| Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cnndvlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for cnndv 36557. (Contributed by Asger C. Ipsen, 25-Aug-2021.) |
| Ref | Expression |
|---|---|
| cnndvlem1.t | ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
| cnndvlem1.f | ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ (((1 / 2)↑𝑛) · (𝑇‘(((2 · 3)↑𝑛) · 𝑦))))) |
| cnndvlem1.w | ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) |
| Ref | Expression |
|---|---|
| cnndvlem1 | ⊢ (𝑊 ∈ (ℝ–cn→ℝ) ∧ dom (ℝ D 𝑊) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnndvlem1.t | . . . 4 ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) | |
| 2 | cnndvlem1.f | . . . 4 ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ (((1 / 2)↑𝑛) · (𝑇‘(((2 · 3)↑𝑛) · 𝑦))))) | |
| 3 | cnndvlem1.w | . . . 4 ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) | |
| 4 | 3nn 12319 | . . . . 5 ⊢ 3 ∈ ℕ | |
| 5 | 4 | a1i 11 | . . . 4 ⊢ (⊤ → 3 ∈ ℕ) |
| 6 | neg1rr 12355 | . . . . . . . . 9 ⊢ -1 ∈ ℝ | |
| 7 | 6 | rexri 11293 | . . . . . . . 8 ⊢ -1 ∈ ℝ* |
| 8 | 1re 11235 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
| 9 | 8 | rexri 11293 | . . . . . . . 8 ⊢ 1 ∈ ℝ* |
| 10 | halfre 12454 | . . . . . . . . 9 ⊢ (1 / 2) ∈ ℝ | |
| 11 | 10 | rexri 11293 | . . . . . . . 8 ⊢ (1 / 2) ∈ ℝ* |
| 12 | 7, 9, 11 | 3pm3.2i 1340 | . . . . . . 7 ⊢ (-1 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ (1 / 2) ∈ ℝ*) |
| 13 | neg1lt0 12357 | . . . . . . . . . 10 ⊢ -1 < 0 | |
| 14 | halfgt0 12456 | . . . . . . . . . 10 ⊢ 0 < (1 / 2) | |
| 15 | 13, 14 | pm3.2i 470 | . . . . . . . . 9 ⊢ (-1 < 0 ∧ 0 < (1 / 2)) |
| 16 | 0re 11237 | . . . . . . . . . 10 ⊢ 0 ∈ ℝ | |
| 17 | 6, 16, 10 | lttri 11361 | . . . . . . . . 9 ⊢ ((-1 < 0 ∧ 0 < (1 / 2)) → -1 < (1 / 2)) |
| 18 | 15, 17 | ax-mp 5 | . . . . . . . 8 ⊢ -1 < (1 / 2) |
| 19 | halflt1 12458 | . . . . . . . 8 ⊢ (1 / 2) < 1 | |
| 20 | 18, 19 | pm3.2i 470 | . . . . . . 7 ⊢ (-1 < (1 / 2) ∧ (1 / 2) < 1) |
| 21 | 12, 20 | pm3.2i 470 | . . . . . 6 ⊢ ((-1 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ (1 / 2) ∈ ℝ*) ∧ (-1 < (1 / 2) ∧ (1 / 2) < 1)) |
| 22 | elioo3g 13391 | . . . . . 6 ⊢ ((1 / 2) ∈ (-1(,)1) ↔ ((-1 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ (1 / 2) ∈ ℝ*) ∧ (-1 < (1 / 2) ∧ (1 / 2) < 1))) | |
| 23 | 21, 22 | mpbir 231 | . . . . 5 ⊢ (1 / 2) ∈ (-1(,)1) |
| 24 | 23 | a1i 11 | . . . 4 ⊢ (⊤ → (1 / 2) ∈ (-1(,)1)) |
| 25 | 1, 2, 3, 5, 24 | knoppcn2 36554 | . . 3 ⊢ (⊤ → 𝑊 ∈ (ℝ–cn→ℝ)) |
| 26 | 25 | mptru 1547 | . 2 ⊢ 𝑊 ∈ (ℝ–cn→ℝ) |
| 27 | 2cn 12315 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
| 28 | 27 | mullidi 11240 | . . . . . . . 8 ⊢ (1 · 2) = 2 |
| 29 | 2lt3 12412 | . . . . . . . 8 ⊢ 2 < 3 | |
| 30 | 28, 29 | eqbrtri 5140 | . . . . . . 7 ⊢ (1 · 2) < 3 |
| 31 | 2pos 12343 | . . . . . . . 8 ⊢ 0 < 2 | |
| 32 | 4 | nnrei 12249 | . . . . . . . . 9 ⊢ 3 ∈ ℝ |
| 33 | 2re 12314 | . . . . . . . . 9 ⊢ 2 ∈ ℝ | |
| 34 | 8, 32, 33 | ltmuldivi 12162 | . . . . . . . 8 ⊢ (0 < 2 → ((1 · 2) < 3 ↔ 1 < (3 / 2))) |
