MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmdiveq Structured version   Visualization version   GIF version

Theorem prmdiveq 16584
Description: The modular inverse of 𝐴 mod 𝑃 is unique. (Contributed by Mario Carneiro, 24-Jan-2015.)
Hypothesis
Ref Expression
prmdiv.1 𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃)
Assertion
Ref Expression
prmdiveq ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1)) ↔ 𝑆 = 𝑅))

Proof of Theorem prmdiveq
StepHypRef Expression
1 simpl1 1191 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑃 ∈ ℙ)
2 prmz 16477 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
31, 2syl 17 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑃 ∈ ℤ)
4 simpl2 1192 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝐴 ∈ ℤ)
5 elfzelz 13361 . . . . . . . . . . 11 (𝑆 ∈ (0...(𝑃 − 1)) → 𝑆 ∈ ℤ)
65ad2antrl 726 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑆 ∈ ℤ)
74, 6zmulcld 12537 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝐴 · 𝑆) ∈ ℤ)
8 1z 12455 . . . . . . . . 9 1 ∈ ℤ
9 zsubcl 12467 . . . . . . . . 9 (((𝐴 · 𝑆) ∈ ℤ ∧ 1 ∈ ℤ) → ((𝐴 · 𝑆) − 1) ∈ ℤ)
107, 8, 9sylancl 587 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → ((𝐴 · 𝑆) − 1) ∈ ℤ)
11 prmdiv.1 . . . . . . . . . . . . . 14 𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃)
1211prmdiv 16583 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑅 ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑅) − 1)))
1312adantr 482 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝑅 ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑅) − 1)))
1413simpld 496 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑅 ∈ (1...(𝑃 − 1)))
15 elfzelz 13361 . . . . . . . . . . 11 (𝑅 ∈ (1...(𝑃 − 1)) → 𝑅 ∈ ℤ)
1614, 15syl 17 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑅 ∈ ℤ)
174, 16zmulcld 12537 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝐴 · 𝑅) ∈ ℤ)
18 zsubcl 12467 . . . . . . . . 9 (((𝐴 · 𝑅) ∈ ℤ ∧ 1 ∈ ℤ) → ((𝐴 · 𝑅) − 1) ∈ ℤ)
1917, 8, 18sylancl 587 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → ((𝐴 · 𝑅) − 1) ∈ ℤ)
20 simprr 771 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑃 ∥ ((𝐴 · 𝑆) − 1))
2113simprd 497 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑃 ∥ ((𝐴 · 𝑅) − 1))
223, 10, 19, 20, 21dvds2subd 16101 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑃 ∥ (((𝐴 · 𝑆) − 1) − ((𝐴 · 𝑅) − 1)))
237zcnd 12532 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝐴 · 𝑆) ∈ ℂ)
2417zcnd 12532 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝐴 · 𝑅) ∈ ℂ)
25 1cnd 11075 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 1 ∈ ℂ)
2623, 24, 25nnncan2d 11472 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (((𝐴 · 𝑆) − 1) − ((𝐴 · 𝑅) − 1)) = ((𝐴 · 𝑆) − (𝐴 · 𝑅)))
274zcnd 12532 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝐴 ∈ ℂ)
28 elfznn0 13454 . . . . . . . . . . . 12 (𝑆 ∈ (0...(𝑃 − 1)) → 𝑆 ∈ ℕ0)
2928ad2antrl 726 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑆 ∈ ℕ0)
3029nn0red 12399 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑆 ∈ ℝ)
3130recnd 11108 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑆 ∈ ℂ)
3216zcnd 12532 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑅 ∈ ℂ)
3327, 31, 32subdid 11536 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝐴 · (𝑆𝑅)) = ((𝐴 · 𝑆) − (𝐴 · 𝑅)))
