| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neg1z | Structured version Visualization version GIF version | ||
| Description: -1 is an integer. (Contributed by David A. Wheeler, 5-Dec-2018.) |
| Ref | Expression |
|---|---|
| neg1z | ⊢ -1 ∈ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 12173 | . 2 ⊢ 1 ∈ ℕ | |
| 2 | nnnegz 12508 | . 2 ⊢ (1 ∈ ℕ → -1 ∈ ℤ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ -1 ∈ ℤ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 1c1 11045 -cneg 11382 ℕcn 12162 ℤcz 12505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-ltxr 11189 df-sub 11383 df-neg 11384 df-nn 12163 df-z 12506 |
| This theorem is referenced by: modsumfzodifsn 13885 m1expcl 14027 risefall0lem 15968 binomfallfaclem2 15982 nthruz 16197 n2dvdsm1 16315 bitsfzo 16381 bezoutlem1 16485 pythagtriplem4 16766 odinv 19467 zrhpsgnmhm 21469 zrhpsgnelbas 21479 m2detleiblem1 22487 clmneg1 24958 plyeq0lem 26091 aaliou3lem2 26227 dvradcnv 26306 efif1olem2 26428 ang180lem3 26697 wilthimp 26958 muf 27026 ppiub 27091 lgslem2 27185 lgsfcl2 27190 lgsval2lem 27194 lgsdir2lem3 27214 lgsdir2lem4 27215 gausslemma2dlem5a 27257 gausslemma2dlem7 27260 gausslemma2d 27261 lgseisenlem2 27263 lgseisenlem4 27265 m1lgs 27275 2sqlem11 27316 2sqblem 27318 ostth3 27525 archirngz 33116 cos9thpiminplylem2 33746 mdetpmtr1 33786 mdetpmtr12 33788 qqhval2lem 33944 bcneg1 35696 mzpsubmpt 42704 rmxm1 42896 rmym1 42897 dvradcnv2 44309 binomcxplemnotnn0 44318 cosnegpi 45838 fourierdlem24 46102 fmtnoprmfac1lem 47538 2pwp1prm 47563 lighneallem4b 47583 lighneallem4 47584 modexp2m1d 47586 41prothprmlem2 47592 |
| Copyright terms: Public domain | W3C validator |