![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > seqdistr | Structured version Visualization version GIF version |
Description: The distributive property for series. (Contributed by Mario Carneiro, 28-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.) |
Ref | Expression |
---|---|
seqdistr.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
seqdistr.2 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝐶𝑇(𝑥 + 𝑦)) = ((𝐶𝑇𝑥) + (𝐶𝑇𝑦))) |
seqdistr.3 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
seqdistr.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐺‘𝑥) ∈ 𝑆) |
seqdistr.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) = (𝐶𝑇(𝐺‘𝑥))) |
Ref | Expression |
---|---|
seqdistr | ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seqdistr.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | |
2 | seqdistr.4 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐺‘𝑥) ∈ 𝑆) | |
3 | seqdistr.3 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
4 | seqdistr.2 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝐶𝑇(𝑥 + 𝑦)) = ((𝐶𝑇𝑥) + (𝐶𝑇𝑦))) | |
5 | oveq2 7434 | . . . . . 6 ⊢ (𝑧 = (𝑥 + 𝑦) → (𝐶𝑇𝑧) = (𝐶𝑇(𝑥 + 𝑦))) | |
6 | eqid 2728 | . . . . . 6 ⊢ (𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧)) = (𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧)) | |
7 | ovex 7459 | . . . . . 6 ⊢ (𝐶𝑇(𝑥 + 𝑦)) ∈ V | |
8 | 5, 6, 7 | fvmpt 7010 | . . . . 5 ⊢ ((𝑥 + 𝑦) ∈ 𝑆 → ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘(𝑥 + 𝑦)) = (𝐶𝑇(𝑥 + 𝑦))) |
9 | 1, 8 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘(𝑥 + 𝑦)) = (𝐶𝑇(𝑥 + 𝑦))) |
10 | oveq2 7434 | . . . . . . 7 ⊢ (𝑧 = 𝑥 → (𝐶𝑇𝑧) = (𝐶𝑇𝑥)) | |
11 | ovex 7459 | . . . . . . 7 ⊢ (𝐶𝑇𝑥) ∈ V | |
12 | 10, 6, 11 | fvmpt 7010 | . . . . . 6 ⊢ (𝑥 ∈ 𝑆 → ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘𝑥) = (𝐶𝑇𝑥)) |
13 | 12 | ad2antrl 726 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘𝑥) = (𝐶𝑇𝑥)) |
14 | oveq2 7434 | . . . . . . 7 ⊢ (𝑧 = 𝑦 → (𝐶𝑇𝑧) = (𝐶𝑇𝑦)) | |
15 | ovex 7459 | . . . . . . 7 ⊢ (𝐶𝑇𝑦) ∈ V | |
16 | 14, 6, 15 | fvmpt 7010 | . . . . . 6 ⊢ (𝑦 ∈ 𝑆 → ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘𝑦) = (𝐶𝑇𝑦)) |
17 | 16 | ad2antll 727 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘𝑦) = (𝐶𝑇𝑦)) |
18 | 13, 17 | oveq12d 7444 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘𝑥) + ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘𝑦)) = ((𝐶𝑇𝑥) + (𝐶𝑇𝑦))) |
19 | 4, 9, 18 | 3eqtr4d 2778 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘(𝑥 + 𝑦)) = (((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘𝑥) + ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘𝑦))) |
20 | oveq2 7434 | . . . . . 6 ⊢ (𝑧 = (𝐺‘𝑥) → (𝐶𝑇𝑧) = (𝐶𝑇(𝐺‘𝑥))) | |
21 | ovex 7459 | . . . . . 6 ⊢ (𝐶𝑇(𝐺‘𝑥)) ∈ V | |
22 | 20, 6, 21 | fvmpt 7010 | . . . . 5 ⊢ ((𝐺‘𝑥) ∈ 𝑆 → ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘(𝐺‘𝑥)) = (𝐶𝑇(𝐺‘𝑥))) |
23 | 2, 22 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘(𝐺‘𝑥)) = (𝐶𝑇(𝐺‘𝑥))) |
24 | seqdistr.5 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) = (𝐶𝑇(𝐺‘𝑥))) | |
25 | 23, 24 | eqtr4d 2771 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘(𝐺‘𝑥)) = (𝐹‘𝑥)) |
26 | 1, 2, 3, 19, 25 | seqhomo 14056 | . 2 ⊢ (𝜑 → ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘(seq𝑀( + , 𝐺)‘𝑁)) = (seq𝑀( + , 𝐹)‘𝑁)) |
27 | 3, 2, 1 | seqcl 14029 | . . 3 ⊢ (𝜑 → (seq𝑀( + , 𝐺)‘𝑁) ∈ 𝑆) |
28 | oveq2 7434 | . . . 4 ⊢ (𝑧 = (seq𝑀( + , 𝐺)‘𝑁) → (𝐶𝑇𝑧) = (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁))) | |
29 | ovex 7459 | . . . 4 ⊢ (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁)) ∈ V | |
30 | 28, 6, 29 | fvmpt 7010 | . . 3 ⊢ ((seq𝑀( + , 𝐺)‘𝑁) ∈ 𝑆 → ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘(seq𝑀( + , 𝐺)‘𝑁)) = (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁))) |
31 | 27, 30 | syl 17 | . 2 ⊢ (𝜑 → ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘(seq𝑀( + , 𝐺)‘𝑁)) = (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁))) |
32 | 26, 31 | eqtr3d 2770 | 1 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ↦ cmpt 5235 ‘cfv 6553 (class class class)co 7426 ℤ≥cuz 12862 ...cfz 13526 seqcseq 14008 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-cnex 11204 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-1st 8001 df-2nd 8002 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-er 8733 df-en 8973 df-dom 8974 df-sdom 8975 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-nn 12253 df-n0 12513 df-z 12599 df-uz 12863 df-fz 13527 df-seq 14009 |
This theorem is referenced by: isermulc2 15646 fsummulc2 15772 stirlinglem7 45515 |
Copyright terms: Public domain | W3C validator |