MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntibndlem2a Structured version   Visualization version   GIF version

Theorem pntibndlem2a 27634
Description: Lemma for pntibndlem2 27635. (Contributed by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
pntibnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntibndlem1.1 (𝜑𝐴 ∈ ℝ+)
pntibndlem1.l 𝐿 = ((1 / 4) / (𝐴 + 3))
pntibndlem3.2 (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
pntibndlem3.3 (𝜑𝐵 ∈ ℝ+)
pntibndlem3.k 𝐾 = (exp‘(𝐵 / (𝐸 / 2)))
pntibndlem3.c 𝐶 = ((2 · 𝐵) + (log‘2))
pntibndlem3.4 (𝜑𝐸 ∈ (0(,)1))
pntibndlem3.6 (𝜑𝑍 ∈ ℝ+)
pntibndlem2.10 (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
pntibndlem2a ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑢 ∈ ℝ ∧ 𝑁𝑢𝑢 ≤ ((1 + (𝐿 · 𝐸)) · 𝑁)))
Distinct variable groups:   𝑢,𝑎,𝑥,𝐸   𝑢,𝐿,𝑥   𝑁,𝑎,𝑢,𝑥   𝑢,𝐴,𝑥   𝑢,𝐶,𝑥   𝑢,𝑅,𝑥   𝑢,𝑍,𝑥   𝜑,𝑢
Allowed substitution hints:   𝜑(𝑥,𝑎)   𝐴(𝑎)   𝐵(𝑥,𝑢,𝑎)   𝐶(𝑎)   𝑅(𝑎)   𝐾(𝑥,𝑢,𝑎)   𝐿(𝑎)   𝑍(𝑎)

Proof of Theorem pntibndlem2a
StepHypRef Expression
1 pntibndlem2.10 . . . 4 (𝜑𝑁 ∈ ℕ)
21nnred 12281 . . 3 (𝜑𝑁 ∈ ℝ)
3 1red 11262 . . . . 5 (𝜑 → 1 ∈ ℝ)
4 ioossre 13448 . . . . . . 7 (0(,)1) ⊆ ℝ
5 pntibnd.r . . . . . . . 8 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
6 pntibndlem1.1 . . . . . . . 8 (𝜑𝐴 ∈ ℝ+)
7 pntibndlem1.l . . . . . . . 8 𝐿 = ((1 / 4) / (𝐴 + 3))
85, 6, 7pntibndlem1 27633 . . . . . . 7 (𝜑𝐿 ∈ (0(,)1))
94, 8sselid 3981 . . . . . 6 (𝜑𝐿 ∈ ℝ)
10 pntibndlem3.4 . . . . . . 7 (𝜑𝐸 ∈ (0(,)1))
114, 10sselid 3981 . . . . . 6 (𝜑𝐸 ∈ ℝ)
129, 11remulcld 11291 . . . . 5 (𝜑 → (𝐿 · 𝐸) ∈ ℝ)
133, 12readdcld 11290 . . . 4 (𝜑 → (1 + (𝐿 · 𝐸)) ∈ ℝ)
1413, 2remulcld 11291 . . 3 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑁) ∈ ℝ)
15 elicc2 13452 . . 3 ((𝑁 ∈ ℝ ∧ ((1 + (𝐿 · 𝐸)) · 𝑁) ∈ ℝ) → (𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁)) ↔ (𝑢 ∈ ℝ ∧ 𝑁𝑢𝑢 ≤ ((1 + (𝐿 · 𝐸)) · 𝑁))))
162, 14, 15syl2anc 584 . 2 (𝜑 → (𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁)) ↔ (𝑢 ∈ ℝ ∧ 𝑁𝑢𝑢 ≤ ((1 + (𝐿 · 𝐸)) · 𝑁))))
1716biimpa 476 1 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑢 ∈ ℝ ∧ 𝑁𝑢𝑢 ≤ ((1 + (𝐿 · 𝐸)) · 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061   class class class wbr 5143  cmpt 5225  cfv 6561  (class class class)co 7431  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  cle 11296  cmin 11492   / cdiv 11920  cn 12266  2c2 12321  3c3 12322  4c4 12323  +crp 13034  (,)cioo 13387  [,]cicc 13390  abscabs 15273  expce 16097  logclog 26596  ψcchp 27136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-rp 13035  df-ioo 13391  df-icc 13394
This theorem is referenced by:  pntibndlem2  27635
  Copyright terms: Public domain W3C validator