MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqdistr Structured version   Visualization version   GIF version

Theorem seqdistr 14018
Description: The distributive property for series. (Contributed by Mario Carneiro, 28-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
seqdistr.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
seqdistr.2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝐶𝑇(𝑥 + 𝑦)) = ((𝐶𝑇𝑥) + (𝐶𝑇𝑦)))
seqdistr.3 (𝜑𝑁 ∈ (ℤ𝑀))
seqdistr.4 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐺𝑥) ∈ 𝑆)
seqdistr.5 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) = (𝐶𝑇(𝐺𝑥)))
Assertion
Ref Expression
seqdistr (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁)))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝐺,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝑥, + ,𝑦   𝑥,𝐹   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦
Allowed substitution hint:   𝐹(𝑦)

Proof of Theorem seqdistr
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 seqdistr.1 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
2 seqdistr.4 . . 3 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐺𝑥) ∈ 𝑆)
3 seqdistr.3 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
4 seqdistr.2 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝐶𝑇(𝑥 + 𝑦)) = ((𝐶𝑇𝑥) + (𝐶𝑇𝑦)))
5 oveq2 7395 . . . . . 6 (𝑧 = (𝑥 + 𝑦) → (𝐶𝑇𝑧) = (𝐶𝑇(𝑥 + 𝑦)))
6 eqid 2729 . . . . . 6 (𝑧𝑆 ↦ (𝐶𝑇𝑧)) = (𝑧𝑆 ↦ (𝐶𝑇𝑧))
7 ovex 7420 . . . . . 6 (𝐶𝑇(𝑥 + 𝑦)) ∈ V
85, 6, 7fvmpt 6968 . . . . 5 ((𝑥 + 𝑦) ∈ 𝑆 → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘(𝑥 + 𝑦)) = (𝐶𝑇(𝑥 + 𝑦)))
91, 8syl 17 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘(𝑥 + 𝑦)) = (𝐶𝑇(𝑥 + 𝑦)))
10 oveq2 7395 . . . . . . 7 (𝑧 = 𝑥 → (𝐶𝑇𝑧) = (𝐶𝑇𝑥))
11 ovex 7420 . . . . . . 7 (𝐶𝑇𝑥) ∈ V
1210, 6, 11fvmpt 6968 . . . . . 6 (𝑥𝑆 → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘𝑥) = (𝐶𝑇𝑥))
1312ad2antrl 728 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘𝑥) = (𝐶𝑇𝑥))
14 oveq2 7395 . . . . . . 7 (𝑧 = 𝑦 → (𝐶𝑇𝑧) = (𝐶𝑇𝑦))
15 ovex 7420 . . . . . . 7 (𝐶𝑇𝑦) ∈ V
1614, 6, 15fvmpt 6968 . . . . . 6 (𝑦𝑆 → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘𝑦) = (𝐶𝑇𝑦))
1716ad2antll 729 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘𝑦) = (𝐶𝑇𝑦))
1813, 17oveq12d 7405 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘𝑥) + ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘𝑦)) = ((𝐶𝑇𝑥) + (𝐶𝑇𝑦)))
194, 9, 183eqtr4d 2774 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘(𝑥 + 𝑦)) = (((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘𝑥) + ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘𝑦)))
20 oveq2 7395 . . . . . 6 (𝑧 = (𝐺𝑥) → (𝐶𝑇𝑧) = (𝐶𝑇(𝐺𝑥)))
21 ovex 7420 . . . . . 6 (𝐶𝑇(𝐺𝑥)) ∈ V
2220, 6, 21fvmpt 6968 . . . . 5 ((𝐺𝑥) ∈ 𝑆 → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘(𝐺𝑥)) = (𝐶𝑇(𝐺𝑥)))
232, 22syl 17 . . . 4 ((𝜑𝑥 ∈ (𝑀...𝑁)) → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘(𝐺𝑥)) = (𝐶𝑇(𝐺𝑥)))
24 seqdistr.5 . . . 4 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) = (𝐶𝑇(𝐺𝑥)))
2523, 24eqtr4d 2767 . . 3 ((𝜑𝑥 ∈ (𝑀...𝑁)) → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘(𝐺𝑥)) = (𝐹𝑥))
261, 2, 3, 19, 25seqhomo 14014 . 2 (𝜑 → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘(seq𝑀( + , 𝐺)‘𝑁)) = (seq𝑀( + , 𝐹)‘𝑁))
273, 2, 1seqcl 13987 . . 3 (𝜑 → (seq𝑀( + , 𝐺)‘𝑁) ∈ 𝑆)
28 oveq2 7395 . . . 4 (𝑧 = (seq𝑀( + , 𝐺)‘𝑁) → (𝐶𝑇𝑧) = (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁)))
29 ovex 7420 . . . 4 (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁)) ∈ V
3028, 6, 29fvmpt 6968 . . 3 ((seq𝑀( + , 𝐺)‘𝑁) ∈ 𝑆 → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘(seq𝑀( + , 𝐺)‘𝑁)) = (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁)))
3127, 30syl 17 . 2 (𝜑 → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘(seq𝑀( + , 𝐺)‘𝑁)) = (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁)))
3226, 31eqtr3d 2766 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cmpt 5188  cfv 6511  (class class class)co 7387  cuz 12793  ...cfz 13468  seqcseq 13966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-seq 13967
This theorem is referenced by:  isermulc2  15624  fsummulc2  15750  stirlinglem7  46078
  Copyright terms: Public domain W3C validator