| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neg1z | Structured version Visualization version GIF version | ||
| Description: -1 is an integer. (Contributed by David A. Wheeler, 5-Dec-2018.) |
| Ref | Expression |
|---|---|
| neg1z | ⊢ -1 ∈ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 12204 | . 2 ⊢ 1 ∈ ℕ | |
| 2 | nnnegz 12539 | . 2 ⊢ (1 ∈ ℕ → -1 ∈ ℤ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ -1 ∈ ℤ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 1c1 11076 -cneg 11413 ℕcn 12193 ℤcz 12536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 df-sub 11414 df-neg 11415 df-nn 12194 df-z 12537 |
| This theorem is referenced by: modsumfzodifsn 13916 m1expcl 14058 risefall0lem 15999 binomfallfaclem2 16013 nthruz 16228 n2dvdsm1 16346 bitsfzo 16412 bezoutlem1 16516 pythagtriplem4 16797 odinv 19498 zrhpsgnmhm 21500 zrhpsgnelbas 21510 m2detleiblem1 22518 clmneg1 24989 plyeq0lem 26122 aaliou3lem2 26258 dvradcnv 26337 efif1olem2 26459 ang180lem3 26728 wilthimp 26989 muf 27057 ppiub 27122 lgslem2 27216 lgsfcl2 27221 lgsval2lem 27225 lgsdir2lem3 27245 lgsdir2lem4 27246 gausslemma2dlem5a 27288 gausslemma2dlem7 27291 gausslemma2d 27292 lgseisenlem2 27294 lgseisenlem4 27296 m1lgs 27306 2sqlem11 27347 2sqblem 27349 ostth3 27556 archirngz 33150 cos9thpiminplylem2 33780 mdetpmtr1 33820 mdetpmtr12 33822 qqhval2lem 33978 bcneg1 35730 mzpsubmpt 42738 rmxm1 42930 rmym1 42931 dvradcnv2 44343 binomcxplemnotnn0 44352 cosnegpi 45872 fourierdlem24 46136 fmtnoprmfac1lem 47569 2pwp1prm 47594 lighneallem4b 47614 lighneallem4 47615 modexp2m1d 47617 41prothprmlem2 47623 |
| Copyright terms: Public domain | W3C validator |