| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neg1z | Structured version Visualization version GIF version | ||
| Description: -1 is an integer. (Contributed by David A. Wheeler, 5-Dec-2018.) |
| Ref | Expression |
|---|---|
| neg1z | ⊢ -1 ∈ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 12197 | . 2 ⊢ 1 ∈ ℕ | |
| 2 | nnnegz 12532 | . 2 ⊢ (1 ∈ ℕ → -1 ∈ ℤ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ -1 ∈ ℤ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 1c1 11069 -cneg 11406 ℕcn 12186 ℤcz 12529 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 df-sub 11407 df-neg 11408 df-nn 12187 df-z 12530 |
| This theorem is referenced by: modsumfzodifsn 13909 m1expcl 14051 risefall0lem 15992 binomfallfaclem2 16006 nthruz 16221 n2dvdsm1 16339 bitsfzo 16405 bezoutlem1 16509 pythagtriplem4 16790 odinv 19491 zrhpsgnmhm 21493 zrhpsgnelbas 21503 m2detleiblem1 22511 clmneg1 24982 plyeq0lem 26115 aaliou3lem2 26251 dvradcnv 26330 efif1olem2 26452 ang180lem3 26721 wilthimp 26982 muf 27050 ppiub 27115 lgslem2 27209 lgsfcl2 27214 lgsval2lem 27218 lgsdir2lem3 27238 lgsdir2lem4 27239 gausslemma2dlem5a 27281 gausslemma2dlem7 27284 gausslemma2d 27285 lgseisenlem2 27287 lgseisenlem4 27289 m1lgs 27299 2sqlem11 27340 2sqblem 27342 ostth3 27549 archirngz 33143 cos9thpiminplylem2 33773 mdetpmtr1 33813 mdetpmtr12 33815 qqhval2lem 33971 bcneg1 35723 mzpsubmpt 42731 rmxm1 42923 rmym1 42924 dvradcnv2 44336 binomcxplemnotnn0 44345 cosnegpi 45865 fourierdlem24 46129 fmtnoprmfac1lem 47565 2pwp1prm 47590 lighneallem4b 47610 lighneallem4 47611 modexp2m1d 47613 41prothprmlem2 47619 |
| Copyright terms: Public domain | W3C validator |