![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sqvali | Structured version Visualization version GIF version |
Description: Value of square. Inference version. (Contributed by NM, 1-Aug-1999.) |
Ref | Expression |
---|---|
sqval.1 | ⊢ 𝐴 ∈ ℂ |
Ref | Expression |
---|---|
sqvali | ⊢ (𝐴↑2) = (𝐴 · 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sqval.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | sqval 13336 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴↑2) = (𝐴 · 𝐴)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴↑2) = (𝐴 · 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1522 ∈ wcel 2081 (class class class)co 7021 ℂcc 10386 · cmul 10393 2c2 11545 ↑cexp 13284 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5099 ax-nul 5106 ax-pow 5162 ax-pr 5226 ax-un 7324 ax-cnex 10444 ax-resscn 10445 ax-1cn 10446 ax-icn 10447 ax-addcl 10448 ax-addrcl 10449 ax-mulcl 10450 ax-mulrcl 10451 ax-mulcom 10452 ax-addass 10453 ax-mulass 10454 ax-distr 10455 ax-i2m1 10456 ax-1ne0 10457 ax-1rid 10458 ax-rnegex 10459 ax-rrecex 10460 ax-cnre 10461 ax-pre-lttri 10462 ax-pre-lttrn 10463 ax-pre-ltadd 10464 ax-pre-mulgt0 10465 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rab 3114 df-v 3439 df-sbc 3710 df-csb 3816 df-dif 3866 df-un 3868 df-in 3870 df-ss 3878 df-pss 3880 df-nul 4216 df-if 4386 df-pw 4459 df-sn 4477 df-pr 4479 df-tp 4481 df-op 4483 df-uni 4750 df-iun 4831 df-br 4967 df-opab 5029 df-mpt 5046 df-tr 5069 df-id 5353 df-eprel 5358 df-po 5367 df-so 5368 df-fr 5407 df-we 5409 df-xp 5454 df-rel 5455 df-cnv 5456 df-co 5457 df-dm 5458 df-rn 5459 df-res 5460 df-ima 5461 df-pred 6028 df-ord 6074 df-on 6075 df-lim 6076 df-suc 6077 df-iota 6194 df-fun 6232 df-fn 6233 df-f 6234 df-f1 6235 df-fo 6236 df-f1o 6237 df-fv 6238 df-riota 6982 df-ov 7024 df-oprab 7025 df-mpo 7026 df-om 7442 df-2nd 7551 df-wrecs 7803 df-recs 7865 df-rdg 7903 df-er 8144 df-en 8363 df-dom 8364 df-sdom 8365 df-pnf 10528 df-mnf 10529 df-xr 10530 df-ltxr 10531 df-le 10532 df-sub 10724 df-neg 10725 df-nn 11492 df-2 11553 df-n0 11751 df-z 11835 df-uz 12099 df-seq 13225 df-exp 13285 |
This theorem is referenced by: sqrecii 13401 sqdivi 13403 sqge0i 13406 lt2sqi 13407 le2sqi 13408 sq11i 13409 sq2 13415 sq3 13416 sq4e2t8 13417 i2 13420 expnass 13425 binom2i 13429 sq10 13479 3dec 13481 nn0le2msqi 13482 nn0opthlem1 13483 nn0opth2i 13486 faclbnd4lem1 13508 sqrtmsq2i 14586 pythagtriplem12 15997 pythagtriplem14 15999 prmlem1 16275 prmlem2 16287 4001prm 16312 mcubic 25111 dquartlem1 25115 quart1lem 25119 quart1 25120 log2ublem3 25213 birthday 25219 bposlem7 25553 bposlem8 25554 bposlem9 25555 ax5seglem7 26409 normlem1 28583 nmopcoadji 29574 dpmul4 30279 hgt750lem2 31545 quad3 32527 cntotbnd 34631 fmtno5lem4 43226 flsqrt5 43265 lighneallem4a 43281 |
Copyright terms: Public domain | W3C validator |