![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > padicval | Structured version Visualization version GIF version |
Description: Value of the p-adic absolute value. (Contributed by Mario Carneiro, 8-Sep-2014.) |
Ref | Expression |
---|---|
padicval.j | ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) |
Ref | Expression |
---|---|
padicval | ⊢ ((𝑃 ∈ ℙ ∧ 𝑋 ∈ ℚ) → ((𝐽‘𝑃)‘𝑋) = if(𝑋 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑋)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | padicval.j | . . . 4 ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) | |
2 | 1 | padicfval 25761 | . . 3 ⊢ (𝑃 ∈ ℙ → (𝐽‘𝑃) = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑥))))) |
3 | 2 | fveq1d 6450 | . 2 ⊢ (𝑃 ∈ ℙ → ((𝐽‘𝑃)‘𝑋) = ((𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑥))))‘𝑋)) |
4 | eqeq1 2782 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 = 0 ↔ 𝑋 = 0)) | |
5 | oveq2 6932 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑃 pCnt 𝑥) = (𝑃 pCnt 𝑋)) | |
6 | 5 | negeqd 10618 | . . . . 5 ⊢ (𝑥 = 𝑋 → -(𝑃 pCnt 𝑥) = -(𝑃 pCnt 𝑋)) |
7 | 6 | oveq2d 6940 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑃↑-(𝑃 pCnt 𝑥)) = (𝑃↑-(𝑃 pCnt 𝑋))) |
8 | 4, 7 | ifbieq2d 4332 | . . 3 ⊢ (𝑥 = 𝑋 → if(𝑥 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑥))) = if(𝑋 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑋)))) |
9 | eqid 2778 | . . 3 ⊢ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑥)))) = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑥)))) | |
10 | c0ex 10372 | . . . 4 ⊢ 0 ∈ V | |
11 | ovex 6956 | . . . 4 ⊢ (𝑃↑-(𝑃 pCnt 𝑋)) ∈ V | |
12 | 10, 11 | ifex 4355 | . . 3 ⊢ if(𝑋 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑋))) ∈ V |
13 | 8, 9, 12 | fvmpt 6544 | . 2 ⊢ (𝑋 ∈ ℚ → ((𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑥))))‘𝑋) = if(𝑋 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑋)))) |
14 | 3, 13 | sylan9eq 2834 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝑋 ∈ ℚ) → ((𝐽‘𝑃)‘𝑋) = if(𝑋 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑋)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ifcif 4307 ↦ cmpt 4967 ‘cfv 6137 (class class class)co 6924 0cc0 10274 -cneg 10609 ℚcq 12099 ↑cexp 13182 ℙcprime 15794 pCnt cpc 15949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-1st 7447 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-er 8028 df-en 8244 df-dom 8245 df-sdom 8246 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-div 11035 df-nn 11379 df-z 11733 df-q 12100 |
This theorem is referenced by: padicabvcxp 25777 ostth3 25783 |
Copyright terms: Public domain | W3C validator |