| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pntibndlem2a | Structured version Visualization version GIF version | ||
| Description: Lemma for pntibndlem2 27530. (Contributed by Mario Carneiro, 7-Jun-2016.) |
| Ref | Expression |
|---|---|
| pntibnd.r | ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) |
| pntibndlem1.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| pntibndlem1.l | ⊢ 𝐿 = ((1 / 4) / (𝐴 + 3)) |
| pntibndlem3.2 | ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅‘𝑥) / 𝑥)) ≤ 𝐴) |
| pntibndlem3.3 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
| pntibndlem3.k | ⊢ 𝐾 = (exp‘(𝐵 / (𝐸 / 2))) |
| pntibndlem3.c | ⊢ 𝐶 = ((2 · 𝐵) + (log‘2)) |
| pntibndlem3.4 | ⊢ (𝜑 → 𝐸 ∈ (0(,)1)) |
| pntibndlem3.6 | ⊢ (𝜑 → 𝑍 ∈ ℝ+) |
| pntibndlem2.10 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| Ref | Expression |
|---|---|
| pntibndlem2a | ⊢ ((𝜑 ∧ 𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑢 ∈ ℝ ∧ 𝑁 ≤ 𝑢 ∧ 𝑢 ≤ ((1 + (𝐿 · 𝐸)) · 𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pntibndlem2.10 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 2 | 1 | nnred 12140 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 3 | 1red 11113 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℝ) | |
| 4 | ioossre 13307 | . . . . . . 7 ⊢ (0(,)1) ⊆ ℝ | |
| 5 | pntibnd.r | . . . . . . . 8 ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) | |
| 6 | pntibndlem1.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 7 | pntibndlem1.l | . . . . . . . 8 ⊢ 𝐿 = ((1 / 4) / (𝐴 + 3)) | |
| 8 | 5, 6, 7 | pntibndlem1 27528 | . . . . . . 7 ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) |
| 9 | 4, 8 | sselid 3932 | . . . . . 6 ⊢ (𝜑 → 𝐿 ∈ ℝ) |
| 10 | pntibndlem3.4 | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ (0(,)1)) | |
| 11 | 4, 10 | sselid 3932 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ ℝ) |
| 12 | 9, 11 | remulcld 11142 | . . . . 5 ⊢ (𝜑 → (𝐿 · 𝐸) ∈ ℝ) |
| 13 | 3, 12 | readdcld 11141 | . . . 4 ⊢ (𝜑 → (1 + (𝐿 · 𝐸)) ∈ ℝ) |
| 14 | 13, 2 | remulcld 11142 | . . 3 ⊢ (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑁) ∈ ℝ) |
| 15 | elicc2 13311 | . . 3 ⊢ ((𝑁 ∈ ℝ ∧ ((1 + (𝐿 · 𝐸)) · 𝑁) ∈ ℝ) → (𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁)) ↔ (𝑢 ∈ ℝ ∧ 𝑁 ≤ 𝑢 ∧ 𝑢 ≤ ((1 + (𝐿 · 𝐸)) · 𝑁)))) | |
| 16 | 2, 14, 15 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁)) ↔ (𝑢 ∈ ℝ ∧ 𝑁 ≤ 𝑢 ∧ 𝑢 ≤ ((1 + (𝐿 · 𝐸)) · 𝑁)))) |
| 17 | 16 | biimpa 476 | 1 ⊢ ((𝜑 ∧ 𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑢 ∈ ℝ ∧ 𝑁 ≤ 𝑢 ∧ 𝑢 ≤ ((1 + (𝐿 · 𝐸)) · 𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 class class class wbr 5091 ↦ cmpt 5172 ‘cfv 6481 (class class class)co 7346 ℝcr 11005 0cc0 11006 1c1 11007 + caddc 11009 · cmul 11011 ≤ cle 11147 − cmin 11344 / cdiv 11774 ℕcn 12125 2c2 12180 3c3 12181 4c4 12182 ℝ+crp 12890 (,)cioo 13245 [,]cicc 13248 abscabs 15141 expce 15968 logclog 26491 ψcchp 27031 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-rp 12891 df-ioo 13249 df-icc 13252 |
| This theorem is referenced by: pntibndlem2 27530 |
| Copyright terms: Public domain | W3C validator |