Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > seqdistr | Structured version Visualization version GIF version |
Description: The distributive property for series. (Contributed by Mario Carneiro, 28-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.) |
Ref | Expression |
---|---|
seqdistr.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
seqdistr.2 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝐶𝑇(𝑥 + 𝑦)) = ((𝐶𝑇𝑥) + (𝐶𝑇𝑦))) |
seqdistr.3 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
seqdistr.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐺‘𝑥) ∈ 𝑆) |
seqdistr.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) = (𝐶𝑇(𝐺‘𝑥))) |
Ref | Expression |
---|---|
seqdistr | ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seqdistr.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | |
2 | seqdistr.4 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐺‘𝑥) ∈ 𝑆) | |
3 | seqdistr.3 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
4 | seqdistr.2 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝐶𝑇(𝑥 + 𝑦)) = ((𝐶𝑇𝑥) + (𝐶𝑇𝑦))) | |
5 | oveq2 7325 | . . . . . 6 ⊢ (𝑧 = (𝑥 + 𝑦) → (𝐶𝑇𝑧) = (𝐶𝑇(𝑥 + 𝑦))) | |
6 | eqid 2737 | . . . . . 6 ⊢ (𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧)) = (𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧)) | |
7 | ovex 7350 | . . . . . 6 ⊢ (𝐶𝑇(𝑥 + 𝑦)) ∈ V | |
8 | 5, 6, 7 | fvmpt 6915 | . . . . 5 ⊢ ((𝑥 + 𝑦) ∈ 𝑆 → ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘(𝑥 + 𝑦)) = (𝐶𝑇(𝑥 + 𝑦))) |
9 | 1, 8 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘(𝑥 + 𝑦)) = (𝐶𝑇(𝑥 + 𝑦))) |
10 | oveq2 7325 | . . . . . . 7 ⊢ (𝑧 = 𝑥 → (𝐶𝑇𝑧) = (𝐶𝑇𝑥)) | |
11 | ovex 7350 | . . . . . . 7 ⊢ (𝐶𝑇𝑥) ∈ V | |
12 | 10, 6, 11 | fvmpt 6915 | . . . . . 6 ⊢ (𝑥 ∈ 𝑆 → ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘𝑥) = (𝐶𝑇𝑥)) |
13 | 12 | ad2antrl 725 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘𝑥) = (𝐶𝑇𝑥)) |
14 | oveq2 7325 | . . . . . . 7 ⊢ (𝑧 = 𝑦 → (𝐶𝑇𝑧) = (𝐶𝑇𝑦)) | |
15 | ovex 7350 | . . . . . . 7 ⊢ (𝐶𝑇𝑦) ∈ V | |
16 | 14, 6, 15 | fvmpt 6915 | . . . . . 6 ⊢ (𝑦 ∈ 𝑆 → ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘𝑦) = (𝐶𝑇𝑦)) |
17 | 16 | ad2antll 726 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘𝑦) = (𝐶𝑇𝑦)) |
18 | 13, 17 | oveq12d 7335 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘𝑥) + ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘𝑦)) = ((𝐶𝑇𝑥) + (𝐶𝑇𝑦))) |
19 | 4, 9, 18 | 3eqtr4d 2787 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘(𝑥 + 𝑦)) = (((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘𝑥) + ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘𝑦))) |
20 | oveq2 7325 | . . . . . 6 ⊢ (𝑧 = (𝐺‘𝑥) → (𝐶𝑇𝑧) = (𝐶𝑇(𝐺‘𝑥))) | |
21 | ovex 7350 | . . . . . 6 ⊢ (𝐶𝑇(𝐺‘𝑥)) ∈ V | |
22 | 20, 6, 21 | fvmpt 6915 | . . . . 5 ⊢ ((𝐺‘𝑥) ∈ 𝑆 → ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘(𝐺‘𝑥)) = (𝐶𝑇(𝐺‘𝑥))) |
23 | 2, 22 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘(𝐺‘𝑥)) = (𝐶𝑇(𝐺‘𝑥))) |
24 | seqdistr.5 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) = (𝐶𝑇(𝐺‘𝑥))) | |
25 | 23, 24 | eqtr4d 2780 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘(𝐺‘𝑥)) = (𝐹‘𝑥)) |
26 | 1, 2, 3, 19, 25 | seqhomo 13850 | . 2 ⊢ (𝜑 → ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘(seq𝑀( + , 𝐺)‘𝑁)) = (seq𝑀( + , 𝐹)‘𝑁)) |
27 | 3, 2, 1 | seqcl 13823 | . . 3 ⊢ (𝜑 → (seq𝑀( + , 𝐺)‘𝑁) ∈ 𝑆) |
28 | oveq2 7325 | . . . 4 ⊢ (𝑧 = (seq𝑀( + , 𝐺)‘𝑁) → (𝐶𝑇𝑧) = (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁))) | |
29 | ovex 7350 | . . . 4 ⊢ (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁)) ∈ V | |
30 | 28, 6, 29 | fvmpt 6915 | . . 3 ⊢ ((seq𝑀( + , 𝐺)‘𝑁) ∈ 𝑆 → ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘(seq𝑀( + , 𝐺)‘𝑁)) = (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁))) |
31 | 27, 30 | syl 17 | . 2 ⊢ (𝜑 → ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘(seq𝑀( + , 𝐺)‘𝑁)) = (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁))) |
32 | 26, 31 | eqtr3d 2779 | 1 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ↦ cmpt 5170 ‘cfv 6466 (class class class)co 7317 ℤ≥cuz 12662 ...cfz 13319 seqcseq 13801 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 ax-cnex 11007 ax-resscn 11008 ax-1cn 11009 ax-icn 11010 ax-addcl 11011 ax-addrcl 11012 ax-mulcl 11013 ax-mulrcl 11014 ax-mulcom 11015 ax-addass 11016 ax-mulass 11017 ax-distr 11018 ax-i2m1 11019 ax-1ne0 11020 ax-1rid 11021 ax-rnegex 11022 ax-rrecex 11023 ax-cnre 11024 ax-pre-lttri 11025 ax-pre-lttrn 11026 ax-pre-ltadd 11027 ax-pre-mulgt0 11028 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5563 df-we 5565 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-pred 6225 df-ord 6292 df-on 6293 df-lim 6294 df-suc 6295 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-riota 7274 df-ov 7320 df-oprab 7321 df-mpo 7322 df-om 7760 df-1st 7878 df-2nd 7879 df-frecs 8146 df-wrecs 8177 df-recs 8251 df-rdg 8290 df-er 8548 df-en 8784 df-dom 8785 df-sdom 8786 df-pnf 11091 df-mnf 11092 df-xr 11093 df-ltxr 11094 df-le 11095 df-sub 11287 df-neg 11288 df-nn 12054 df-n0 12314 df-z 12400 df-uz 12663 df-fz 13320 df-seq 13802 |
This theorem is referenced by: isermulc2 15448 fsummulc2 15575 stirlinglem7 43871 |
Copyright terms: Public domain | W3C validator |