Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nn0lt10b | Structured version Visualization version GIF version |
Description: A nonnegative integer less than 1 is 0. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by OpenAI, 25-Mar-2020.) |
Ref | Expression |
---|---|
nn0lt10b | ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 1 ↔ 𝑁 = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 12289 | . . 3 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
2 | nnnlt1 12059 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ¬ 𝑁 < 1) | |
3 | 2 | pm2.21d 121 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝑁 < 1 → 𝑁 = 0)) |
4 | ax-1 6 | . . . 4 ⊢ (𝑁 = 0 → (𝑁 < 1 → 𝑁 = 0)) | |
5 | 3, 4 | jaoi 855 | . . 3 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝑁 < 1 → 𝑁 = 0)) |
6 | 1, 5 | sylbi 216 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 1 → 𝑁 = 0)) |
7 | 0lt1 11551 | . . 3 ⊢ 0 < 1 | |
8 | breq1 5084 | . . 3 ⊢ (𝑁 = 0 → (𝑁 < 1 ↔ 0 < 1)) | |
9 | 7, 8 | mpbiri 258 | . 2 ⊢ (𝑁 = 0 → 𝑁 < 1) |
10 | 6, 9 | impbid1 224 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 1 ↔ 𝑁 = 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∨ wo 845 = wceq 1539 ∈ wcel 2104 class class class wbr 5081 0cc0 10925 1c1 10926 < clt 11063 ℕcn 12027 ℕ0cn0 12287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-resscn 10982 ax-1cn 10983 ax-icn 10984 ax-addcl 10985 ax-addrcl 10986 ax-mulcl 10987 ax-mulrcl 10988 ax-mulcom 10989 ax-addass 10990 ax-mulass 10991 ax-distr 10992 ax-i2m1 10993 ax-1ne0 10994 ax-1rid 10995 ax-rnegex 10996 ax-rrecex 10997 ax-cnre 10998 ax-pre-lttri 10999 ax-pre-lttrn 11000 ax-pre-ltadd 11001 ax-pre-mulgt0 11002 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3340 df-rab 3341 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11065 df-mnf 11066 df-xr 11067 df-ltxr 11068 df-le 11069 df-sub 11261 df-neg 11262 df-nn 12028 df-n0 12288 |
This theorem is referenced by: nn0lt2 12437 nn0le2is012 12438 fz1n 13328 zdis 24036 plyrem 25522 efif1olem4 25758 acycgr1v 33166 poimirlem28 35859 |
Copyright terms: Public domain | W3C validator |