| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neg1z | Structured version Visualization version GIF version | ||
| Description: -1 is an integer. (Contributed by David A. Wheeler, 5-Dec-2018.) |
| Ref | Expression |
|---|---|
| neg1z | ⊢ -1 ∈ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 12136 | . 2 ⊢ 1 ∈ ℕ | |
| 2 | nnnegz 12471 | . 2 ⊢ (1 ∈ ℕ → -1 ∈ ℤ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ -1 ∈ ℤ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 1c1 11007 -cneg 11345 ℕcn 12125 ℤcz 12468 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-ltxr 11151 df-sub 11346 df-neg 11347 df-nn 12126 df-z 12469 |
| This theorem is referenced by: modsumfzodifsn 13851 m1expcl 13993 risefall0lem 15933 binomfallfaclem2 15947 nthruz 16162 n2dvdsm1 16280 bitsfzo 16346 bezoutlem1 16450 pythagtriplem4 16731 odinv 19473 zrhpsgnmhm 21521 zrhpsgnelbas 21531 m2detleiblem1 22539 clmneg1 25009 plyeq0lem 26142 aaliou3lem2 26278 dvradcnv 26357 efif1olem2 26479 ang180lem3 26748 wilthimp 27009 muf 27077 ppiub 27142 lgslem2 27236 lgsfcl2 27241 lgsval2lem 27245 lgsdir2lem3 27265 lgsdir2lem4 27266 gausslemma2dlem5a 27308 gausslemma2dlem7 27311 gausslemma2d 27312 lgseisenlem2 27314 lgseisenlem4 27316 m1lgs 27326 2sqlem11 27367 2sqblem 27369 ostth3 27576 archirngz 33158 cos9thpiminplylem2 33796 mdetpmtr1 33836 mdetpmtr12 33838 qqhval2lem 33994 bcneg1 35780 mzpsubmpt 42784 rmxm1 42975 rmym1 42976 dvradcnv2 44388 binomcxplemnotnn0 44397 cosnegpi 45913 fourierdlem24 46177 fmtnoprmfac1lem 47603 2pwp1prm 47628 lighneallem4b 47648 lighneallem4 47649 modexp2m1d 47651 41prothprmlem2 47657 |
| Copyright terms: Public domain | W3C validator |