11157 . . . . . . . 8 (1 · 2) = 2
29 2lt3 12331 . . . . . . . 8 2 < 3
3028, 29eqbrtri 5123 . . . . . . 7 (1 · 2) < 3
31 2pos 12267 . . . . . . . 8 0 < 2
324nnrei 12173 . . . . . . . . 9 3 ∈ ℝ
33 2re 12238 . . . . . . . . 9 2 ∈ ℝ
348, 32, 33ltmuldivi 12081 . . . . . . . 8 (0 < 2 → ((1 · 2) < 3 ↔ 1 < (3 / 2)))
3531, 34ax-mp 5 . . . . . . 7 ((1 · 2) < 3 ↔ 1 < (3 / 2))
3630, 35mpbi 230 . . . . . 6 1 < (3 / 2)
3716, 10, 14ltleii 11275 . . . . . . . . 9 0 ≤ (1 / 2)
3810absidi 15321 . . . . . . . . 9 (0 ≤ (1 / 2) → (abs‘(1 / 2)) = (1 / 2))
3937, 38ax-mp 5 . . . . . . . 8 (abs‘(1 / 2)) = (1 / 2)
4039oveq2i 7380 . . . . . . 7 (3 · (abs‘(1 / 2))) = (3 · (1 / 2))
414nncni 12174 . . . . . . . . 9 3 ∈ ℂ
42 2ne0 12268 . . . . . . . . 9 2 ≠ 0
4341, 27, 42divreci 11905 . . . . . . . 8 (3 / 2) = (3 · (1 / 2))
4443eqcomi 2738 . . . . . . 7 (3 · (1 / 2)) = (3 / 2)
4540, 44eqtri 2752 . . . . . 6 (3 · (abs‘(1 / 2))) = (3 / 2)
4636, 45breqtrri 5129 . . . . 5 1 < (3 · (abs‘(1 / 2)))
4746a1i 11 . . . 4 (⊤ → 1 < (3 · (abs‘(1 / 2))))
481, 2, 3, 24, 5, 47knoppndv 36516 . . 3 (⊤ → dom (ℝ D 𝑊) = ∅)
4948mptru 1547 . 2 dom (ℝ D 𝑊) = ∅
5026, 49pm3.2i 470 1 (𝑊 ∈ (ℝ–cn→ℝ) ∧ dom (ℝ D 𝑊) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wtru 1541  wcel 2109  c0 4292   class class class wbr 5102  cmpt 5183  dom cdm 5631  cfv 6499  (class class class)co 7369  cr 11045  0cc0 11046  1c1 11047   + caddc 11049   · cmul 11051  *cxr 11185   < clt 11186  cle 11187  cmin 11383  -cneg 11384   / cdiv 11813  cn 12164  2c2 12219  3c3 12220  0cn0 12420  (,)cioo 13284  cfl 13730  cexp 14004  abscabs 15177  Σcsu 15629  cnccncf 24803   D cdv 25798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9572  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123  ax-pre-sup 11124  ax-addf 11125
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9870  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-div 11814  df-nn 12165  df-2 12227  df-3 12228  df-4 12229  df-5 12230  df-6 12231  df-7 12232  df-8 12233  df-9 12234  df-n0 12421  df-z 12508  df-dec 12628  df-uz 12772  df-q 12886  df-rp 12930  df-xneg 13050  df-xadd 13051  df-xmul 13052  df-ioo 13288  df-ico 13290  df-icc 13291  df-fz 13447  df-fzo 13594  df-fl 13732  df-seq 13945  df-exp 14005  df-hash 14274  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-limsup 15414  df-clim 15431  df-rlim 15432  df-sum 15630  df-dvds 16200  df-struct 17094  df-sets 17111  df-slot 17129  df-ndx 17141  df-base 17157  df-ress 17178  df-plusg 17210  df-mulr 17211  df-starv 17212  df-sca 17213  df-vsca 17214  df-ip 17215  df-tset 17216  df-ple 17217  df-ds 17219  df-unif 17220  df-hom 17221  df-cco 17222  df-rest 17362  df-topn 17363  df-0g 17381  df-gsum 17382  df-topgen 17383  df-pt 17384  df-prds 17387  df-xrs 17442  df-qtop 17447  df-imas 17448  df-xps 17450  df-mre 17524  df-mrc 17525  df-acs 17527  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-mulg 18983  df-cntz 19232  df-cmn 19697  df-psmet 21289  df-xmet 21290  df-met 21291  df-bl 21292  df-mopn 21293  df-cnfld 21298  df-top 22815  df-topon 22832  df-topsp 22854  df-bases 22867  df-ntr 22941  df-cn 23148  df-cnp 23149  df-tx 23483  df-hmeo 23676  df-xms 24242  df-ms 24243  df-tms 24244  df-cncf 24805  df-limc 25801  df-dv 25802  df-ulm 26320
This theorem is referenced by:  cnndvlem2  36520
  Copyright terms: Public domain W3C validator