MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmdiveq Structured version   Visualization version   GIF version

Theorem prmdiveq 16756
Description: The modular inverse of 𝐴 mod 𝑃 is unique. (Contributed by Mario Carneiro, 24-Jan-2015.)
Hypothesis
Ref Expression
prmdiv.1 𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃)
Assertion
Ref Expression
prmdiveq ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1)) ↔ 𝑆 = 𝑅))

Proof of Theorem prmdiveq
StepHypRef Expression
1 simpl1 1192 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑃 ∈ ℙ)
2 prmz 16645 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
31, 2syl 17 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑃 ∈ ℤ)
4 simpl2 1193 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝐴 ∈ ℤ)
5 elfzelz 13485 . . . . . . . . . . 11 (𝑆 ∈ (0...(𝑃 − 1)) → 𝑆 ∈ ℤ)
65ad2antrl 728 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑆 ∈ ℤ)
74, 6zmulcld 12644 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝐴 · 𝑆) ∈ ℤ)
8 1z 12563 . . . . . . . . 9 1 ∈ ℤ
9 zsubcl 12575 . . . . . . . . 9 (((𝐴 · 𝑆) ∈ ℤ ∧ 1 ∈ ℤ) → ((𝐴 · 𝑆) − 1) ∈ ℤ)
107, 8, 9sylancl 586 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → ((𝐴 · 𝑆) − 1) ∈ ℤ)
11 prmdiv.1 . . . . . . . . . . . . . 14 𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃)
1211prmdiv 16755 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑅 ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑅) − 1)))
1312adantr 480 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝑅 ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑅) − 1)))
1413simpld 494 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑅 ∈ (1...(𝑃 − 1)))
15 elfzelz 13485 . . . . . . . . . . 11 (𝑅 ∈ (1...(𝑃 − 1)) → 𝑅 ∈ ℤ)
1614, 15syl 17 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑅 ∈ ℤ)
174, 16zmulcld 12644 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝐴 · 𝑅) ∈ ℤ)
18 zsubcl 12575 . . . . . . . . 9 (((𝐴 · 𝑅) ∈ ℤ ∧ 1 ∈ ℤ) → ((𝐴 · 𝑅) − 1) ∈ ℤ)
1917, 8, 18sylancl 586 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → ((𝐴 · 𝑅) − 1) ∈ ℤ)
20 simprr 772 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑃 ∥ ((𝐴 · 𝑆) − 1))
2113simprd 495 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑃 ∥ ((𝐴 · 𝑅) − 1))
223, 10, 19, 20, 21dvds2subd 16263 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑃 ∥ (((𝐴 · 𝑆) − 1) − ((𝐴 · 𝑅) − 1)))
237zcnd 12639 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝐴 · 𝑆) ∈ ℂ)
2417zcnd 12639 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝐴 · 𝑅) ∈ ℂ)
25 1cnd 11169 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 1 ∈ ℂ)
2623, 24, 25nnncan2d 11568 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (((𝐴 · 𝑆) − 1) − ((𝐴 · 𝑅) − 1)) = ((𝐴 · 𝑆) − (𝐴 · 𝑅)))
274zcnd 12639 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝐴 ∈ ℂ)
28 elfznn0 13581 . . . . . . . . . . . 12 (𝑆 ∈ (0...(𝑃 − 1)) → 𝑆 ∈ ℕ0)
2928ad2antrl 728 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑆 ∈ ℕ0)
3029nn0red 12504 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑆 ∈ ℝ)
3130recnd 11202 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑆 ∈ ℂ)
3216zcnd 12639 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑅 ∈ ℂ)
3327, 31, 32subdid 11634 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝐴 · (𝑆𝑅)) = ((𝐴 · 𝑆) − (𝐴 · 𝑅)))
3426, 33eqtr4d 2767 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (((𝐴 · 𝑆) − 1) − ((𝐴 · 𝑅) − 1)) = (𝐴 · (𝑆𝑅)))
3522, 34breqtrd 5133 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑃 ∥ (𝐴 · (𝑆𝑅)))
36 simpl3 1194 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → ¬ 𝑃𝐴)
37 coprm 16681 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (¬ 𝑃𝐴 ↔ (𝑃 gcd 𝐴) = 1))
381, 4, 37syl2anc 584 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (¬ 𝑃𝐴 ↔ (𝑃 gcd 𝐴) = 1))
3936, 38mpbid 232 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝑃 gcd 𝐴) = 1)
406, 16zsubcld 12643 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝑆𝑅) ∈ ℤ)
41 coprmdvds 16623 . . . . . . 7 ((𝑃 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝑆𝑅) ∈ ℤ) → ((𝑃 ∥ (𝐴 · (𝑆𝑅)) ∧ (𝑃 gcd 𝐴) = 1) → 𝑃 ∥ (𝑆𝑅)))
