| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pntibndlem2a | Structured version Visualization version GIF version | ||
| Description: Lemma for pntibndlem2 27552. (Contributed by Mario Carneiro, 7-Jun-2016.) |
| Ref | Expression |
|---|---|
| pntibnd.r | ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) |
| pntibndlem1.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| pntibndlem1.l | ⊢ 𝐿 = ((1 / 4) / (𝐴 + 3)) |
| pntibndlem3.2 | ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅‘𝑥) / 𝑥)) ≤ 𝐴) |
| pntibndlem3.3 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
| pntibndlem3.k | ⊢ 𝐾 = (exp‘(𝐵 / (𝐸 / 2))) |
| pntibndlem3.c | ⊢ 𝐶 = ((2 · 𝐵) + (log‘2)) |
| pntibndlem3.4 | ⊢ (𝜑 → 𝐸 ∈ (0(,)1)) |
| pntibndlem3.6 | ⊢ (𝜑 → 𝑍 ∈ ℝ+) |
| pntibndlem2.10 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| Ref | Expression |
|---|---|
| pntibndlem2a | ⊢ ((𝜑 ∧ 𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑢 ∈ ℝ ∧ 𝑁 ≤ 𝑢 ∧ 𝑢 ≤ ((1 + (𝐿 · 𝐸)) · 𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pntibndlem2.10 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 2 | 1 | nnred 12253 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 3 | 1red 11234 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℝ) | |
| 4 | ioossre 13422 | . . . . . . 7 ⊢ (0(,)1) ⊆ ℝ | |
| 5 | pntibnd.r | . . . . . . . 8 ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) | |
| 6 | pntibndlem1.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 7 | pntibndlem1.l | . . . . . . . 8 ⊢ 𝐿 = ((1 / 4) / (𝐴 + 3)) | |
| 8 | 5, 6, 7 | pntibndlem1 27550 | . . . . . . 7 ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) |
| 9 | 4, 8 | sselid 3956 | . . . . . 6 ⊢ (𝜑 → 𝐿 ∈ ℝ) |
| 10 | pntibndlem3.4 | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ (0(,)1)) | |
| 11 | 4, 10 | sselid 3956 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ ℝ) |
| 12 | 9, 11 | remulcld 11263 | . . . . 5 ⊢ (𝜑 → (𝐿 · 𝐸) ∈ ℝ) |
| 13 | 3, 12 | readdcld 11262 | . . . 4 ⊢ (𝜑 → (1 + (𝐿 · 𝐸)) ∈ ℝ) |
| 14 | 13, 2 | remulcld 11263 | . . 3 ⊢ (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑁) ∈ ℝ) |
| 15 | elicc2 13426 | . . 3 ⊢ ((𝑁 ∈ ℝ ∧ ((1 + (𝐿 · 𝐸)) · 𝑁) ∈ ℝ) → (𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁)) ↔ (𝑢 ∈ ℝ ∧ 𝑁 ≤ 𝑢 ∧ 𝑢 ≤ ((1 + (𝐿 · 𝐸)) · 𝑁)))) | |
| 16 | 2, 14, 15 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁)) ↔ (𝑢 ∈ ℝ ∧ 𝑁 ≤ 𝑢 ∧ 𝑢 ≤ ((1 + (𝐿 · 𝐸)) · 𝑁)))) |
| 17 | 16 | biimpa 476 | 1 ⊢ ((𝜑 ∧ 𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑢 ∈ ℝ ∧ 𝑁 ≤ 𝑢 ∧ 𝑢 ≤ ((1 + (𝐿 · 𝐸)) · 𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∀wral 3051 class class class wbr 5119 ↦ cmpt 5201 ‘cfv 6530 (class class class)co 7403 ℝcr 11126 0cc0 11127 1c1 11128 + caddc 11130 · cmul 11132 ≤ cle 11268 − cmin 11464 / cdiv 11892 ℕcn 12238 2c2 12293 3c3 12294 4c4 12295 ℝ+crp 13006 (,)cioo 13360 [,]cicc 13363 abscabs 15251 expce 16075 logclog 26513 ψcchp 27053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-rp 13007 df-ioo 13364 df-icc 13367 |
| This theorem is referenced by: pntibndlem2 27552 |
| Copyright terms: Public domain | W3C validator |