| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pntibndlem2a | Structured version Visualization version GIF version | ||
| Description: Lemma for pntibndlem2 27532. (Contributed by Mario Carneiro, 7-Jun-2016.) |
| Ref | Expression |
|---|---|
| pntibnd.r | ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) |
| pntibndlem1.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| pntibndlem1.l | ⊢ 𝐿 = ((1 / 4) / (𝐴 + 3)) |
| pntibndlem3.2 | ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅‘𝑥) / 𝑥)) ≤ 𝐴) |
| pntibndlem3.3 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
| pntibndlem3.k | ⊢ 𝐾 = (exp‘(𝐵 / (𝐸 / 2))) |
| pntibndlem3.c | ⊢ 𝐶 = ((2 · 𝐵) + (log‘2)) |
| pntibndlem3.4 | ⊢ (𝜑 → 𝐸 ∈ (0(,)1)) |
| pntibndlem3.6 | ⊢ (𝜑 → 𝑍 ∈ ℝ+) |
| pntibndlem2.10 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| Ref | Expression |
|---|---|
| pntibndlem2a | ⊢ ((𝜑 ∧ 𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑢 ∈ ℝ ∧ 𝑁 ≤ 𝑢 ∧ 𝑢 ≤ ((1 + (𝐿 · 𝐸)) · 𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pntibndlem2.10 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 2 | 1 | nnred 12149 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 3 | 1red 11122 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℝ) | |
| 4 | ioossre 13311 | . . . . . . 7 ⊢ (0(,)1) ⊆ ℝ | |
| 5 | pntibnd.r | . . . . . . . 8 ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) | |
| 6 | pntibndlem1.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 7 | pntibndlem1.l | . . . . . . . 8 ⊢ 𝐿 = ((1 / 4) / (𝐴 + 3)) | |
| 8 | 5, 6, 7 | pntibndlem1 27530 | . . . . . . 7 ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) |
| 9 | 4, 8 | sselid 3928 | . . . . . 6 ⊢ (𝜑 → 𝐿 ∈ ℝ) |
| 10 | pntibndlem3.4 | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ (0(,)1)) | |
| 11 | 4, 10 | sselid 3928 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ ℝ) |
| 12 | 9, 11 | remulcld 11151 | . . . . 5 ⊢ (𝜑 → (𝐿 · 𝐸) ∈ ℝ) |
| 13 | 3, 12 | readdcld 11150 | . . . 4 ⊢ (𝜑 → (1 + (𝐿 · 𝐸)) ∈ ℝ) |
| 14 | 13, 2 | remulcld 11151 | . . 3 ⊢ (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑁) ∈ ℝ) |
| 15 | elicc2 13315 | . . 3 ⊢ ((𝑁 ∈ ℝ ∧ ((1 + (𝐿 · 𝐸)) · 𝑁) ∈ ℝ) → (𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁)) ↔ (𝑢 ∈ ℝ ∧ 𝑁 ≤ 𝑢 ∧ 𝑢 ≤ ((1 + (𝐿 · 𝐸)) · 𝑁)))) | |
| 16 | 2, 14, 15 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁)) ↔ (𝑢 ∈ ℝ ∧ 𝑁 ≤ 𝑢 ∧ 𝑢 ≤ ((1 + (𝐿 · 𝐸)) · 𝑁)))) |
| 17 | 16 | biimpa 476 | 1 ⊢ ((𝜑 ∧ 𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑢 ∈ ℝ ∧ 𝑁 ≤ 𝑢 ∧ 𝑢 ≤ ((1 + (𝐿 · 𝐸)) · 𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3048 class class class wbr 5095 ↦ cmpt 5176 ‘cfv 6488 (class class class)co 7354 ℝcr 11014 0cc0 11015 1c1 11016 + caddc 11018 · cmul 11020 ≤ cle 11156 − cmin 11353 / cdiv 11783 ℕcn 12134 2c2 12189 3c3 12190 4c4 12191 ℝ+crp 12894 (,)cioo 13249 [,]cicc 13252 abscabs 15145 expce 15972 logclog 26493 ψcchp 27033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-2 12197 df-3 12198 df-4 12199 df-rp 12895 df-ioo 13253 df-icc 13256 |
| This theorem is referenced by: pntibndlem2 27532 |
| Copyright terms: Public domain | W3C validator |