MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  padicval Structured version   Visualization version   GIF version

Theorem padicval 26180
Description: Value of the p-adic absolute value. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypothesis
Ref Expression
padicval.j 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
Assertion
Ref Expression
padicval ((𝑃 ∈ ℙ ∧ 𝑋 ∈ ℚ) → ((𝐽𝑃)‘𝑋) = if(𝑋 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑋))))
Distinct variable groups:   𝑥,𝑞,𝑃   𝑥,𝑋
Allowed substitution hints:   𝐽(𝑥,𝑞)   𝑋(𝑞)

Proof of Theorem padicval
StepHypRef Expression
1 padicval.j . . . 4 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
21padicfval 26179 . . 3 (𝑃 ∈ ℙ → (𝐽𝑃) = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑥)))))
32fveq1d 6645 . 2 (𝑃 ∈ ℙ → ((𝐽𝑃)‘𝑋) = ((𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑥))))‘𝑋))
4 eqeq1 2825 . . . 4 (𝑥 = 𝑋 → (𝑥 = 0 ↔ 𝑋 = 0))
5 oveq2 7138 . . . . . 6 (𝑥 = 𝑋 → (𝑃 pCnt 𝑥) = (𝑃 pCnt 𝑋))
65negeqd 10857 . . . . 5 (𝑥 = 𝑋 → -(𝑃 pCnt 𝑥) = -(𝑃 pCnt 𝑋))
76oveq2d 7146 . . . 4 (𝑥 = 𝑋 → (𝑃↑-(𝑃 pCnt 𝑥)) = (𝑃↑-(𝑃 pCnt 𝑋)))
84, 7ifbieq2d 4465 . . 3 (𝑥 = 𝑋 → if(𝑥 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑥))) = if(𝑋 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑋))))
9 eqid 2821 . . 3 (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑥)))) = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑥))))
10 c0ex 10612 . . . 4 0 ∈ V
11 ovex 7163 . . . 4 (𝑃↑-(𝑃 pCnt 𝑋)) ∈ V
1210, 11ifex 4488 . . 3 if(𝑋 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑋))) ∈ V
138, 9, 12fvmpt 6741 . 2 (𝑋 ∈ ℚ → ((𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑥))))‘𝑋) = if(𝑋 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑋))))
143, 13sylan9eq 2876 1 ((𝑃 ∈ ℙ ∧ 𝑋 ∈ ℚ) → ((𝐽𝑃)‘𝑋) = if(𝑋 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  ifcif 4440  cmpt 5119  cfv 6328  (class class class)co 7130  0cc0 10514  -cneg 10848  cq 12326  cexp 13413  cprime 15992   pCnt cpc 16150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-1st 7664  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-er 8264  df-en 8485  df-dom 8486  df-sdom 8487  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-div 11275  df-nn 11616  df-z 11960  df-q 12327
This theorem is referenced by:  padicabvcxp  26195  ostth3  26201
  Copyright terms: Public domain W3C validator