MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neg1z Structured version   Visualization version   GIF version

Theorem neg1z 12626
Description: -1 is an integer. (Contributed by David A. Wheeler, 5-Dec-2018.)
Assertion
Ref Expression
neg1z -1 ∈ ℤ

Proof of Theorem neg1z
StepHypRef Expression
1 1nn 12249 . 2 1 ∈ ℕ
2 nnnegz 12589 . 2 (1 ∈ ℕ → -1 ∈ ℤ)
31, 2ax-mp 5 1 -1 ∈ ℤ
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  1c1 11128  -cneg 11465  cn 12238  cz 12586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11269  df-mnf 11270  df-ltxr 11272  df-sub 11466  df-neg 11467  df-nn 12239  df-z 12587
This theorem is referenced by:  modsumfzodifsn  13960  m1expcl  14102  risefall0lem  16040  binomfallfaclem2  16054  nthruz  16269  n2dvdsm1  16386  bitsfzo  16452  bezoutlem1  16556  pythagtriplem4  16837  odinv  19540  zrhpsgnmhm  21542  zrhpsgnelbas  21552  m2detleiblem1  22560  clmneg1  25031  plyeq0lem  26165  aaliou3lem2  26301  dvradcnv  26380  efif1olem2  26502  ang180lem3  26771  wilthimp  27032  muf  27100  ppiub  27165  lgslem2  27259  lgsfcl2  27264  lgsval2lem  27268  lgsdir2lem3  27288  lgsdir2lem4  27289  gausslemma2dlem5a  27331  gausslemma2dlem7  27334  gausslemma2d  27335  lgseisenlem2  27337  lgseisenlem4  27339  m1lgs  27349  2sqlem11  27390  2sqblem  27392  ostth3  27599  archirngz  33133  cos9thpiminplylem2  33763  mdetpmtr1  33800  mdetpmtr12  33802  qqhval2lem  33958  bcneg1  35699  mzpsubmpt  42713  rmxm1  42905  rmym1  42906  dvradcnv2  44319  binomcxplemnotnn0  44328  cosnegpi  45844  fourierdlem24  46108  fmtnoprmfac1lem  47526  2pwp1prm  47551  lighneallem4b  47571  lighneallem4  47572  modexp2m1d  47574  41prothprmlem2  47580
  Copyright terms: Public domain W3C validator