Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnndvlem1 Structured version   Visualization version   GIF version

Theorem cnndvlem1 36555
Description: Lemma for cnndv 36557. (Contributed by Asger C. Ipsen, 25-Aug-2021.)
Hypotheses
Ref Expression
cnndvlem1.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
cnndvlem1.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ (((1 / 2)↑𝑛) · (𝑇‘(((2 · 3)↑𝑛) · 𝑦)))))
cnndvlem1.w 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
Assertion
Ref Expression
cnndvlem1 (𝑊 ∈ (ℝ–cn→ℝ) ∧ dom (ℝ D 𝑊) = ∅)
Distinct variable groups:   𝑖,𝐹,𝑤   𝑇,𝑛,𝑦   𝑖,𝑛,𝑦,𝑤   𝑥,𝑖,𝑤
Allowed substitution hints:   𝑇(𝑥,𝑤,𝑖)   𝐹(𝑥,𝑦,𝑛)   𝑊(𝑥,𝑦,𝑤,𝑖,𝑛)

Proof of Theorem cnndvlem1
StepHypRef Expression
1 cnndvlem1.t . . . 4 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
2 cnndvlem1.f . . . 4 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ (((1 / 2)↑𝑛) · (𝑇‘(((2 · 3)↑𝑛) · 𝑦)))))
3 cnndvlem1.w . . . 4 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
4 3nn 12319 . . . . 5 3 ∈ ℕ
54a1i 11 . . . 4 (⊤ → 3 ∈ ℕ)
6 neg1rr 12355 . . . . . . . . 9 -1 ∈ ℝ
76rexri 11293 . . . . . . . 8 -1 ∈ ℝ*
8 1re 11235 . . . . . . . . 9 1 ∈ ℝ
98rexri 11293 . . . . . . . 8 1 ∈ ℝ*
10 halfre 12454 . . . . . . . . 9 (1 / 2) ∈ ℝ
1110rexri 11293 . . . . . . . 8 (1 / 2) ∈ ℝ*
127, 9, 113pm3.2i 1340 . . . . . . 7 (-1 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ (1 / 2) ∈ ℝ*)
13 neg1lt0 12357 . . . . . . . . . 10 -1 < 0
14 halfgt0 12456 . . . . . . . . . 10 0 < (1 / 2)
1513, 14pm3.2i 470 . . . . . . . . 9 (-1 < 0 ∧ 0 < (1 / 2))
16 0re 11237 . . . . . . . . . 10 0 ∈ ℝ
176, 16, 10lttri 11361 . . . . . . . . 9 ((-1 < 0 ∧ 0 < (1 / 2)) → -1 < (1 / 2))
1815, 17ax-mp 5 . . . . . . . 8 -1 < (1 / 2)
19 halflt1 12458 . . . . . . . 8 (1 / 2) < 1
2018, 19pm3.2i 470 . . . . . . 7 (-1 < (1 / 2) ∧ (1 / 2) < 1)
2112, 20pm3.2i 470 . . . . . 6 ((-1 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ (1 / 2) ∈ ℝ*) ∧ (-1 < (1 / 2) ∧ (1 / 2) < 1))
22 elioo3g 13391 . . . . . 6 ((1 / 2) ∈ (-1(,)1) ↔ ((-1 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ (1 / 2) ∈ ℝ*) ∧ (-1 < (1 / 2) ∧ (1 / 2) < 1)))
2321, 22mpbir 231 . . . . 5 (1 / 2) ∈ (-1(,)1)
2423a1i 11 . . . 4 (⊤ → (1 / 2) ∈ (-1(,)1))
251, 2, 3, 5, 24knoppcn2 36554 . . 3 (⊤ → 𝑊 ∈ (ℝ–cn→ℝ))
2625mptru 1547 . 2 𝑊 ∈ (ℝ–cn→ℝ)
27 2cn 12315 . . . . . . . . 9 2 ∈ ℂ
2827mullidi 11240 . . . . . . . 8 (1 · 2) = 2
29 2lt3 12412 . . . . . . . 8 2 < 3
3028, 29eqbrtri 5140 . . . . . . 7 (1 · 2) < 3
31 2pos 12343 . . . . . . . 8 0 < 2
324nnrei 12249 . . . . . . . . 9 3 ∈ ℝ
33 2re 12314 . . . . . . . . 9 2 ∈ ℝ
348, 32, 33ltmuldivi 12162 . . . . . . . 8 (0 < 2 → ((1 · 2) < 3 ↔ 1 < (3 / 2)))
3531, 34ax-mp 5 . . . . . . 7 ((1 · 2) < 3 ↔ 1 < (3 / 2))
3630, 35mpbi 230 . . . . . 6 1 < (3 / 2)
3716, 10, 14ltleii 11358 . . . . . . . . 9 0 ≤ (1 / 2)
3810absidi 15396 . . . . . . . . 9 (0 ≤ (1 / 2) → (abs‘(1 / 2)) = (1 / 2))
3937, 38ax-mp 5 . . . . . . . 8 (abs‘(1 / 2)) = (1 / 2)
4039oveq2i 7416 . . . . . . 7 (3 · (abs‘(1 / 2))) = (3 · (1 / 2))
414nncni 12250 . . . . . . . . 9 3 ∈ ℂ
42 2ne0 12344 . . . . . . . . 9 2 ≠ 0
4341, 27, 42divreci 11986 . . . . . . . 8 (3 / 2) = (3 · (1 / 2))
4443eqcomi 2744 . . . . . . 7 (3 · (1 / 2)) = (3 / 2)
4540, 44eqtri 2758 . . . . . 6 (3 · (abs‘(1 / 2))) = (3 / 2)
4636, 45breqtrri 5146 . . . . 5 1 < (3 · (abs‘(1 / 2)))
4746a1i 11 . . . 4 (⊤ → 1 < (3 · (abs‘(1 / 2))))
481, 2, 3, 24, 5, 47knoppndv 36552 . . 3 (⊤ → dom (ℝ D 𝑊) = ∅)
4948mptru 1547 . 2 dom (ℝ D 𝑊) = ∅
5026, 49pm3.2i 470 1 (𝑊 ∈ (ℝ–cn→ℝ) ∧ dom (ℝ D 𝑊) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wtru 1541  wcel 2108  c0 4308   class class class wbr 5119  cmpt 5201  dom cdm 5654  cfv 6531  (class class class)co 7405  cr 11128  0cc0 11129  1c1 11130   + caddc 11132   · cmul 11134  *cxr 11268   < clt 11269  cle 11270  cmin 11466  -cneg 11467   / cdiv 11894  cn 12240  2c2 12295  3c3 12296  0cn0 12501  (,)cioo 13362  cfl 13807  cexp 14079  abscabs 15253  Σcsu 15702  cnccncf 24820   D cdv 25816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-limsup 15487  df-clim 15504  df-rlim 15505  df-sum 15703  df-dvds 16273  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-xrs 17516  df-qtop 17521  df-imas 17522  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-mulg 19051  df-cntz 19300  df-cmn 19763  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-ntr 22958  df-cn 23165  df-cnp 23166  df-tx 23500  df-hmeo 23693  df-xms 24259  df-ms 24260  df-tms 24261  df-cncf 24822  df-limc 25819  df-dv 25820  df-ulm 26338
This theorem is referenced by:  cnndvlem2  36556
  Copyright terms: Public domain W3C validator