| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neg1z | Structured version Visualization version GIF version | ||
| Description: -1 is an integer. (Contributed by David A. Wheeler, 5-Dec-2018.) |
| Ref | Expression |
|---|---|
| neg1z | ⊢ -1 ∈ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 12249 | . 2 ⊢ 1 ∈ ℕ | |
| 2 | nnnegz 12589 | . 2 ⊢ (1 ∈ ℕ → -1 ∈ ℤ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ -1 ∈ ℤ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 1c1 11128 -cneg 11465 ℕcn 12238 ℤcz 12586 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-ltxr 11272 df-sub 11466 df-neg 11467 df-nn 12239 df-z 12587 |
| This theorem is referenced by: modsumfzodifsn 13960 m1expcl 14102 risefall0lem 16040 binomfallfaclem2 16054 nthruz 16269 n2dvdsm1 16386 bitsfzo 16452 bezoutlem1 16556 pythagtriplem4 16837 odinv 19540 zrhpsgnmhm 21542 zrhpsgnelbas 21552 m2detleiblem1 22560 clmneg1 25031 plyeq0lem 26165 aaliou3lem2 26301 dvradcnv 26380 efif1olem2 26502 ang180lem3 26771 wilthimp 27032 muf 27100 ppiub 27165 lgslem2 27259 lgsfcl2 27264 lgsval2lem 27268 lgsdir2lem3 27288 lgsdir2lem4 27289 gausslemma2dlem5a 27331 gausslemma2dlem7 27334 gausslemma2d 27335 lgseisenlem2 27337 lgseisenlem4 27339 m1lgs 27349 2sqlem11 27390 2sqblem 27392 ostth3 27599 archirngz 33133 cos9thpiminplylem2 33763 mdetpmtr1 33800 mdetpmtr12 33802 qqhval2lem 33958 bcneg1 35699 mzpsubmpt 42713 rmxm1 42905 rmym1 42906 dvradcnv2 44319 binomcxplemnotnn0 44328 cosnegpi 45844 fourierdlem24 46108 fmtnoprmfac1lem 47526 2pwp1prm 47551 lighneallem4b 47571 lighneallem4 47572 modexp2m1d 47574 41prothprmlem2 47580 |
| Copyright terms: Public domain | W3C validator |