| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sqvali | Structured version Visualization version GIF version | ||
| Description: Value of square. Inference version. (Contributed by NM, 1-Aug-1999.) |
| Ref | Expression |
|---|---|
| sqval.1 | ⊢ 𝐴 ∈ ℂ |
| Ref | Expression |
|---|---|
| sqvali | ⊢ (𝐴↑2) = (𝐴 · 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqval.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | sqval 14018 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴↑2) = (𝐴 · 𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴↑2) = (𝐴 · 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 (class class class)co 7346 ℂcc 11001 · cmul 11008 2c2 12177 ↑cexp 13965 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-n0 12379 df-z 12466 df-uz 12730 df-seq 13906 df-exp 13966 |
| This theorem is referenced by: sqrecii 14087 sqdivi 14089 sqge0i 14092 lt2sqi 14093 le2sqi 14094 sq11i 14095 sq2 14101 sq3 14102 sq4e2t8 14103 i2 14106 expnass 14112 binom2i 14116 sq10 14168 3dec 14170 nn0le2msqi 14171 nn0opthlem1 14172 nn0opth2i 14175 faclbnd4lem1 14197 sqrtmsq2i 15292 pythagtriplem12 16735 pythagtriplem14 16737 prmlem1 17016 prmlem2 17028 4001prm 17053 mcubic 26782 dquartlem1 26786 quart1lem 26790 quart1 26791 log2ublem3 26883 birthday 26889 bposlem7 27226 bposlem8 27227 bposlem9 27228 ax5seglem7 28911 normlem1 31085 nmopcoadji 32076 dpmul4 32889 hgt750lem2 34660 quad3 35702 cntotbnd 37835 3lexlogpow5ineq1 42086 3lexlogpow5ineq5 42092 sq4 42325 sq5 42326 sq6 42327 sq7 42328 sq8 42329 sq9 42330 flt4lem5e 42688 sq45 42703 resqrtvalex 43677 imsqrtvalex 43678 fmtno5lem4 47586 flsqrt5 47624 lighneallem4a 47638 |
| Copyright terms: Public domain | W3C validator |