| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > seqdistr | Structured version Visualization version GIF version | ||
| Description: The distributive property for series. (Contributed by Mario Carneiro, 28-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.) |
| Ref | Expression |
|---|---|
| seqdistr.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| seqdistr.2 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝐶𝑇(𝑥 + 𝑦)) = ((𝐶𝑇𝑥) + (𝐶𝑇𝑦))) |
| seqdistr.3 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| seqdistr.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐺‘𝑥) ∈ 𝑆) |
| seqdistr.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) = (𝐶𝑇(𝐺‘𝑥))) |
| Ref | Expression |
|---|---|
| seqdistr | ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqdistr.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | |
| 2 | seqdistr.4 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐺‘𝑥) ∈ 𝑆) | |
| 3 | seqdistr.3 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
| 4 | seqdistr.2 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝐶𝑇(𝑥 + 𝑦)) = ((𝐶𝑇𝑥) + (𝐶𝑇𝑦))) | |
| 5 | oveq2 7395 | . . . . . 6 ⊢ (𝑧 = (𝑥 + 𝑦) → (𝐶𝑇𝑧) = (𝐶𝑇(𝑥 + 𝑦))) | |
| 6 | eqid 2729 | . . . . . 6 ⊢ (𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧)) = (𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧)) | |
| 7 | ovex 7420 | . . . . . 6 ⊢ (𝐶𝑇(𝑥 + 𝑦)) ∈ V | |
| 8 | 5, 6, 7 | fvmpt 6968 | . . . . 5 ⊢ ((𝑥 + 𝑦) ∈ 𝑆 → ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘(𝑥 + 𝑦)) = (𝐶𝑇(𝑥 + 𝑦))) |
| 9 | 1, 8 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘(𝑥 + 𝑦)) = (𝐶𝑇(𝑥 + 𝑦))) |
| 10 | oveq2 7395 | . . . . . . 7 ⊢ (𝑧 = 𝑥 → (𝐶𝑇𝑧) = (𝐶𝑇𝑥)) | |
| 11 | ovex 7420 | . . . . . . 7 ⊢ (𝐶𝑇𝑥) ∈ V | |
| 12 | 10, 6, 11 | fvmpt 6968 | . . . . . 6 ⊢ (𝑥 ∈ 𝑆 → ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘𝑥) = (𝐶𝑇𝑥)) |
| 13 | 12 | ad2antrl 728 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘𝑥) = (𝐶𝑇𝑥)) |
| 14 | oveq2 7395 | . . . . . . 7 ⊢ (𝑧 = 𝑦 → (𝐶𝑇𝑧) = (𝐶𝑇𝑦)) | |
| 15 | ovex 7420 | . . . . . . 7 ⊢ (𝐶𝑇𝑦) ∈ V | |
| 16 | 14, 6, 15 | fvmpt 6968 | . . . . . 6 ⊢ (𝑦 ∈ 𝑆 → ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘𝑦) = (𝐶𝑇𝑦)) |
| 17 | 16 | ad2antll 729 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘𝑦) = (𝐶𝑇𝑦)) |
| 18 | 13, 17 | oveq12d 7405 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘𝑥) + ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘𝑦)) = ((𝐶𝑇𝑥) + (𝐶𝑇𝑦))) |
| 19 | 4, 9, 18 | 3eqtr4d 2774 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘(𝑥 + 𝑦)) = (((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘𝑥) + ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘𝑦))) |
| 20 | oveq2 7395 | . . . . . 6 ⊢ (𝑧 = (𝐺‘𝑥) → (𝐶𝑇𝑧) = (𝐶𝑇(𝐺‘𝑥))) | |
| 21 | ovex 7420 | . . . . . 6 ⊢ (𝐶𝑇(𝐺‘𝑥)) ∈ V | |
| 22 | 20, 6, 21 | fvmpt 6968 | . . . . 5 ⊢ ((𝐺‘𝑥) ∈ 𝑆 → ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘(𝐺‘𝑥)) = (𝐶𝑇(𝐺‘𝑥))) |
| 23 | 2, 22 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘(𝐺‘𝑥)) = (𝐶𝑇(𝐺‘𝑥))) |
| 24 | seqdistr.5 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) = (𝐶𝑇(𝐺‘𝑥))) | |
| 25 | 23, 24 | eqtr4d 2767 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘(𝐺‘𝑥)) = (𝐹‘𝑥)) |
| 26 | 1, 2, 3, 19, 25 | seqhomo 14014 | . 2 ⊢ (𝜑 → ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘(seq𝑀( + , 𝐺)‘𝑁)) = (seq𝑀( + , 𝐹)‘𝑁)) |
| 27 | 3, 2, 1 | seqcl 13987 | . . 3 ⊢ (𝜑 → (seq𝑀( + , 𝐺)‘𝑁) ∈ 𝑆) |
| 28 | oveq2 7395 | . . . 4 ⊢ (𝑧 = (seq𝑀( + , 𝐺)‘𝑁) → (𝐶𝑇𝑧) = (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁))) | |
| 29 | ovex 7420 | . . . 4 ⊢ (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁)) ∈ V | |
| 30 | 28, 6, 29 | fvmpt 6968 | . . 3 ⊢ ((seq𝑀( + , 𝐺)‘𝑁) ∈ 𝑆 → ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘(seq𝑀( + , 𝐺)‘𝑁)) = (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁))) |
| 31 | 27, 30 | syl 17 | . 2 ⊢ (𝜑 → ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘(seq𝑀( + , 𝐺)‘𝑁)) = (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁))) |
| 32 | 26, 31 | eqtr3d 2766 | 1 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5188 ‘cfv 6511 (class class class)co 7387 ℤ≥cuz 12793 ...cfz 13468 seqcseq 13966 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-seq 13967 |
| This theorem is referenced by: isermulc2 15624 fsummulc2 15750 stirlinglem7 46078 |
| Copyright terms: Public domain | W3C validator |