![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neg1z | Structured version Visualization version GIF version |
Description: -1 is an integer. (Contributed by David A. Wheeler, 5-Dec-2018.) |
Ref | Expression |
---|---|
neg1z | ⊢ -1 ∈ ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn 12274 | . 2 ⊢ 1 ∈ ℕ | |
2 | nnnegz 12613 | . 2 ⊢ (1 ∈ ℕ → -1 ∈ ℤ) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ -1 ∈ ℤ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 1c1 11153 -cneg 11490 ℕcn 12263 ℤcz 12610 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-ltxr 11297 df-sub 11491 df-neg 11492 df-nn 12264 df-z 12611 |
This theorem is referenced by: modsumfzodifsn 13981 m1expcl 14123 risefall0lem 16058 binomfallfaclem2 16072 nthruz 16285 n2dvdsm1 16402 bitsfzo 16468 bezoutlem1 16572 pythagtriplem4 16852 odinv 19593 zrhpsgnmhm 21619 zrhpsgnelbas 21629 m2detleiblem1 22645 clmneg1 25128 plyeq0lem 26263 aaliou3lem2 26399 dvradcnv 26478 efif1olem2 26599 ang180lem3 26868 wilthimp 27129 muf 27197 ppiub 27262 lgslem2 27356 lgsfcl2 27361 lgsval2lem 27365 lgsdir2lem3 27385 lgsdir2lem4 27386 gausslemma2dlem5a 27428 gausslemma2dlem7 27431 gausslemma2d 27432 lgseisenlem2 27434 lgseisenlem4 27436 m1lgs 27446 2sqlem11 27487 2sqblem 27489 ostth3 27696 archirngz 33178 mdetpmtr1 33783 mdetpmtr12 33785 qqhval2lem 33943 bcneg1 35715 mzpsubmpt 42730 rmxm1 42922 rmym1 42923 dvradcnv2 44342 binomcxplemnotnn0 44351 cosnegpi 45822 fourierdlem24 46086 fmtnoprmfac1lem 47488 2pwp1prm 47513 lighneallem4b 47533 lighneallem4 47534 modexp2m1d 47536 41prothprmlem2 47542 |
Copyright terms: Public domain | W3C validator |