MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntibndlem2a Structured version   Visualization version   GIF version

Theorem pntibndlem2a 27652
Description: Lemma for pntibndlem2 27653. (Contributed by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
pntibnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntibndlem1.1 (𝜑𝐴 ∈ ℝ+)
pntibndlem1.l 𝐿 = ((1 / 4) / (𝐴 + 3))
pntibndlem3.2 (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
pntibndlem3.3 (𝜑𝐵 ∈ ℝ+)
pntibndlem3.k 𝐾 = (exp‘(𝐵 / (𝐸 / 2)))
pntibndlem3.c 𝐶 = ((2 · 𝐵) + (log‘2))
pntibndlem3.4 (𝜑𝐸 ∈ (0(,)1))
pntibndlem3.6 (𝜑𝑍 ∈ ℝ+)
pntibndlem2.10 (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
pntibndlem2a ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑢 ∈ ℝ ∧ 𝑁𝑢𝑢 ≤ ((1 + (𝐿 · 𝐸)) · 𝑁)))
Distinct variable groups:   𝑢,𝑎,𝑥,𝐸   𝑢,𝐿,𝑥   𝑁,𝑎,𝑢,𝑥   𝑢,𝐴,𝑥   𝑢,𝐶,𝑥   𝑢,𝑅,𝑥   𝑢,𝑍,𝑥   𝜑,𝑢
Allowed substitution hints:   𝜑(𝑥,𝑎)   𝐴(𝑎)   𝐵(𝑥,𝑢,𝑎)   𝐶(𝑎)   𝑅(𝑎)   𝐾(𝑥,𝑢,𝑎)   𝐿(𝑎)   𝑍(𝑎)

Proof of Theorem pntibndlem2a
StepHypRef Expression
1 pntibndlem2.10 . . . 4 (𝜑𝑁 ∈ ℕ)
21nnred 12308 . . 3 (𝜑𝑁 ∈ ℝ)
3 1red 11291 . . . . 5 (𝜑 → 1 ∈ ℝ)
4 ioossre 13468 . . . . . . 7 (0(,)1) ⊆ ℝ
5 pntibnd.r . . . . . . . 8 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
6 pntibndlem1.1 . . . . . . . 8 (𝜑𝐴 ∈ ℝ+)
7 pntibndlem1.l . . . . . . . 8 𝐿 = ((1 / 4) / (𝐴 + 3))
85, 6, 7pntibndlem1 27651 . . . . . . 7 (𝜑𝐿 ∈ (0(,)1))
94, 8sselid 4006 . . . . . 6 (𝜑𝐿 ∈ ℝ)
10 pntibndlem3.4 . . . . . . 7 (𝜑𝐸 ∈ (0(,)1))
114, 10sselid 4006 . . . . . 6 (𝜑𝐸 ∈ ℝ)
129, 11remulcld 11320 . . . . 5 (𝜑 → (𝐿 · 𝐸) ∈ ℝ)
133, 12readdcld 11319 . . . 4 (𝜑 → (1 + (𝐿 · 𝐸)) ∈ ℝ)
1413, 2remulcld 11320 . . 3 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑁) ∈ ℝ)
15 elicc2 13472 . . 3 ((𝑁 ∈ ℝ ∧ ((1 + (𝐿 · 𝐸)) · 𝑁) ∈ ℝ) → (𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁)) ↔ (𝑢 ∈ ℝ ∧ 𝑁𝑢𝑢 ≤ ((1 + (𝐿 · 𝐸)) · 𝑁))))
162, 14, 15syl2anc 583 . 2 (𝜑 → (𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁)) ↔ (𝑢 ∈ ℝ ∧ 𝑁𝑢𝑢 ≤ ((1 + (𝐿 · 𝐸)) · 𝑁))))
1716biimpa 476 1 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑢 ∈ ℝ ∧ 𝑁𝑢𝑢 ≤ ((1 + (𝐿 · 𝐸)) · 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  cle 11325  cmin 11520   / cdiv 11947  cn 12293  2c2 12348  3c3 12349  4c4 12350  +crp 13057  (,)cioo 13407  [,]cicc 13410  abscabs 15283  expce 16109  logclog 26614  ψcchp 27154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-rp 13058  df-ioo 13411  df-icc 13414
This theorem is referenced by:  pntibndlem2  27653
  Copyright terms: Public domain W3C validator