MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmdiveq Structured version   Visualization version   GIF version

Theorem prmdiveq 16415
Description: The modular inverse of 𝐴 mod 𝑃 is unique. (Contributed by Mario Carneiro, 24-Jan-2015.)
Hypothesis
Ref Expression
prmdiv.1 𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃)
Assertion
Ref Expression
prmdiveq ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1)) ↔ 𝑆 = 𝑅))

Proof of Theorem prmdiveq
StepHypRef Expression
1 simpl1 1189 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑃 ∈ ℙ)
2 prmz 16308 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
31, 2syl 17 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑃 ∈ ℤ)
4 simpl2 1190 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝐴 ∈ ℤ)
5 elfzelz 13185 . . . . . . . . . . 11 (𝑆 ∈ (0...(𝑃 − 1)) → 𝑆 ∈ ℤ)
65ad2antrl 724 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑆 ∈ ℤ)
74, 6zmulcld 12361 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝐴 · 𝑆) ∈ ℤ)
8 1z 12280 . . . . . . . . 9 1 ∈ ℤ
9 zsubcl 12292 . . . . . . . . 9 (((𝐴 · 𝑆) ∈ ℤ ∧ 1 ∈ ℤ) → ((𝐴 · 𝑆) − 1) ∈ ℤ)
107, 8, 9sylancl 585 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → ((𝐴 · 𝑆) − 1) ∈ ℤ)
11 prmdiv.1 . . . . . . . . . . . . . 14 𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃)
1211prmdiv 16414 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑅 ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑅) − 1)))
1312adantr 480 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝑅 ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑅) − 1)))
1413simpld 494 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑅 ∈ (1...(𝑃 − 1)))
15 elfzelz 13185 . . . . . . . . . . 11 (𝑅 ∈ (1...(𝑃 − 1)) → 𝑅 ∈ ℤ)
1614, 15syl 17 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑅 ∈ ℤ)
174, 16zmulcld 12361 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝐴 · 𝑅) ∈ ℤ)
18 zsubcl 12292 . . . . . . . . 9 (((𝐴 · 𝑅) ∈ ℤ ∧ 1 ∈ ℤ) → ((𝐴 · 𝑅) − 1) ∈ ℤ)
1917, 8, 18sylancl 585 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → ((𝐴 · 𝑅) − 1) ∈ ℤ)
20 simprr 769 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑃 ∥ ((𝐴 · 𝑆) − 1))
2113simprd 495 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑃 ∥ ((𝐴 · 𝑅) − 1))
223, 10, 19, 20, 21dvds2subd 15930 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑃 ∥ (((𝐴 · 𝑆) − 1) − ((𝐴 · 𝑅) − 1)))
237zcnd 12356 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝐴 · 𝑆) ∈ ℂ)
2417zcnd 12356 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝐴 · 𝑅) ∈ ℂ)
25 1cnd 10901 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 1 ∈ ℂ)
2623, 24, 25nnncan2d 11297 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (((𝐴 · 𝑆) − 1) − ((𝐴 · 𝑅) − 1)) = ((𝐴 · 𝑆) − (𝐴 · 𝑅)))
274zcnd 12356 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝐴 ∈ ℂ)
28 elfznn0 13278 . . . . . . . . . . . 12 (𝑆 ∈ (0...(𝑃 − 1)) → 𝑆 ∈ ℕ0)
2928ad2antrl 724 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑆 ∈ ℕ0)
3029nn0red 12224 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑆 ∈ ℝ)
3130recnd 10934 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑆 ∈ ℂ)
3216zcnd 12356 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑅 ∈ ℂ)
3327, 31, 32subdid 11361 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝐴 · (𝑆𝑅)) = ((𝐴 · 𝑆) − (𝐴 · 𝑅)))
3426, 33eqtr4d 2781 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (((𝐴 · 𝑆) − 1) − ((𝐴 · 𝑅) − 1)) = (𝐴 · (𝑆𝑅)))
3522, 34breqtrd 5096 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑃 ∥ (𝐴 · (𝑆𝑅)))
36 simpl3 1191 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → ¬ 𝑃𝐴)
37 coprm 16344 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (¬ 𝑃𝐴 ↔ (𝑃 gcd 𝐴) = 1))
381, 4, 37syl2anc 583 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (¬ 𝑃𝐴 ↔ (𝑃 gcd 𝐴) = 1))
3936, 38mpbid 231 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝑃 gcd 𝐴) = 1)
406, 16zsubcld 12360 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝑆𝑅) ∈ ℤ)
41 coprmdvds 16286 . . . . . . 7 ((𝑃 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝑆𝑅) ∈ ℤ) → ((𝑃 ∥ (𝐴 · (𝑆𝑅)) ∧ (𝑃 gcd 𝐴) = 1) → 𝑃 ∥ (𝑆𝑅)))
