| Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cnndvlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for cnndv 36534. (Contributed by Asger C. Ipsen, 25-Aug-2021.) |
| Ref | Expression |
|---|---|
| cnndvlem1.t | ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
| cnndvlem1.f | ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ (((1 / 2)↑𝑛) · (𝑇‘(((2 · 3)↑𝑛) · 𝑦))))) |
| cnndvlem1.w | ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) |
| Ref | Expression |
|---|---|
| cnndvlem1 | ⊢ (𝑊 ∈ (ℝ–cn→ℝ) ∧ dom (ℝ D 𝑊) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnndvlem1.t | . . . 4 ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) | |
| 2 | cnndvlem1.f | . . . 4 ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ (((1 / 2)↑𝑛) · (𝑇‘(((2 · 3)↑𝑛) · 𝑦))))) | |
| 3 | cnndvlem1.w | . . . 4 ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) | |
| 4 | 3nn 12272 | . . . . 5 ⊢ 3 ∈ ℕ | |
| 5 | 4 | a1i 11 | . . . 4 ⊢ (⊤ → 3 ∈ ℕ) |
| 6 | neg1rr 12179 | . . . . . . . . 9 ⊢ -1 ∈ ℝ | |
| 7 | 6 | rexri 11239 | . . . . . . . 8 ⊢ -1 ∈ ℝ* |
| 8 | 1re 11181 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
| 9 | 8 | rexri 11239 | . . . . . . . 8 ⊢ 1 ∈ ℝ* |
| 10 | halfre 12402 | . . . . . . . . 9 ⊢ (1 / 2) ∈ ℝ | |
| 11 | 10 | rexri 11239 | . . . . . . . 8 ⊢ (1 / 2) ∈ ℝ* |
| 12 | 7, 9, 11 | 3pm3.2i 1340 | . . . . . . 7 ⊢ (-1 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ (1 / 2) ∈ ℝ*) |
| 13 | neg1lt0 12181 | . . . . . . . . . 10 ⊢ -1 < 0 | |
| 14 | halfgt0 12404 | . . . . . . . . . 10 ⊢ 0 < (1 / 2) | |
| 15 | 13, 14 | pm3.2i 470 | . . . . . . . . 9 ⊢ (-1 < 0 ∧ 0 < (1 / 2)) |
| 16 | 0re 11183 | . . . . . . . . . 10 ⊢ 0 ∈ ℝ | |
| 17 | 6, 16, 10 | lttri 11307 | . . . . . . . . 9 ⊢ ((-1 < 0 ∧ 0 < (1 / 2)) → -1 < (1 / 2)) |
| 18 | 15, 17 | ax-mp 5 | . . . . . . . 8 ⊢ -1 < (1 / 2) |
| 19 | halflt1 12406 | . . . . . . . 8 ⊢ (1 / 2) < 1 | |
| 20 | 18, 19 | pm3.2i 470 | . . . . . . 7 ⊢ (-1 < (1 / 2) ∧ (1 / 2) < 1) |
| 21 | 12, 20 | pm3.2i 470 | . . . . . 6 ⊢ ((-1 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ (1 / 2) ∈ ℝ*) ∧ (-1 < (1 / 2) ∧ (1 / 2) < 1)) |
| 22 | elioo3g 13342 | . . . . . 6 ⊢ ((1 / 2) ∈ (-1(,)1) ↔ ((-1 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ (1 / 2) ∈ ℝ*) ∧ (-1 < (1 / 2) ∧ (1 / 2) < 1))) | |
| 23 | 21, 22 | mpbir 231 | . . . . 5 ⊢ (1 / 2) ∈ (-1(,)1) |
| 24 | 23 | a1i 11 | . . . 4 ⊢ (⊤ → (1 / 2) ∈ (-1(,)1)) |
| 25 | 1, 2, 3, 5, 24 | knoppcn2 36531 | . . 3 ⊢ (⊤ → 𝑊 ∈ (ℝ–cn→ℝ)) |
| 26 | 25 | mptru 1547 | . 2 ⊢ 𝑊 ∈ (ℝ–cn→ℝ) |
| 27 | 2cn 12268 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
| 28 | 27 | mullidi 11186 | . . . . . . . 8 ⊢ (1 · 2) = 2 |
| 29 | 2lt3 12360 | . . . . . . . 8 ⊢ 2 < 3 | |
| 30 | 28, 29 | eqbrtri 5131 | . . . . . . 7 ⊢ (1 · 2) < 3 |