3426, 33eqtr4d 2780 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (((𝐴 · 𝑆) − 1) − ((𝐴 · 𝑅) − 1)) = (𝐴 · (𝑆𝑅)))
3522, 34breqtrd 5122 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑃 ∥ (𝐴 · (𝑆𝑅)))
36 simpl3 1193 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → ¬ 𝑃𝐴)
37 coprm 16513 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (¬ 𝑃𝐴 ↔ (𝑃 gcd 𝐴) = 1))
381, 4, 37syl2anc 585 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (¬ 𝑃𝐴 ↔ (𝑃 gcd 𝐴) = 1))
3936, 38mpbid 231 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝑃 gcd 𝐴) = 1)
406, 16zsubcld 12536 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝑆𝑅) ∈ ℤ)
41 coprmdvds 16455 . . . . . . 7 ((𝑃 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝑆𝑅) ∈ ℤ) → ((𝑃 ∥ (𝐴 · (𝑆𝑅)) ∧ (𝑃 gcd 𝐴) = 1) → 𝑃 ∥ (𝑆𝑅)))
423, 4, 40, 41syl3anc 1371 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → ((𝑃 ∥ (𝐴 · (𝑆𝑅)) ∧ (𝑃 gcd 𝐴) = 1) → 𝑃 ∥ (𝑆𝑅)))
4335, 39, 42mp2and 697 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑃 ∥ (𝑆𝑅))
44 prmnn 16476 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
451, 44syl 17 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑃 ∈ ℕ)
46 moddvds 16073 . . . . . 6 ((𝑃 ∈ ℕ ∧ 𝑆 ∈ ℤ ∧ 𝑅 ∈ ℤ) → ((𝑆 mod 𝑃) = (𝑅 mod 𝑃) ↔ 𝑃 ∥ (𝑆𝑅)))
4745, 6, 16, 46syl3anc 1371 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → ((𝑆 mod 𝑃) = (𝑅 mod 𝑃) ↔ 𝑃 ∥ (𝑆𝑅)))
4843, 47mpbird 257 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝑆 mod 𝑃) = (𝑅 mod 𝑃))
4945nnrpd 12875 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑃 ∈ ℝ+)
50 elfzle1 13364 . . . . . 6 (𝑆 ∈ (0...(𝑃 − 1)) → 0 ≤ 𝑆)
5150ad2antrl 726 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 0 ≤ 𝑆)
52 elfzle2 13365 . . . . . . 7 (𝑆 ∈ (0...(𝑃 − 1)) → 𝑆 ≤ (𝑃 − 1))
5352ad2antrl 726 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑆 ≤ (𝑃 − 1))
54 zltlem1 12478 . . . . . . 7 ((𝑆 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑆 < 𝑃𝑆 ≤ (𝑃 − 1)))
556, 3, 54syl2anc 585 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝑆 < 𝑃𝑆 ≤ (𝑃 − 1)))
5653, 55mpbird 257 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑆 < 𝑃)
57 modid 13721 . . . . 5 (((𝑆 ∈ ℝ ∧ 𝑃 ∈ ℝ+) ∧ (0 ≤ 𝑆𝑆 < 𝑃)) → (𝑆 mod 𝑃) = 𝑆)
5830, 49, 51, 56, 57syl22anc 837 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝑆 mod 𝑃) = 𝑆)
59 prmuz2 16498 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
60 uznn0sub 12722 . . . . . . . . 9 (𝑃 ∈ (ℤ‘2) → (𝑃 − 2) ∈ ℕ0)
611, 59, 603syl 18 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝑃 − 2) ∈ ℕ0)
62 zexpcl 13902 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (𝑃 − 2) ∈ ℕ0) → (𝐴↑(𝑃 − 2)) ∈ ℤ)
634, 61, 62syl2anc 585 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝐴↑(𝑃 − 2)) ∈ ℤ)
6463zred 12531 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝐴↑(𝑃 − 2)) ∈ ℝ)
65 modabs2 13730 . . . . . 6 (((𝐴↑(𝑃 − 2)) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → (((𝐴↑(𝑃 − 2)) mod 𝑃) mod 𝑃) = ((𝐴↑(𝑃 − 2)) mod 𝑃))
6664, 49, 65syl2anc 585 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (((𝐴↑(𝑃 − 2)) mod 𝑃) mod 𝑃) = ((𝐴↑(𝑃 − 2)) mod 𝑃))
6711oveq1i 7351 . . . . 5 (𝑅 mod 𝑃) = (((𝐴↑(𝑃 − 2)) mod 𝑃) mod 𝑃)
6866, 67, 113eqtr4g 2802 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝑅 mod 𝑃) = 𝑅)
6948, 58, 683eqtr3d 2785 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑆 = 𝑅)
7069ex 414 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1)) → 𝑆 = 𝑅))
