Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnndvlem1 | Structured version Visualization version GIF version |
Description: Lemma for cnndv 34688. (Contributed by Asger C. Ipsen, 25-Aug-2021.) |
Ref | Expression |
---|---|
cnndvlem1.t | ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
cnndvlem1.f | ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ (((1 / 2)↑𝑛) · (𝑇‘(((2 · 3)↑𝑛) · 𝑦))))) |
cnndvlem1.w | ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) |
Ref | Expression |
---|---|
cnndvlem1 | ⊢ (𝑊 ∈ (ℝ–cn→ℝ) ∧ dom (ℝ D 𝑊) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnndvlem1.t | . . . 4 ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) | |
2 | cnndvlem1.f | . . . 4 ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ (((1 / 2)↑𝑛) · (𝑇‘(((2 · 3)↑𝑛) · 𝑦))))) | |
3 | cnndvlem1.w | . . . 4 ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) | |
4 | 3nn 11998 | . . . . 5 ⊢ 3 ∈ ℕ | |
5 | 4 | a1i 11 | . . . 4 ⊢ (⊤ → 3 ∈ ℕ) |
6 | neg1rr 12034 | . . . . . . . . 9 ⊢ -1 ∈ ℝ | |
7 | 6 | rexri 10980 | . . . . . . . 8 ⊢ -1 ∈ ℝ* |
8 | 1re 10922 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
9 | 8 | rexri 10980 | . . . . . . . 8 ⊢ 1 ∈ ℝ* |
10 | halfre 12133 | . . . . . . . . 9 ⊢ (1 / 2) ∈ ℝ | |
11 | 10 | rexri 10980 | . . . . . . . 8 ⊢ (1 / 2) ∈ ℝ* |
12 | 7, 9, 11 | 3pm3.2i 1337 | . . . . . . 7 ⊢ (-1 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ (1 / 2) ∈ ℝ*) |
13 | neg1lt0 12036 | . . . . . . . . . 10 ⊢ -1 < 0 | |
14 | halfgt0 12135 | . . . . . . . . . 10 ⊢ 0 < (1 / 2) | |
15 | 13, 14 | pm3.2i 470 | . . . . . . . . 9 ⊢ (-1 < 0 ∧ 0 < (1 / 2)) |
16 | 0re 10924 | . . . . . . . . . 10 ⊢ 0 ∈ ℝ | |
17 | 6, 16, 10 | lttri 11047 | . . . . . . . . 9 ⊢ ((-1 < 0 ∧ 0 < (1 / 2)) → -1 < (1 / 2)) |
18 | 15, 17 | ax-mp 5 | . . . . . . . 8 ⊢ -1 < (1 / 2) |
19 | halflt1 12137 | . . . . . . . 8 ⊢ (1 / 2) < 1 | |
20 | 18, 19 | pm3.2i 470 | . . . . . . 7 ⊢ (-1 < (1 / 2) ∧ (1 / 2) < 1) |
21 | 12, 20 | pm3.2i 470 | . . . . . 6 ⊢ ((-1 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ (1 / 2) ∈ ℝ*) ∧ (-1 < (1 / 2) ∧ (1 / 2) < 1)) |
22 | elioo3g 13053 | . . . . . 6 ⊢ ((1 / 2) ∈ (-1(,)1) ↔ ((-1 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ (1 / 2) ∈ ℝ*) ∧ (-1 < (1 / 2) ∧ (1 / 2) < 1))) | |
23 | 21, 22 | mpbir 230 | . . . . 5 ⊢ (1 / 2) ∈ (-1(,)1) |
24 | 23 | a1i 11 | . . . 4 ⊢ (⊤ → (1 / 2) ∈ (-1(,)1)) |
25 | 1, 2, 3, 5, 24 | knoppcn2 34685 | . . 3 ⊢ (⊤ → 𝑊 ∈ (ℝ–cn→ℝ)) |
