Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neg1z | Structured version Visualization version GIF version |
Description: -1 is an integer. (Contributed by David A. Wheeler, 5-Dec-2018.) |
Ref | Expression |
---|---|
neg1z | ⊢ -1 ∈ ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn 11914 | . 2 ⊢ 1 ∈ ℕ | |
2 | nnnegz 12252 | . 2 ⊢ (1 ∈ ℕ → -1 ∈ ℤ) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ -1 ∈ ℤ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 1c1 10803 -cneg 11136 ℕcn 11903 ℤcz 12249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-sub 11137 df-neg 11138 df-nn 11904 df-z 12250 |
This theorem is referenced by: modsumfzodifsn 13592 m1expcl 13733 risefall0lem 15664 binomfallfaclem2 15678 nthruz 15890 n2dvdsm1 16006 bitsfzo 16070 bezoutlem1 16175 pythagtriplem4 16448 odinv 19083 zrhpsgnmhm 20701 zrhpsgnelbas 20711 m2detleiblem1 21681 clmneg1 24151 plyeq0lem 25276 aaliou3lem2 25408 dvradcnv 25485 efif1olem2 25604 ang180lem3 25866 wilthimp 26126 muf 26194 ppiub 26257 lgslem2 26351 lgsfcl2 26356 lgsval2lem 26360 lgsdir2lem3 26380 lgsdir2lem4 26381 gausslemma2dlem5a 26423 gausslemma2dlem7 26426 gausslemma2d 26427 lgseisenlem2 26429 lgseisenlem4 26431 m1lgs 26441 2sqlem11 26482 2sqblem 26484 ostth3 26691 archirngz 31345 mdetpmtr1 31675 mdetpmtr12 31677 qqhval2lem 31831 bcneg1 33608 mzpsubmpt 40481 rmxm1 40672 rmym1 40673 dvradcnv2 41854 binomcxplemnotnn0 41863 cosnegpi 43298 fourierdlem24 43562 fmtnoprmfac1lem 44904 2pwp1prm 44929 lighneallem4b 44949 lighneallem4 44950 modexp2m1d 44952 41prothprmlem2 44958 |
Copyright terms: Public domain | W3C validator |