| 35 | 31, 34 | ax-mp 5 | . . . . . . 7 ⊢ ((1 · 2) < 3 ↔ 1 < (3 / 2)) |
| 36 | 30, 35 | mpbi 230 | . . . . . 6 ⊢ 1 < (3 / 2) |
| 37 | 16, 10, 14 | ltleii 11358 | . . . . . . . . 9 ⊢ 0 ≤ (1 / 2) |
| 38 | 10 | absidi 15396 | . . . . . . . . 9 ⊢ (0 ≤ (1 / 2) → (abs‘(1 / 2)) = (1 / 2)) |
| 39 | 37, 38 | ax-mp 5 | . . . . . . . 8 ⊢ (abs‘(1 / 2)) = (1 / 2) |
| 40 | 39 | oveq2i 7416 | . . . . . . 7 ⊢ (3 · (abs‘(1 / 2))) = (3 · (1 / 2)) |
| 41 | 4 | nncni 12250 | . . . . . . . . 9 ⊢ 3 ∈ ℂ |
| 42 | 2ne0 12344 | . . . . . . . . 9 ⊢ 2 ≠ 0 | |
| 43 | 41, 27, 42 | divreci 11986 | . . . . . . . 8 ⊢ (3 / 2) = (3 · (1 / 2)) |
| 44 | 43 | eqcomi 2744 | . . . . . . 7 ⊢ (3 · (1 / 2)) = (3 / 2) |
| 45 | 40, 44 | eqtri 2758 | . . . . . 6 ⊢ (3 · (abs‘(1 / 2))) = (3 / 2) |
| 46 | 36, 45 | breqtrri 5146 | . . . . 5 ⊢ 1 < (3 · (abs‘(1 / 2))) |
| 47 | 46 | a1i 11 | . . . 4 ⊢ (⊤ → 1 < (3 · (abs‘(1 / 2)))) |
| 48 | 1, 2, 3, 24, 5, 47 | knoppndv 36552 | . . 3 ⊢ (⊤ → dom (ℝ D 𝑊) = ∅) |
| 49 | 48 | mptru 1547 | . 2 ⊢ dom (ℝ D 𝑊) = ∅ |
| 50 | 26, 49 | pm3.2i 470 | 1 ⊢ (𝑊 ∈ (ℝ–cn→ℝ) ∧ dom (ℝ D 𝑊) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ⊤wtru 1541 ∈ wcel 2108 ∅c0 4308 class class class wbr 5119 ↦ cmpt 5201 dom cdm 5654 ‘cfv 6531 (class class class)co 7405 ℝcr 11128 0cc0 11129 1c1 11130 + caddc 11132 · cmul 11134 ℝ*cxr 11268 < clt 11269 ≤ cle 11270 − cmin 11466 -cneg 11467 / cdiv 11894 ℕcn 12240 2c2 12295 3c3 12296 ℕ0cn0 12501 (,)cioo 13362 ⌊cfl 13807 ↑cexp 14079 abscabs 15253 Σcsu 15702 –cn→ccncf 24820 D cdv 25816 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 ax-addf 11208 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-pm 8843 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-fi 9423 df-sup 9454 df-inf 9455 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-q 12965 df-rp 13009 df-xneg 13128 df-xadd 13129 df-xmul 13130 df-ioo 13366 df-ico 13368 df-icc 13369 df-fz 13525 df-fzo 13672 df-fl 13809 df-seq 14020 df-exp 14080 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-limsup 15487 df-clim 15504 df-rlim 15505 df-sum 15703 df-dvds 16273 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-starv 17286 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-hom 17295 df-cco 17296 df-rest 17436 df-topn 17437 df-0g 17455 df-gsum 17456 df-topgen 17457 df-pt 17458 df-prds 17461 df-xrs 17516 df-qtop 17521 df-imas 17522 df-xps 17524 df-mre 17598 df-mrc 17599 df-acs 17601 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-submnd 18762 df-mulg 19051 df-cntz 19300 df-cmn 19763 df-psmet 21307 df-xmet 21308 df-met 21309 df-bl 21310 df-mopn 21311 df-cnfld 21316 df-top 22832 df-topon 22849 df-topsp 22871 df-bases 22884 df-ntr 22958 df-cn 23165 df-cnp 23166 df-tx 23500 df-hmeo 23693 df-xms 24259 df-ms 24260 df-tms 24261 df-cncf 24822 df-limc 25819 df-dv 25820 df-ulm 26338 |
| This theorem is referenced by: cnndvlem2 36556 |
| Copyright terms: Public domain | W3C validator |