![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neg1z | Structured version Visualization version GIF version |
Description: -1 is an integer. (Contributed by David A. Wheeler, 5-Dec-2018.) |
Ref | Expression |
---|---|
neg1z | ⊢ -1 ∈ ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn 12248 | . 2 ⊢ 1 ∈ ℕ | |
2 | nnnegz 12586 | . 2 ⊢ (1 ∈ ℕ → -1 ∈ ℤ) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ -1 ∈ ℤ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2099 1c1 11134 -cneg 11470 ℕcn 12237 ℤcz 12583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7866 df-2nd 7989 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 df-er 8719 df-en 8959 df-dom 8960 df-sdom 8961 df-pnf 11275 df-mnf 11276 df-ltxr 11278 df-sub 11471 df-neg 11472 df-nn 12238 df-z 12584 |
This theorem is referenced by: modsumfzodifsn 13936 m1expcl 14078 risefall0lem 15997 binomfallfaclem2 16011 nthruz 16224 n2dvdsm1 16340 bitsfzo 16404 bezoutlem1 16509 pythagtriplem4 16782 odinv 19510 zrhpsgnmhm 21510 zrhpsgnelbas 21520 m2detleiblem1 22520 clmneg1 25003 plyeq0lem 26138 aaliou3lem2 26272 dvradcnv 26351 efif1olem2 26471 ang180lem3 26737 wilthimp 26998 muf 27066 ppiub 27131 lgslem2 27225 lgsfcl2 27230 lgsval2lem 27234 lgsdir2lem3 27254 lgsdir2lem4 27255 gausslemma2dlem5a 27297 gausslemma2dlem7 27300 gausslemma2d 27301 lgseisenlem2 27303 lgseisenlem4 27305 m1lgs 27315 2sqlem11 27356 2sqblem 27358 ostth3 27565 archirngz 32892 mdetpmtr1 33419 mdetpmtr12 33421 qqhval2lem 33577 bcneg1 35325 mzpsubmpt 42154 rmxm1 42346 rmym1 42347 dvradcnv2 43775 binomcxplemnotnn0 43784 cosnegpi 45246 fourierdlem24 45510 fmtnoprmfac1lem 46895 2pwp1prm 46920 lighneallem4b 46940 lighneallem4 46941 modexp2m1d 46943 41prothprmlem2 46949 |
Copyright terms: Public domain | W3C validator |