Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ringprop | Structured version Visualization version GIF version |
Description: If two structures have the same ring components (properties), one is a ring iff the other one is. (Contributed by Mario Carneiro, 11-Oct-2013.) |
Ref | Expression |
---|---|
ringprop.b | ⊢ (Base‘𝐾) = (Base‘𝐿) |
ringprop.p | ⊢ (+g‘𝐾) = (+g‘𝐿) |
ringprop.m | ⊢ (.r‘𝐾) = (.r‘𝐿) |
Ref | Expression |
---|---|
ringprop | ⊢ (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2760 | . . 3 ⊢ (⊤ → (Base‘𝐾) = (Base‘𝐾)) | |
2 | ringprop.b | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐿) | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → (Base‘𝐾) = (Base‘𝐿)) |
4 | ringprop.p | . . . . 5 ⊢ (+g‘𝐾) = (+g‘𝐿) | |
5 | 4 | oveqi 7164 | . . . 4 ⊢ (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦) |
6 | 5 | a1i 11 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
7 | ringprop.m | . . . . 5 ⊢ (.r‘𝐾) = (.r‘𝐿) | |
8 | 7 | oveqi 7164 | . . . 4 ⊢ (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦) |
9 | 8 | a1i 11 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
10 | 1, 3, 6, 9 | ringpropd 19404 | . 2 ⊢ (⊤ → (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring)) |
11 | 10 | mptru 1546 | 1 ⊢ (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 400 = wceq 1539 ⊤wtru 1540 ∈ wcel 2112 ‘cfv 6336 (class class class)co 7151 Basecbs 16542 +gcplusg 16624 .rcmulr 16625 Ringcrg 19366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10632 ax-resscn 10633 ax-1cn 10634 ax-icn 10635 ax-addcl 10636 ax-addrcl 10637 ax-mulcl 10638 ax-mulrcl 10639 ax-mulcom 10640 ax-addass 10641 ax-mulass 10642 ax-distr 10643 ax-i2m1 10644 ax-1ne0 10645 ax-1rid 10646 ax-rnegex 10647 ax-rrecex 10648 ax-cnre 10649 ax-pre-lttri 10650 ax-pre-lttrn 10651 ax-pre-ltadd 10652 ax-pre-mulgt0 10653 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-er 8300 df-en 8529 df-dom 8530 df-sdom 8531 df-pnf 10716 df-mnf 10717 df-xr 10718 df-ltxr 10719 df-le 10720 df-sub 10911 df-neg 10912 df-nn 11676 df-2 11738 df-ndx 16545 df-slot 16546 df-base 16548 df-sets 16549 df-plusg 16637 df-0g 16774 df-mgm 17919 df-sgrp 17968 df-mnd 17979 df-grp 18173 df-mgp 19309 df-ring 19368 |
This theorem is referenced by: drngprop 19582 zlmassa 20666 |
Copyright terms: Public domain | W3C validator |