26 | 25 | mptru 1546 | . 2 ⊢ 𝑊 ∈ (ℝ–cn→ℝ) |
27 | 2cn 11994 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
28 | 27 | mulid2i 10927 | . . . . . . . 8 ⊢ (1 · 2) = 2 |
29 | 2lt3 12091 | . . . . . . . 8 ⊢ 2 < 3 | |
30 | 28, 29 | eqbrtri 5096 | . . . . . . 7 ⊢ (1 · 2) < 3 |
31 | 2pos 12022 | . . . . . . . 8 ⊢ 0 < 2 | |
32 | 4 | nnrei 11928 | . . . . . . . . 9 ⊢ 3 ∈ ℝ |
33 | 2re 11993 | . . . . . . . . 9 ⊢ 2 ∈ ℝ | |
34 | 8, 32, 33 | ltmuldivi 11841 | . . . . . . . 8 ⊢ (0 < 2 → ((1 · 2) < 3 ↔ 1 < (3 / 2))) |
35 | 31, 34 | ax-mp 5 | . . . . . . 7 ⊢ ((1 · 2) < 3 ↔ 1 < (3 / 2)) |
36 | 30, 35 | mpbi 229 | . . . . . 6 ⊢ 1 < (3 / 2) |
37 | 16, 10, 14 | ltleii 11044 | . . . . . . . . 9 ⊢ 0 ≤ (1 / 2) |
38 | 10 | absidi 15033 | . . . . . . . . 9 ⊢ (0 ≤ (1 / 2) → (abs‘(1 / 2)) = (1 / 2)) |
39 | 37, 38 | ax-mp 5 | . . . . . . . 8 ⊢ (abs‘(1 / 2)) = (1 / 2) |
40 | 39 | oveq2i 7271 | . . . . . . 7 ⊢ (3 · (abs‘(1 / 2))) = (3 · (1 / 2)) |
41 | 4 | nncni 11929 | . . . . . . . . 9 ⊢ 3 ∈ ℂ |
42 | 2ne0 12023 | . . . . . . . . 9 ⊢ 2 ≠ 0 | |
43 | 41, 27, 42 | divreci 11666 | . . . . . . . 8 ⊢ (3 / 2) = (3 · (1 / 2)) |
44 | 43 | eqcomi 2746 | . . . . . . 7 ⊢ (3 · (1 / 2)) = (3 / 2) |
45 | 40, 44 | eqtri 2765 | . . . . . 6 ⊢ (3 · (abs‘(1 / 2))) = (3 / 2) |
46 | 36, 45 | breqtrri 5102 | . . . . 5 ⊢ 1 < (3 · (abs‘(1 / 2))) |
47 | 46 | a1i 11 | . . . 4 ⊢ (⊤ → 1 < (3 · (abs‘(1 / 2)))) |
48 | 1, 2, 3, 24, 5, 47 | knoppndv 34683 | . . 3 ⊢ (⊤ → dom (ℝ D 𝑊) = ∅) |
49 | 48 | mptru 1546 | . 2 ⊢ dom (ℝ D 𝑊) = ∅ |
50 | 26, 49 | pm3.2i 470 | 1 ⊢ (𝑊 ∈ (ℝ–cn→ℝ) ∧ dom (ℝ D 𝑊) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ⊤wtru 1540 ∈ wcel 2107 ∅c0 4258 class class class wbr 5075 ↦ cmpt 5158 dom cdm 5585 ‘cfv 6423 (class class class)co 7260 ℝcr 10817 0cc0 10818 1c1 10819 + caddc 10821 · cmul 10823 ℝ*cxr 10955 < clt 10956 ≤ cle 10957 − cmin 11151 -cneg 11152 / cdiv 11578 ℕcn 11919 2c2 11974 3c3 11975 ℕ0cn0 12179 (,)cioo 13024 ⌊cfl 13454 ↑cexp 13726 abscabs 14889 Σcsu 15341 –cn→ccncf 23983 D cdv 24970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5210 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7571 ax-inf2 9345 ax-cnex 10874 ax-resscn 10875 ax-1cn 10876 ax-icn 10877 ax-addcl 10878 ax-addrcl 10879 ax-mulcl 10880 ax-mulrcl 10881 ax-mulcom 10882 ax-addass 10883 ax-mulass 10884 ax-distr 10885 ax-i2m1 10886 ax-1ne0 10887 ax-1rid 10888 ax-rnegex 10889 ax-rrecex 10890 ax-cnre 10891 ax-pre-lttri 10892 ax-pre-lttrn 10893 ax-pre-ltadd 10894 