![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neg1z | Structured version Visualization version GIF version |
Description: -1 is an integer. (Contributed by David A. Wheeler, 5-Dec-2018.) |
Ref | Expression |
---|---|
neg1z | ⊢ -1 ∈ ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn 11326 | . 2 ⊢ 1 ∈ ℕ | |
2 | nnnegz 11668 | . 2 ⊢ (1 ∈ ℕ → -1 ∈ ℤ) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ -1 ∈ ℤ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2157 1c1 10226 -cneg 10558 ℕcn 11313 ℤcz 11665 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 ax-resscn 10282 ax-1cn 10283 ax-icn 10284 ax-addcl 10285 ax-addrcl 10286 ax-mulcl 10287 ax-mulrcl 10288 ax-mulcom 10289 ax-addass 10290 ax-mulass 10291 ax-distr 10292 ax-i2m1 10293 ax-1ne0 10294 ax-1rid 10295 ax-rnegex 10296 ax-rrecex 10297 ax-cnre 10298 ax-pre-lttri 10299 ax-pre-lttrn 10300 ax-pre-ltadd 10301 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-pss 3786 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-tp 4374 df-op 4376 df-uni 4630 df-iun 4713 df-br 4845 df-opab 4907 df-mpt 4924 df-tr 4947 df-id 5221 df-eprel 5226 df-po 5234 df-so 5235 df-fr 5272 df-we 5274 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-pred 5899 df-ord 5945 df-on 5946 df-lim 5947 df-suc 5948 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 df-fv 6110 df-riota 6840 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-om 7301 df-wrecs 7646 df-recs 7708 df-rdg 7746 df-er 7983 df-en 8197 df-dom 8198 df-sdom 8199 df-pnf 10366 df-mnf 10367 df-ltxr 10369 df-sub 10559 df-neg 10560 df-nn 11314 df-z 11666 |
This theorem is referenced by: modsumfzodifsn 12997 m1expcl 13136 risefall0lem 15092 binomfallfaclem2 15106 nthruz 15317 n2dvdsm1 15440 bitsfzo 15491 bezoutlem1 15590 pythagtriplem4 15856 odinv 18290 zrhpsgnmhm 20250 zrhpsgnelbas 20261 m2detleiblem1 20755 clmneg1 23208 plyeq0lem 24306 aaliou3lem2 24438 dvradcnv 24515 efif1olem2 24630 ang180lem3 24892 wilthimp 25149 muf 25217 ppiub 25280 lgslem2 25374 lgsfcl2 25379 lgsval2lem 25383 lgsdir2lem3 25403 lgsdir2lem4 25404 gausslemma2dlem5a 25446 gausslemma2dlem7 25449 gausslemma2d 25450 lgseisenlem2 25452 lgseisenlem4 25454 m1lgs 25464 2sqlem11 25505 2sqblem 25507 ostth3 25678 archirngz 30258 mdetpmtr1 30404 mdetpmtr12 30406 qqhval2lem 30540 bcneg1 32135 mzpsubmpt 38087 rmxm1 38279 rmym1 38280 dvradcnv2 39323 binomcxplemnotnn0 39332 cosnegpi 40817 fourierdlem24 41086 fmtnoprmfac1lem 42253 2pwp1prm 42280 lighneallem4b 42303 lighneallem4 42304 modexp2m1d 42306 41prothprmlem2 42312 |
Copyright terms: Public domain | W3C validator |