| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pntibndlem2a | Structured version Visualization version GIF version | ||
| Description: Lemma for pntibndlem2 27518. (Contributed by Mario Carneiro, 7-Jun-2016.) |
| Ref | Expression |
|---|---|
| pntibnd.r | ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) |
| pntibndlem1.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| pntibndlem1.l | ⊢ 𝐿 = ((1 / 4) / (𝐴 + 3)) |
| pntibndlem3.2 | ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅‘𝑥) / 𝑥)) ≤ 𝐴) |
| pntibndlem3.3 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
| pntibndlem3.k | ⊢ 𝐾 = (exp‘(𝐵 / (𝐸 / 2))) |
| pntibndlem3.c | ⊢ 𝐶 = ((2 · 𝐵) + (log‘2)) |
| pntibndlem3.4 | ⊢ (𝜑 → 𝐸 ∈ (0(,)1)) |
| pntibndlem3.6 | ⊢ (𝜑 → 𝑍 ∈ ℝ+) |
| pntibndlem2.10 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| Ref | Expression |
|---|---|
| pntibndlem2a | ⊢ ((𝜑 ∧ 𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑢 ∈ ℝ ∧ 𝑁 ≤ 𝑢 ∧ 𝑢 ≤ ((1 + (𝐿 · 𝐸)) · 𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pntibndlem2.10 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 2 | 1 | nnred 12161 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 3 | 1red 11135 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℝ) | |
| 4 | ioossre 13328 | . . . . . . 7 ⊢ (0(,)1) ⊆ ℝ | |
| 5 | pntibnd.r | . . . . . . . 8 ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) | |
| 6 | pntibndlem1.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 7 | pntibndlem1.l | . . . . . . . 8 ⊢ 𝐿 = ((1 / 4) / (𝐴 + 3)) | |
| 8 | 5, 6, 7 | pntibndlem1 27516 | . . . . . . 7 ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) |
| 9 | 4, 8 | sselid 3935 | . . . . . 6 ⊢ (𝜑 → 𝐿 ∈ ℝ) |
| 10 | pntibndlem3.4 | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ (0(,)1)) | |
| 11 | 4, 10 | sselid 3935 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ ℝ) |
| 12 | 9, 11 | remulcld 11164 | . . . . 5 ⊢ (𝜑 → (𝐿 · 𝐸) ∈ ℝ) |
| 13 | 3, 12 | readdcld 11163 | . . . 4 ⊢ (𝜑 → (1 + (𝐿 · 𝐸)) ∈ ℝ) |
| 14 | 13, 2 | remulcld 11164 | . . 3 ⊢ (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑁) ∈ ℝ) |
| 15 | elicc2 13332 | . . 3 ⊢ ((𝑁 ∈ ℝ ∧ ((1 + (𝐿 · 𝐸)) · 𝑁) ∈ ℝ) → (𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁)) ↔ (𝑢 ∈ ℝ ∧ 𝑁 ≤ 𝑢 ∧ 𝑢 ≤ ((1 + (𝐿 · 𝐸)) · 𝑁)))) | |
| 16 | 2, 14, 15 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁)) ↔ (𝑢 ∈ ℝ ∧ 𝑁 ≤ 𝑢 ∧ 𝑢 ≤ ((1 + (𝐿 · 𝐸)) · 𝑁)))) |
| 17 | 16 | biimpa 476 | 1 ⊢ ((𝜑 ∧ 𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑢 ∈ ℝ ∧ 𝑁 ≤ 𝑢 ∧ 𝑢 ≤ ((1 + (𝐿 · 𝐸)) · 𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 class class class wbr 5095 ↦ cmpt 5176 ‘cfv 6486 (class class class)co 7353 ℝcr 11027 0cc0 11028 1c1 11029 + caddc 11031 · cmul 11033 ≤ cle 11169 − cmin 11365 / cdiv 11795 ℕcn 12146 2c2 12201 3c3 12202 4c4 12203 ℝ+crp 12911 (,)cioo 13266 [,]cicc 13269 abscabs 15159 expce 15986 logclog 26479 ψcchp 27019 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-rp 12912 df-ioo 13270 df-icc 13273 |
| This theorem is referenced by: pntibndlem2 27518 |
| Copyright terms: Public domain | W3C validator |