MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqdistr Structured version   Visualization version   GIF version

Theorem seqdistr 14060
Description: The distributive property for series. (Contributed by Mario Carneiro, 28-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
seqdistr.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
seqdistr.2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝐶𝑇(𝑥 + 𝑦)) = ((𝐶𝑇𝑥) + (𝐶𝑇𝑦)))
seqdistr.3 (𝜑𝑁 ∈ (ℤ𝑀))
seqdistr.4 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐺𝑥) ∈ 𝑆)
seqdistr.5 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) = (𝐶𝑇(𝐺𝑥)))
Assertion
Ref Expression
seqdistr (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁)))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝐺,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝑥, + ,𝑦   𝑥,𝐹   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦
Allowed substitution hint:   𝐹(𝑦)

Proof of Theorem seqdistr
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 seqdistr.1 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
2 seqdistr.4 . . 3 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐺𝑥) ∈ 𝑆)
3 seqdistr.3 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
4 seqdistr.2 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝐶𝑇(𝑥 + 𝑦)) = ((𝐶𝑇𝑥) + (𝐶𝑇𝑦)))
5 oveq2 7434 . . . . . 6 (𝑧 = (𝑥 + 𝑦) → (𝐶𝑇𝑧) = (𝐶𝑇(𝑥 + 𝑦)))
6 eqid 2728 . . . . . 6 (𝑧𝑆 ↦ (𝐶𝑇𝑧)) = (𝑧𝑆 ↦ (𝐶𝑇𝑧))
7 ovex 7459 . . . . . 6 (𝐶𝑇(𝑥 + 𝑦)) ∈ V
85, 6, 7fvmpt 7010 . . . . 5 ((𝑥 + 𝑦) ∈ 𝑆 → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘(𝑥 + 𝑦)) = (𝐶𝑇(𝑥 + 𝑦)))
91, 8syl 17 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘(𝑥 + 𝑦)) = (𝐶𝑇(𝑥 + 𝑦)))
10 oveq2 7434 . . . . . . 7 (𝑧 = 𝑥 → (𝐶𝑇𝑧) = (𝐶𝑇𝑥))
11 ovex 7459 . . . . . . 7 (𝐶𝑇𝑥) ∈ V
1210, 6, 11fvmpt 7010 . . . . . 6 (𝑥𝑆 → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘𝑥) = (𝐶𝑇𝑥))
1312ad2antrl 726 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘𝑥) = (𝐶𝑇𝑥))
14 oveq2 7434 . . . . . . 7 (𝑧 = 𝑦 → (𝐶𝑇𝑧) = (𝐶𝑇𝑦))
15 ovex 7459 . . . . . . 7 (𝐶𝑇𝑦) ∈ V
1614, 6, 15fvmpt 7010 . . . . . 6 (𝑦𝑆 → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘𝑦) = (𝐶𝑇𝑦))
1716ad2antll 727 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘𝑦) = (𝐶𝑇𝑦))
1813, 17oveq12d 7444 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘𝑥) + ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘𝑦)) = ((𝐶𝑇𝑥) + (𝐶𝑇𝑦)))
194, 9, 183eqtr4d 2778 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘(𝑥 + 𝑦)) = (((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘𝑥) + ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘𝑦)))
20 oveq2 7434 . . . . . 6 (𝑧 = (𝐺𝑥) → (𝐶𝑇𝑧) = (𝐶𝑇(𝐺𝑥)))
21 ovex 7459 . . . . . 6 (𝐶𝑇(𝐺𝑥)) ∈ V
2220, 6, 21fvmpt 7010 . . . . 5 ((𝐺𝑥) ∈ 𝑆 → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘(𝐺𝑥)) = (𝐶𝑇(𝐺𝑥)))
232, 22syl 17 . . . 4 ((𝜑𝑥 ∈ (𝑀...𝑁)) → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘(𝐺𝑥)) = (𝐶𝑇(𝐺𝑥)))
24 seqdistr.5 . . . 4 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) = (𝐶𝑇(𝐺𝑥)))
2523, 24eqtr4d 2771 . . 3 ((𝜑𝑥 ∈ (𝑀...𝑁)) → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘(𝐺𝑥)) = (𝐹𝑥))
261, 2, 3, 19, 25seqhomo 14056 . 2 (𝜑 → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘(seq𝑀( + , 𝐺)‘𝑁)) = (seq𝑀( + , 𝐹)‘𝑁))
273, 2, 1seqcl 14029 . . 3 (𝜑 → (seq𝑀( + , 𝐺)‘𝑁) ∈ 𝑆)
28 oveq2 7434 . . . 4 (𝑧 = (seq𝑀( + , 𝐺)‘𝑁) → (𝐶𝑇𝑧) = (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁)))
29 ovex 7459 . . . 4 (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁)) ∈ V
3028, 6, 29fvmpt 7010 . . 3 ((seq𝑀( + , 𝐺)‘𝑁) ∈ 𝑆 → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘(seq𝑀( + , 𝐺)‘𝑁)) = (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁)))
3127, 30syl 17 . 2 (𝜑 → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘(seq𝑀( + , 𝐺)‘𝑁)) = (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁)))
3226, 31eqtr3d 2770 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  cmpt 5235  cfv 6553  (class class class)co 7426  cuz 12862  ...cfz 13526  seqcseq 14008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7748  ax-cnex 11204  ax-resscn 11205  ax-1cn 11206  ax-icn 11207  ax-addcl 11208  ax-addrcl 11209  ax-mulcl 11210  ax-mulrcl 11211  ax-mulcom 11212  ax-addass 11213  ax-mulass 11214  ax-distr 11215  ax-i2m1 11216  ax-1ne0 11217  ax-1rid 11218  ax-rnegex 11219  ax-rrecex 11220  ax-cnre 11221  ax-pre-lttri 11222  ax-pre-lttrn 11223  ax-pre-ltadd 11224  ax-pre-mulgt0 11225
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7879  df-1st 8001  df-2nd 8002  df-frecs 8295  df-wrecs 8326  df-recs 8400  df-rdg 8439  df-er 8733  df-en 8973  df-dom 8974  df-sdom 8975  df-pnf 11290  df-mnf 11291  df-xr 11292  df-ltxr 11293  df-le 11294  df-sub 11486  df-neg 11487  df-nn 12253  df-n0 12513  df-z 12599  df-uz 12863  df-fz 13527  df-seq 14009
This theorem is referenced by:  isermulc2  15646  fsummulc2  15772  stirlinglem7  45515
  Copyright terms: Public domain W3C validator