| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sqvali | Structured version Visualization version GIF version | ||
| Description: Value of square. Inference version. (Contributed by NM, 1-Aug-1999.) |
| Ref | Expression |
|---|---|
| sqval.1 | ⊢ 𝐴 ∈ ℂ |
| Ref | Expression |
|---|---|
| sqvali | ⊢ (𝐴↑2) = (𝐴 · 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqval.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | sqval 14079 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴↑2) = (𝐴 · 𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴↑2) = (𝐴 · 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7387 ℂcc 11066 · cmul 11073 2c2 12241 ↑cexp 14026 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-n0 12443 df-z 12530 df-uz 12794 df-seq 13967 df-exp 14027 |
| This theorem is referenced by: sqrecii 14148 sqdivi 14150 sqge0i 14153 lt2sqi 14154 le2sqi 14155 sq11i 14156 sq2 14162 sq3 14163 sq4e2t8 14164 i2 14167 expnass 14173 binom2i 14177 sq10 14229 3dec 14231 nn0le2msqi 14232 nn0opthlem1 14233 nn0opth2i 14236 faclbnd4lem1 14258 sqrtmsq2i 15354 pythagtriplem12 16797 pythagtriplem14 16799 prmlem1 17078 prmlem2 17090 4001prm 17115 mcubic 26757 dquartlem1 26761 quart1lem 26765 quart1 26766 log2ublem3 26858 birthday 26864 bposlem7 27201 bposlem8 27202 bposlem9 27203 ax5seglem7 28862 normlem1 31039 nmopcoadji 32030 dpmul4 32834 hgt750lem2 34643 quad3 35657 cntotbnd 37790 3lexlogpow5ineq1 42042 3lexlogpow5ineq5 42048 sq4 42281 sq5 42282 sq6 42283 sq7 42284 sq8 42285 sq9 42286 flt4lem5e 42644 sq45 42659 resqrtvalex 43634 imsqrtvalex 43635 fmtno5lem4 47557 flsqrt5 47595 lighneallem4a 47609 |
| Copyright terms: Public domain | W3C validator |