| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neg1z | Structured version Visualization version GIF version | ||
| Description: -1 is an integer. (Contributed by David A. Wheeler, 5-Dec-2018.) |
| Ref | Expression |
|---|---|
| neg1z | ⊢ -1 ∈ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 12139 | . 2 ⊢ 1 ∈ ℕ | |
| 2 | nnnegz 12474 | . 2 ⊢ (1 ∈ ℕ → -1 ∈ ℤ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ -1 ∈ ℤ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 1c1 11010 -cneg 11348 ℕcn 12128 ℤcz 12471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-ltxr 11154 df-sub 11349 df-neg 11350 df-nn 12129 df-z 12472 |
| This theorem is referenced by: modsumfzodifsn 13851 m1expcl 13993 risefall0lem 15933 binomfallfaclem2 15947 nthruz 16162 n2dvdsm1 16280 bitsfzo 16346 bezoutlem1 16450 pythagtriplem4 16731 odinv 19440 zrhpsgnmhm 21491 zrhpsgnelbas 21501 m2detleiblem1 22509 clmneg1 24980 plyeq0lem 26113 aaliou3lem2 26249 dvradcnv 26328 efif1olem2 26450 ang180lem3 26719 wilthimp 26980 muf 27048 ppiub 27113 lgslem2 27207 lgsfcl2 27212 lgsval2lem 27216 lgsdir2lem3 27236 lgsdir2lem4 27237 gausslemma2dlem5a 27279 gausslemma2dlem7 27282 gausslemma2d 27283 lgseisenlem2 27285 lgseisenlem4 27287 m1lgs 27297 2sqlem11 27338 2sqblem 27340 ostth3 27547 archirngz 33131 cos9thpiminplylem2 33750 mdetpmtr1 33790 mdetpmtr12 33792 qqhval2lem 33948 bcneg1 35709 mzpsubmpt 42716 rmxm1 42907 rmym1 42908 dvradcnv2 44320 binomcxplemnotnn0 44329 cosnegpi 45848 fourierdlem24 46112 fmtnoprmfac1lem 47548 2pwp1prm 47573 lighneallem4b 47593 lighneallem4 47594 modexp2m1d 47596 41prothprmlem2 47602 |
| Copyright terms: Public domain | W3C validator |