423, 4, 40, 41syl3anc 1373 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → ((𝑃 ∥ (𝐴 · (𝑆𝑅)) ∧ (𝑃 gcd 𝐴) = 1) → 𝑃 ∥ (𝑆𝑅)))
4335, 39, 42mp2and 699 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑃 ∥ (𝑆𝑅))
44 prmnn 16644 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
451, 44syl 17 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑃 ∈ ℕ)
46 moddvds 16233 . . . . . 6 ((𝑃 ∈ ℕ ∧ 𝑆 ∈ ℤ ∧ 𝑅 ∈ ℤ) → ((𝑆 mod 𝑃) = (𝑅 mod 𝑃) ↔ 𝑃 ∥ (𝑆𝑅)))
4745, 6, 16, 46syl3anc 1373 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → ((𝑆 mod 𝑃) = (𝑅 mod 𝑃) ↔ 𝑃 ∥ (𝑆𝑅)))
4843, 47mpbird 257 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝑆 mod 𝑃) = (𝑅 mod 𝑃))
4945nnrpd 12993 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑃 ∈ ℝ+)
50 elfzle1 13488 . . . . . 6 (𝑆 ∈ (0...(𝑃 − 1)) → 0 ≤ 𝑆)
5150ad2antrl 728 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 0 ≤ 𝑆)
52 elfzle2 13489 . . . . . . 7 (𝑆 ∈ (0...(𝑃 − 1)) → 𝑆 ≤ (𝑃 − 1))
5352ad2antrl 728 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑆 ≤ (𝑃 − 1))
54 zltlem1 12586 . . . . . . 7 ((𝑆 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑆 < 𝑃𝑆 ≤ (𝑃 − 1)))
556, 3, 54syl2anc 584 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝑆 < 𝑃𝑆 ≤ (𝑃 − 1)))
5653, 55mpbird 257 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑆 < 𝑃)
57 modid 13858 . . . . 5 (((𝑆 ∈ ℝ ∧ 𝑃 ∈ ℝ+) ∧ (0 ≤ 𝑆𝑆 < 𝑃)) → (𝑆 mod 𝑃) = 𝑆)
5830, 49, 51, 56, 57syl22anc 838 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝑆 mod 𝑃) = 𝑆)
59 prmuz2 16666 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
60 uznn0sub 12832 . . . . . . . . 9 (𝑃 ∈ (ℤ‘2) → (𝑃 − 2) ∈ ℕ0)
611, 59, 603syl 18 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝑃 − 2) ∈ ℕ0)
62 zexpcl 14041 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (𝑃 − 2) ∈ ℕ0) → (𝐴↑(𝑃 − 2)) ∈ ℤ)
634, 61, 62syl2anc 584 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝐴↑(𝑃 − 2)) ∈ ℤ)
6463zred 12638 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝐴↑(𝑃 − 2)) ∈ ℝ)
65 modabs2 13867 . . . . . 6 (((𝐴↑(𝑃 − 2)) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → (((𝐴↑(𝑃 − 2)) mod 𝑃) mod 𝑃) = ((𝐴↑(𝑃 − 2)) mod 𝑃))
6664, 49, 65syl2anc 584 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (((𝐴↑(𝑃 − 2)) mod 𝑃) mod 𝑃) = ((𝐴↑(𝑃 − 2)) mod 𝑃))
6711oveq1i 7397 . . . . 5 (𝑅 mod 𝑃) = (((𝐴↑(𝑃 − 2)) mod 𝑃) mod 𝑃)
6866, 67, 113eqtr4g 2789 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝑅 mod 𝑃) = 𝑅)
6948, 58, 683eqtr3d 2772 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑆 = 𝑅)
7069ex 412 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1)) → 𝑆 = 𝑅))
71 fz1ssfz0 13584 . . . . . 6 (1...(𝑃 − 1)) ⊆ (0...(𝑃 − 1))
7271sseli 3942 . . . . 5 (𝑅 ∈ (1...(𝑃 − 1)) → 𝑅 ∈ (0...(𝑃 − 1)))
73 eleq1 2816 . . . . 5 (𝑆 = 𝑅 → (𝑆 ∈ (0...(𝑃 − 1)) ↔ 𝑅 ∈ (0...(𝑃 − 1))))
7472, 73imbitrrid 246 . . . 4 (𝑆 = 𝑅 → (𝑅 ∈ (1...(𝑃 − 1)) → 𝑆 ∈ (0...(𝑃 − 1))))
75 oveq2 7395 . . . . . . 7 (𝑆 = 𝑅 → (𝐴 · 𝑆) = (𝐴 · 𝑅))
7675oveq1d 7402 . . . . . 6 (𝑆 = 𝑅 → ((𝐴 · 𝑆) − 1) = ((𝐴 · 𝑅) − 1))
7776breq2d 5119 . . . . 5 (𝑆 = 𝑅 → (𝑃 ∥ ((𝐴 · 𝑆) − 1) ↔ 𝑃 ∥ ((𝐴 · 𝑅) − 1)))
7877biimprd 248 . . . 4 (𝑆 = 𝑅 → (𝑃 ∥ ((𝐴 · 𝑅) − 1) → 𝑃 ∥ ((𝐴 · 𝑆) − 1)))
7974, 78anim12d 609 . . 3 (𝑆 = 𝑅 → ((𝑅 ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑅) − 1)) → (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))))
8012, 79syl5com 31 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑆 = 𝑅 → (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))))
8170, 80impbid 212 1 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1)) ↔ 𝑆 = 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5107  cfv 6511  (class class class)co 7387  cr 11067  0cc0 11068  1c1 11069   · cmul 11073   < clt 11208  cle 11209  cmin 11405  cn 12186  2c2 12241  0cn0 12442  cz 12529  cuz 12793  +crp 12951  ...cfz 13468   mod cmo 13831  cexp 14026  cdvds 16222   gcd cgcd 16464  cprime 16641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-gcd 16465  df-prm 16642  df-phi 16736
This theorem is referenced by:  prmdivdiv  16757  modprminveq  16771  wilthlem1  26978  wilthlem2  26979
  Copyright terms: Public domain W3C validator