| 31 | 2pos 12296 | . . . . . . . 8 ⊢ 0 < 2 | |
| 32 | 4 | nnrei 12202 | . . . . . . . . 9 ⊢ 3 ∈ ℝ |
| 33 | 2re 12267 | . . . . . . . . 9 ⊢ 2 ∈ ℝ | |
| 34 | 8, 32, 33 | ltmuldivi 12110 | . . . . . . . 8 ⊢ (0 < 2 → ((1 · 2) < 3 ↔ 1 < (3 / 2))) |
| 35 | 31, 34 | ax-mp 5 | . . . . . . 7 ⊢ ((1 · 2) < 3 ↔ 1 < (3 / 2)) |
| 36 | 30, 35 | mpbi 230 | . . . . . 6 ⊢ 1 < (3 / 2) |
| 37 | 16, 10, 14 | ltleii 11304 | . . . . . . . . 9 ⊢ 0 ≤ (1 / 2) |
| 38 | 10 | absidi 15351 | . . . . . . . . 9 ⊢ (0 ≤ (1 / 2) → (abs‘(1 / 2)) = (1 / 2)) |
| 39 | 37, 38 | ax-mp 5 | . . . . . . . 8 ⊢ (abs‘(1 / 2)) = (1 / 2) |
| 40 | 39 | oveq2i 7401 | . . . . . . 7 ⊢ (3 · (abs‘(1 / 2))) = (3 · (1 / 2)) |
| 41 | 4 | nncni 12203 | . . . . . . . . 9 ⊢ 3 ∈ ℂ |
| 42 | 2ne0 12297 | . . . . . . . . 9 ⊢ 2 ≠ 0 | |
| 43 | 41, 27, 42 | divreci 11934 | . . . . . . . 8 ⊢ (3 / 2) = (3 · (1 / 2)) |
| 44 | 43 | eqcomi 2739 | . . . . . . 7 ⊢ (3 · (1 / 2)) = (3 / 2) |
| 45 | 40, 44 | eqtri 2753 | . . . . . 6 ⊢ (3 · (abs‘(1 / 2))) = (3 / 2) |
| 46 | 36, 45 | breqtrri 5137 | . . . . 5 ⊢ 1 < (3 · (abs‘(1 / 2))) |
| 47 | 46 | a1i 11 | . . . 4 ⊢ (⊤ → 1 < (3 · (abs‘(1 / 2)))) |
| 48 | 1, 2, 3, 24, 5, 47 | knoppndv 36529 | . . 3 ⊢ (⊤ → dom (ℝ D 𝑊) = ∅) |
| 49 | 48 | mptru 1547 | . 2 ⊢ dom (ℝ D 𝑊) = ∅ |
| 50 | 26, 49 | pm3.2i 470 | 1 ⊢ (𝑊 ∈ (ℝ–cn→ℝ) ∧ dom (ℝ D 𝑊) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ∅c0 4299 class class class wbr 5110 ↦ cmpt 5191 dom cdm 5641 ‘cfv 6514 (class class class)co 7390 ℝcr 11074 0cc0 11075 1c1 11076 + caddc 11078 · cmul 11080 ℝ*cxr 11214 < clt 11215 ≤ cle 11216 − cmin 11412 -cneg 11413 / cdiv 11842 ℕcn 12193 2c2 12248 3c3 12249 ℕ0cn0 12449 (,)cioo 13313 ⌊cfl 13759 ↑cexp 14033 abscabs 15207 Σcsu 15659 –cn→ccncf 24776 D cdv 25771 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-pm 8805 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-fi 9369 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-ioo 13317 df-ico 13319 df-icc 13320 df-fz 13476 df-fzo 13623 df-fl 13761 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-limsup 15444 df-clim 15461 df-rlim 15462 df-sum 15660 df-dvds 16230 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-rest 17392 df-topn 17393 df-0g 17411 df-gsum 17412 df-topgen 17413 df-pt 17414 df-prds 17417 df-xrs 17472 df-qtop 17477 df-imas 17478 df-xps 17480 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-mulg 19007 df-cntz 19256 df-cmn 19719 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-cnfld 21272 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-ntr 22914 df-cn 23121 df-cnp 23122 df-tx 23456 df-hmeo 23649 df-xms 24215 df-ms 24216 df-tms 24217 df-cncf 24778 df-limc 25774 df-dv 25775 df-ulm 26293 |
| This theorem is referenced by: cnndvlem2 36533 |
| Copyright terms: Public domain | W3C validator |