ax-pre-mulgt0 10895 ax-pre-sup 10896 ax-addf 10897 ax-mulf 10898 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3429 df-sbc 3717 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-tp 4568 df-op 4570 df-uni 4842 df-int 4882 df-iun 4928 df-iin 4929 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5485 df-eprel 5491 df-po 5499 df-so 5500 df-fr 5540 df-se 5541 df-we 5542 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-pred 6196 df-ord 6259 df-on 6260 df-lim 6261 df-suc 6262 df-iota 6381 df-fun 6425 df-fn 6426 df-f 6427 df-f1 6428 df-fo 6429 df-f1o 6430 df-fv 6431 df-isom 6432 df-riota 7217 df-ov 7263 df-oprab 7264 df-mpo 7265 df-of 7516 df-om 7693 df-1st 7809 df-2nd 7810 df-supp 7954 df-frecs 8073 df-wrecs 8104 df-recs 8178 df-rdg 8217 df-1o 8272 df-2o 8273 df-er 8461 df-map 8580 df-pm 8581 df-ixp 8649 df-en 8697 df-dom 8698 df-sdom 8699 df-fin 8700 df-fsupp 9075 df-fi 9116 df-sup 9147 df-inf 9148 df-oi 9215 df-card 9644 df-pnf 10958 df-mnf 10959 df-xr 10960 df-ltxr 10961 df-le 10962 df-sub 11153 df-neg 11154 df-div 11579 df-nn 11920 df-2 11982 df-3 11983 df-4 11984 df-5 11985 df-6 11986 df-7 11987 df-8 11988 df-9 11989 df-n0 12180 df-z 12266 df-dec 12383 df-uz 12528 df-q 12634 df-rp 12676 df-xneg 12793 df-xadd 12794 df-xmul 12795 df-ioo 13028 df-ico 13030 df-icc 13031 df-fz 13185 df-fzo 13328 df-fl 13456 df-seq 13666 df-exp 13727 df-hash 13989 df-cj 14754 df-re 14755 df-im 14756 df-sqrt 14890 df-abs 14891 df-limsup 15124 df-clim 15141 df-rlim 15142 df-sum 15342 df-dvds 15908 df-struct 16792 df-sets 16809 df-slot 16827 df-ndx 16839 df-base 16857 df-ress 16886 df-plusg 16919 df-mulr 16920 df-starv 16921 df-sca 16922 df-vsca 16923 df-ip 16924 df-tset 16925 df-ple 16926 df-ds 16928 df-unif 16929 df-hom 16930 df-cco 16931 df-rest 17077 df-topn 17078 df-0g 17096 df-gsum 17097 df-topgen 17098 df-pt 17099 df-prds 17102 df-xrs 17157 df-qtop 17162 df-imas 17163 df-xps 17165 df-mre 17239 df-mrc 17240 df-acs 17242 df-mgm 18270 df-sgrp 18319 df-mnd 18330 df-submnd 18375 df-mulg 18645 df-cntz 18867 df-cmn 19332 df-psmet 20533 df-xmet 20534 df-met 20535 df-bl 20536 df-mopn 20537 df-cnfld 20542 df-top 21987 df-topon 22004 df-topsp 22026 df-bases 22040 df-ntr 22115 df-cn 22322 df-cnp 22323 df-tx 22657 df-hmeo 22850 df-xms 23417 df-ms 23418 df-tms 23419 df-cncf 23985 df-limc 24973 df-dv 24974 df-ulm 25479 |
This theorem is referenced by: cnndvlem2 34687 |
Copyright terms: Public domain | W3C validator |