71 fz1ssfz0 13457 . . . . . 6 (1...(𝑃 − 1)) ⊆ (0...(𝑃 − 1))
7271sseli 3931 . . . . 5 (𝑅 ∈ (1...(𝑃 − 1)) → 𝑅 ∈ (0...(𝑃 − 1)))
73 eleq1 2825 . . . . 5 (𝑆 = 𝑅 → (𝑆 ∈ (0...(𝑃 − 1)) ↔ 𝑅 ∈ (0...(𝑃 − 1))))
7472, 73syl5ibr 246 . . . 4 (𝑆 = 𝑅 → (𝑅 ∈ (1...(𝑃 − 1)) → 𝑆 ∈ (0...(𝑃 − 1))))
75 oveq2 7349 . . . . . . 7 (𝑆 = 𝑅 → (𝐴 · 𝑆) = (𝐴 · 𝑅))
7675oveq1d 7356 . . . . . 6 (𝑆 = 𝑅 → ((𝐴 · 𝑆) − 1) = ((𝐴 · 𝑅) − 1))
7776breq2d 5108 . . . . 5 (𝑆 = 𝑅 → (𝑃 ∥ ((𝐴 · 𝑆) − 1) ↔ 𝑃 ∥ ((𝐴 · 𝑅) − 1)))
7877biimprd 248 . . . 4 (𝑆 = 𝑅 → (𝑃 ∥ ((𝐴 · 𝑅) − 1) → 𝑃 ∥ ((𝐴 · 𝑆) − 1)))
7974, 78anim12d 610 . . 3 (𝑆 = 𝑅 → ((𝑅 ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑅) − 1)) → (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))))
8012, 79syl5com 31 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑆 = 𝑅 → (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))))
8170, 80impbid 211 1 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1)) ↔ 𝑆 = 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  w3a 1087   = wceq 1541  wcel 2106   class class class wbr 5096  cfv 6483  (class class class)co 7341  cr 10975  0cc0 10976  1c1 10977   · cmul 10981   < clt 11114  cle 11115  cmin 11310  cn 12078  2c2 12133  0cn0 12338  cz 12424  cuz 12687  +crp 12835  ...cfz 13344   mod cmo 13694  cexp 13887  cdvds 16062   gcd cgcd 16300  cprime 16473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5233  ax-sep 5247  ax-nul 5254  ax-pow 5312  ax-pr 5376  ax-un 7654  ax-cnex 11032  ax-resscn 11033  ax-1cn 11034  ax-icn 11035  ax-addcl 11036  ax-addrcl 11037  ax-mulcl 11038  ax-mulrcl 11039  ax-mulcom 11040  ax-addass 11041  ax-mulass 11042  ax-distr 11043  ax-i2m1 11044  ax-1ne0 11045  ax-1rid 11046  ax-rnegex 11047  ax-rrecex 11048  ax-cnre 11049  ax-pre-lttri 11050  ax-pre-lttrn 11051  ax-pre-ltadd 11052  ax-pre-mulgt0 11053  ax-pre-sup 11054
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3731  df-csb 3847  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-pss 3920  df-nul 4274  df-if 4478  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4857  df-int 4899  df-iun 4947  df-br 5097  df-opab 5159  df-mpt 5180  df-tr 5214  df-id 5522  df-eprel 5528  df-po 5536  df-so 5537  df-fr 5579  df-we 5581  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-rn 5635  df-res 5636  df-ima 5637  df-pred 6242  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6435  df-fun 6485  df-fn 6486  df-f 6487  df-f1 6488  df-fo 6489  df-f1o 6490  df-fv 6491  df-riota 7297  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7785  df-1st 7903  df-2nd 7904  df-frecs 8171  df-wrecs 8202  df-recs 8276  df-rdg 8315  df-1o 8371  df-2o 8372  df-oadd 8375  df-er 8573  df-en 8809  df-dom 8810  df-sdom 8811  df-fin 8812  df-sup 9303  df-inf 9304  df-dju 9762  df-card 9800  df-pnf 11116  df-mnf 11117  df-xr 11118  df-ltxr 11119  df-le 11120  df-sub 11312  df-neg 11313  df-div 11738  df-nn 12079  df-2 12141  df-3 12142  df-n0 12339  df-xnn0 12411  df-z 12425  df-uz 12688  df-rp 12836  df-fz 13345  df-fzo 13488  df-fl 13617  df-mod 13695  df-seq 13827  df-exp 13888  df-hash 14150  df-cj 14909  df-re 14910  df-im 14911  df-sqrt 15045  df-abs 15046  df-dvds 16063  df-gcd 16301  df-prm 16474  df-phi 16564
This theorem is referenced by:  prmdivdiv  16585  modprminveq  16598  wilthlem1  26322  wilthlem2  26323
  Copyright terms: Public domain W3C validator