423, 4, 40, 41syl3anc 1369 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → ((𝑃 ∥ (𝐴 · (𝑆𝑅)) ∧ (𝑃 gcd 𝐴) = 1) → 𝑃 ∥ (𝑆𝑅)))
4335, 39, 42mp2and 695 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑃 ∥ (𝑆𝑅))
44 prmnn 16307 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
451, 44syl 17 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑃 ∈ ℕ)
46 moddvds 15902 . . . . . 6 ((𝑃 ∈ ℕ ∧ 𝑆 ∈ ℤ ∧ 𝑅 ∈ ℤ) → ((𝑆 mod 𝑃) = (𝑅 mod 𝑃) ↔ 𝑃 ∥ (𝑆𝑅)))
4745, 6, 16, 46syl3anc 1369 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → ((𝑆 mod 𝑃) = (𝑅 mod 𝑃) ↔ 𝑃 ∥ (𝑆𝑅)))
4843, 47mpbird 256 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝑆 mod 𝑃) = (𝑅 mod 𝑃))
4945nnrpd 12699 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑃 ∈ ℝ+)
50 elfzle1 13188 . . . . . 6 (𝑆 ∈ (0...(𝑃 − 1)) → 0 ≤ 𝑆)
5150ad2antrl 724 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 0 ≤ 𝑆)
52 elfzle2 13189 . . . . . . 7 (𝑆 ∈ (0...(𝑃 − 1)) → 𝑆 ≤ (𝑃 − 1))
5352ad2antrl 724 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑆 ≤ (𝑃 − 1))
54 zltlem1 12303 . . . . . . 7 ((𝑆 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑆 < 𝑃𝑆 ≤ (𝑃 − 1)))
556, 3, 54syl2anc 583 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝑆 < 𝑃𝑆 ≤ (𝑃 − 1)))
5653, 55mpbird 256 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑆 < 𝑃)
57 modid 13544 . . . . 5 (((𝑆 ∈ ℝ ∧ 𝑃 ∈ ℝ+) ∧ (0 ≤ 𝑆𝑆 < 𝑃)) → (𝑆 mod 𝑃) = 𝑆)
5830, 49, 51, 56, 57syl22anc 835 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝑆 mod 𝑃) = 𝑆)
59 prmuz2 16329 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
60 uznn0sub 12546 . . . . . . . . 9 (𝑃 ∈ (ℤ‘2) → (𝑃 − 2) ∈ ℕ0)
611, 59, 603syl 18 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝑃 − 2) ∈ ℕ0)
62 zexpcl 13725 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (𝑃 − 2) ∈ ℕ0) → (𝐴↑(𝑃 − 2)) ∈ ℤ)
634, 61, 62syl2anc 583 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝐴↑(𝑃 − 2)) ∈ ℤ)
6463zred 12355 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝐴↑(𝑃 − 2)) ∈ ℝ)
65 modabs2 13553 . . . . . 6 (((𝐴↑(𝑃 − 2)) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → (((𝐴↑(𝑃 − 2)) mod 𝑃) mod 𝑃) = ((𝐴↑(𝑃 − 2)) mod 𝑃))
6664, 49, 65syl2anc 583 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (((𝐴↑(𝑃 − 2)) mod 𝑃) mod 𝑃) = ((𝐴↑(𝑃 − 2)) mod 𝑃))
6711oveq1i 7265 . . . . 5 (𝑅 mod 𝑃) = (((𝐴↑(𝑃 − 2)) mod 𝑃) mod 𝑃)
6866, 67, 113eqtr4g 2804 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝑅 mod 𝑃) = 𝑅)
6948, 58, 683eqtr3d 2786 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑆 = 𝑅)
7069ex 412 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1)) → 𝑆 = 𝑅))
71 fz1ssfz0 13281 . . . . . 6 (1...(𝑃 − 1)) ⊆ (0...(𝑃 − 1))
7271sseli 3913 . . . . 5 (𝑅 ∈ (1...(𝑃 − 1)) → 𝑅 ∈ (0...(𝑃 − 1)))
73 eleq1 2826 . . . . 5 (𝑆 = 𝑅 → (𝑆 ∈ (0...(𝑃 − 1)) ↔ 𝑅 ∈ (0...(𝑃 − 1))))
7472, 73syl5ibr 245 . . . 4 (𝑆 = 𝑅 → (𝑅 ∈ (1...(𝑃 − 1)) → 𝑆 ∈ (0...(𝑃 − 1))))
75 oveq2 7263 . . . . . . 7 (𝑆 = 𝑅 → (𝐴 · 𝑆) = (𝐴 · 𝑅))
7675oveq1d 7270 . . . . . 6 (𝑆 = 𝑅 → ((𝐴 · 𝑆) − 1) = ((𝐴 · 𝑅) − 1))
7776breq2d 5082 . . . . 5 (𝑆 = 𝑅 → (𝑃 ∥ ((𝐴 · 𝑆) − 1) ↔ 𝑃 ∥ ((𝐴 · 𝑅) − 1)))
7877biimprd 247 . . . 4 (𝑆 = 𝑅 → (𝑃 ∥ ((𝐴 · 𝑅) − 1) → 𝑃 ∥ ((𝐴 · 𝑆) − 1)))
7974, 78anim12d 608 . . 3 (𝑆 = 𝑅 → ((𝑅 ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑅) − 1)) → (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))))
8012, 79syl5com 31 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑆 = 𝑅 → (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))))
8170, 80impbid 211 1 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1)) ↔ 𝑆 = 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108   class class class wbr 5070  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803   · cmul 10807   < clt 10940  cle 10941  cmin 11135  cn 11903  2c2 11958  0cn0 12163  cz 12249  cuz 12511  +crp 12659  ...cfz 13168   mod cmo 13517  cexp 13710  cdvds 15891   gcd cgcd 16129  cprime 16304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-gcd 16130  df-prm 16305  df-phi 16395
This theorem is referenced by:  prmdivdiv  16416  modprminveq  16429  wilthlem1  26122  wilthlem2  26123
  Copyright terms: Public domain W3C validator