Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pntibndlem2a | Structured version Visualization version GIF version |
Description: Lemma for pntibndlem2 26739. (Contributed by Mario Carneiro, 7-Jun-2016.) |
Ref | Expression |
---|---|
pntibnd.r | ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) |
pntibndlem1.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
pntibndlem1.l | ⊢ 𝐿 = ((1 / 4) / (𝐴 + 3)) |
pntibndlem3.2 | ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅‘𝑥) / 𝑥)) ≤ 𝐴) |
pntibndlem3.3 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
pntibndlem3.k | ⊢ 𝐾 = (exp‘(𝐵 / (𝐸 / 2))) |
pntibndlem3.c | ⊢ 𝐶 = ((2 · 𝐵) + (log‘2)) |
pntibndlem3.4 | ⊢ (𝜑 → 𝐸 ∈ (0(,)1)) |
pntibndlem3.6 | ⊢ (𝜑 → 𝑍 ∈ ℝ+) |
pntibndlem2.10 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
Ref | Expression |
---|---|
pntibndlem2a | ⊢ ((𝜑 ∧ 𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑢 ∈ ℝ ∧ 𝑁 ≤ 𝑢 ∧ 𝑢 ≤ ((1 + (𝐿 · 𝐸)) · 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pntibndlem2.10 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
2 | 1 | nnred 11988 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
3 | 1red 10976 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℝ) | |
4 | ioossre 13140 | . . . . . . 7 ⊢ (0(,)1) ⊆ ℝ | |
5 | pntibnd.r | . . . . . . . 8 ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) | |
6 | pntibndlem1.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
7 | pntibndlem1.l | . . . . . . . 8 ⊢ 𝐿 = ((1 / 4) / (𝐴 + 3)) | |
8 | 5, 6, 7 | pntibndlem1 26737 | . . . . . . 7 ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) |
9 | 4, 8 | sselid 3919 | . . . . . 6 ⊢ (𝜑 → 𝐿 ∈ ℝ) |
10 | pntibndlem3.4 | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ (0(,)1)) | |
11 | 4, 10 | sselid 3919 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ ℝ) |
12 | 9, 11 | remulcld 11005 | . . . . 5 ⊢ (𝜑 → (𝐿 · 𝐸) ∈ ℝ) |
13 | 3, 12 | readdcld 11004 | . . . 4 ⊢ (𝜑 → (1 + (𝐿 · 𝐸)) ∈ ℝ) |
14 | 13, 2 | remulcld 11005 | . . 3 ⊢ (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑁) ∈ ℝ) |
15 | elicc2 13144 | . . 3 ⊢ ((𝑁 ∈ ℝ ∧ ((1 + (𝐿 · 𝐸)) · 𝑁) ∈ ℝ) → (𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁)) ↔ (𝑢 ∈ ℝ ∧ 𝑁 ≤ 𝑢 ∧ 𝑢 ≤ ((1 + (𝐿 · 𝐸)) · 𝑁)))) | |
16 | 2, 14, 15 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁)) ↔ (𝑢 ∈ ℝ ∧ 𝑁 ≤ 𝑢 ∧ 𝑢 ≤ ((1 + (𝐿 · 𝐸)) · 𝑁)))) |
17 | 16 | biimpa 477 | 1 ⊢ ((𝜑 ∧ 𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑢 ∈ ℝ ∧ 𝑁 ≤ 𝑢 ∧ 𝑢 ≤ ((1 + (𝐿 · 𝐸)) · 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 class class class wbr 5074 ↦ cmpt 5157 ‘cfv 6433 (class class class)co 7275 ℝcr 10870 0cc0 10871 1c1 10872 + caddc 10874 · cmul 10876 ≤ cle 11010 − cmin 11205 / cdiv 11632 ℕcn 11973 2c2 12028 3c3 12029 4c4 12030 ℝ+crp 12730 (,)cioo 13079 [,]cicc 13082 abscabs 14945 expce 15771 logclog 25710 ψcchp 26242 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-rp 12731 df-ioo 13083 df-icc 13086 |
This theorem is referenced by: pntibndlem2 26739 |
Copyright terms: Public domain | W3C validator |