| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sqvali | Structured version Visualization version GIF version | ||
| Description: Value of square. Inference version. (Contributed by NM, 1-Aug-1999.) |
| Ref | Expression |
|---|---|
| sqval.1 | ⊢ 𝐴 ∈ ℂ |
| Ref | Expression |
|---|---|
| sqvali | ⊢ (𝐴↑2) = (𝐴 · 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqval.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | sqval 14039 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴↑2) = (𝐴 · 𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴↑2) = (𝐴 · 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7353 ℂcc 11026 · cmul 11033 2c2 12201 ↑cexp 13986 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-n0 12403 df-z 12490 df-uz 12754 df-seq 13927 df-exp 13987 |
| This theorem is referenced by: sqrecii 14108 sqdivi 14110 sqge0i 14113 lt2sqi 14114 le2sqi 14115 sq11i 14116 sq2 14122 sq3 14123 sq4e2t8 14124 i2 14127 expnass 14133 binom2i 14137 sq10 14189 3dec 14191 nn0le2msqi 14192 nn0opthlem1 14193 nn0opth2i 14196 faclbnd4lem1 14218 sqrtmsq2i 15313 pythagtriplem12 16756 pythagtriplem14 16758 prmlem1 17037 prmlem2 17049 4001prm 17074 mcubic 26773 dquartlem1 26777 quart1lem 26781 quart1 26782 log2ublem3 26874 birthday 26880 bposlem7 27217 bposlem8 27218 bposlem9 27219 ax5seglem7 28898 normlem1 31072 nmopcoadji 32063 dpmul4 32867 hgt750lem2 34619 quad3 35642 cntotbnd 37775 3lexlogpow5ineq1 42027 3lexlogpow5ineq5 42033 sq4 42266 sq5 42267 sq6 42268 sq7 42269 sq8 42270 sq9 42271 flt4lem5e 42629 sq45 42644 resqrtvalex 43618 imsqrtvalex 43619 fmtno5lem4 47541 flsqrt5 47579 lighneallem4a 47593 |
| Copyright terms: Public domain | W3C validator |