MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqvali Structured version   Visualization version   GIF version

Theorem sqvali 14219
Description: Value of square. Inference version. (Contributed by NM, 1-Aug-1999.)
Hypothesis
Ref Expression
sqval.1 𝐴 ∈ ℂ
Assertion
Ref Expression
sqvali (𝐴↑2) = (𝐴 · 𝐴)

Proof of Theorem sqvali
StepHypRef Expression
1 sqval.1 . 2 𝐴 ∈ ℂ
2 sqval 14155 . 2 (𝐴 ∈ ℂ → (𝐴↑2) = (𝐴 · 𝐴))
31, 2ax-mp 5 1 (𝐴↑2) = (𝐴 · 𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  (class class class)co 7431  cc 11153   · cmul 11160  2c2 12321  cexp 14102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-seq 14043  df-exp 14103
This theorem is referenced by:  sqrecii  14222  sqdivi  14224  sqge0i  14227  lt2sqi  14228  le2sqi  14229  sq11i  14230  sq2  14236  sq3  14237  sq4e2t8  14238  i2  14241  expnass  14247  binom2i  14251  sq10  14303  3dec  14305  nn0le2msqi  14306  nn0opthlem1  14307  nn0opth2i  14310  faclbnd4lem1  14332  sqrtmsq2i  15426  pythagtriplem12  16864  pythagtriplem14  16866  prmlem1  17145  prmlem2  17157  4001prm  17182  mcubic  26890  dquartlem1  26894  quart1lem  26898  quart1  26899  log2ublem3  26991  birthday  26997  bposlem7  27334  bposlem8  27335  bposlem9  27336  ax5seglem7  28950  normlem1  31129  nmopcoadji  32120  dpmul4  32896  hgt750lem2  34667  quad3  35675  cntotbnd  37803  3lexlogpow5ineq1  42055  3lexlogpow5ineq5  42061  sq4  42327  sq5  42328  sq6  42329  sq7  42330  sq8  42331  sq9  42332  flt4lem5e  42666  sq45  42681  resqrtvalex  43658  imsqrtvalex  43659  fmtno5lem4  47543  flsqrt5  47581  lighneallem4a  47595
  Copyright terms: Public domain W3C validator