Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnndvlem1 Structured version   Visualization version   GIF version

Theorem cnndvlem1 36531
Description: Lemma for cnndv 36533. (Contributed by Asger C. Ipsen, 25-Aug-2021.)
Hypotheses
Ref Expression
cnndvlem1.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
cnndvlem1.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ (((1 / 2)↑𝑛) · (𝑇‘(((2 · 3)↑𝑛) · 𝑦)))))
cnndvlem1.w 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
Assertion
Ref Expression
cnndvlem1 (𝑊 ∈ (ℝ–cn→ℝ) ∧ dom (ℝ D 𝑊) = ∅)
Distinct variable groups:   𝑖,𝐹,𝑤   𝑇,𝑛,𝑦   𝑖,𝑛,𝑦,𝑤   𝑥,𝑖,𝑤
Allowed substitution hints:   𝑇(𝑥,𝑤,𝑖)   𝐹(𝑥,𝑦,𝑛)   𝑊(𝑥,𝑦,𝑤,𝑖,𝑛)

Proof of Theorem cnndvlem1
StepHypRef Expression
1 cnndvlem1.t . . . 4 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
2 cnndvlem1.f . . . 4 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ (((1 / 2)↑𝑛) · (𝑇‘(((2 · 3)↑𝑛) · 𝑦)))))
3 cnndvlem1.w . . . 4 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
4 3nn 12207 . . . . 5 3 ∈ ℕ
54a1i 11 . . . 4 (⊤ → 3 ∈ ℕ)
6 neg1rr 12114 . . . . . . . . 9 -1 ∈ ℝ
76rexri 11173 . . . . . . . 8 -1 ∈ ℝ*
8 1re 11115 . . . . . . . . 9 1 ∈ ℝ
98rexri 11173 . . . . . . . 8 1 ∈ ℝ*
10 halfre 12337 . . . . . . . . 9 (1 / 2) ∈ ℝ
1110rexri 11173 . . . . . . . 8 (1 / 2) ∈ ℝ*
127, 9, 113pm3.2i 1340 . . . . . . 7 (-1 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ (1 / 2) ∈ ℝ*)
13 neg1lt0 12116 . . . . . . . . . 10 -1 < 0
14 halfgt0 12339 . . . . . . . . . 10 0 < (1 / 2)
1513, 14pm3.2i 470 . . . . . . . . 9 (-1 < 0 ∧ 0 < (1 / 2))
16 0re 11117 . . . . . . . . . 10 0 ∈ ℝ
176, 16, 10lttri 11242 . . . . . . . . 9 ((-1 < 0 ∧ 0 < (1 / 2)) → -1 < (1 / 2))
1815, 17ax-mp 5 . . . . . . . 8 -1 < (1 / 2)
19 halflt1 12341 . . . . . . . 8 (1 / 2) < 1
2018, 19pm3.2i 470 . . . . . . 7 (-1 < (1 / 2) ∧ (1 / 2) < 1)
2112, 20pm3.2i 470 . . . . . 6 ((-1 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ (1 / 2) ∈ ℝ*) ∧ (-1 < (1 / 2) ∧ (1 / 2) < 1))
22 elioo3g 13277 . . . . . 6 ((1 / 2) ∈ (-1(,)1) ↔ ((-1 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ (1 / 2) ∈ ℝ*) ∧ (-1 < (1 / 2) ∧ (1 / 2) < 1)))
2321, 22mpbir 231 . . . . 5 (1 / 2) ∈ (-1(,)1)
2423a1i 11 . . . 4 (⊤ → (1 / 2) ∈ (-1(,)1))
251, 2, 3, 5, 24knoppcn2 36530 . . 3 (⊤ → 𝑊 ∈ (ℝ–cn→ℝ))
2625mptru 1547 . 2 𝑊 ∈ (ℝ–cn→ℝ)
27 2cn 12203 . . . . . . . . 9 2 ∈ ℂ
2827mullidi 11120 . . . . . . . 8 (1 · 2) = 2
29 2lt3 12295 . . . . . . . 8 2 < 3
3028, 29eqbrtri 5113 . . . . . . 7 (1 · 2) < 3
31 2pos 12231 . . . . . . . 8 0 < 2
324nnrei 12137 . . . . . . . . 9 3 ∈ ℝ
33 2re 12202 . . . . . . . . 9 2 ∈ ℝ
348, 32, 33ltmuldivi 12045 . . . . . . . 8 (0 < 2 → ((1 · 2) < 3 ↔ 1 < (3 / 2)))
3531, 34ax-mp 5 . . . . . . 7 ((1 · 2) < 3 ↔ 1 < (3 / 2))
3630, 35mpbi 230 . . . . . 6 1 < (3 / 2)
3716, 10, 14ltleii 11239 . . . . . . . . 9 0 ≤ (1 / 2)
3810absidi 15285 . . . . . . . . 9 (0 ≤ (1 / 2) → (abs‘(1 / 2)) = (1 / 2))
3937, 38ax-mp 5 . . . . . . . 8 (abs‘(1 / 2)) = (1 / 2)
4039oveq2i 7360 . . . . . . 7 (3 · (abs‘(1 / 2))) = (3 · (1 / 2))
414nncni 12138 . . . . . . . . 9 3 ∈ ℂ
42 2ne0 12232 . . . . . . . . 9 2 ≠ 0
4341, 27, 42divreci 11869 . . . . . . . 8 (3 / 2) = (3 · (1 / 2))
4443eqcomi 2738 . . . . . . 7 (3 · (1 / 2)) = (3 / 2)
4540, 44eqtri 2752 . . . . . 6 (3 · (abs‘(1 / 2))) = (3 / 2)
4636, 45breqtrri 5119 . . . . 5 1 < (3 · (abs‘(1 / 2)))
4746a1i 11 . . . 4 (⊤ → 1 < (3 · (abs‘(1 / 2))))
481, 2, 3, 24, 5, 47knoppndv 36528 . . 3 (⊤ → dom (ℝ D 𝑊) = ∅)
4948mptru 1547 . 2 dom (ℝ D 𝑊) = ∅
5026, 49pm3.2i 470 1 (𝑊 ∈ (ℝ–cn→ℝ) ∧ dom (ℝ D 𝑊) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wtru 1541  wcel 2109  c0 4284   class class class wbr 5092  cmpt 5173  dom cdm 5619  cfv 6482  (class class class)co 7349  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014  *cxr 11148   < clt 11149  cle 11150  cmin 11347  -cneg 11348   / cdiv 11777  cn 12128  2c2 12183  3c3 12184  0cn0 12384  (,)cioo 13248  cfl 13694  cexp 13968  abscabs 15141  Σcsu 15593  cnccncf 24767   D cdv 25762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-dvds 16164  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-ntr 22905  df-cn 23112  df-cnp 23113  df-tx 23447  df-hmeo 23640  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-limc 25765  df-dv 25766  df-ulm 26284
This theorem is referenced by:  cnndvlem2  36532
  Copyright terms: Public domain W3C validator