MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqdistr Structured version   Visualization version   GIF version

Theorem seqdistr 13774
Description: The distributive property for series. (Contributed by Mario Carneiro, 28-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
seqdistr.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
seqdistr.2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝐶𝑇(𝑥 + 𝑦)) = ((𝐶𝑇𝑥) + (𝐶𝑇𝑦)))
seqdistr.3 (𝜑𝑁 ∈ (ℤ𝑀))
seqdistr.4 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐺𝑥) ∈ 𝑆)
seqdistr.5 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) = (𝐶𝑇(𝐺𝑥)))
Assertion
Ref Expression
seqdistr (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁)))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝐺,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝑥, + ,𝑦   𝑥,𝐹   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦
Allowed substitution hint:   𝐹(𝑦)

Proof of Theorem seqdistr
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 seqdistr.1 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
2 seqdistr.4 . . 3 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐺𝑥) ∈ 𝑆)
3 seqdistr.3 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
4 seqdistr.2 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝐶𝑇(𝑥 + 𝑦)) = ((𝐶𝑇𝑥) + (𝐶𝑇𝑦)))
5 oveq2 7283 . . . . . 6 (𝑧 = (𝑥 + 𝑦) → (𝐶𝑇𝑧) = (𝐶𝑇(𝑥 + 𝑦)))
6 eqid 2738 . . . . . 6 (𝑧𝑆 ↦ (𝐶𝑇𝑧)) = (𝑧𝑆 ↦ (𝐶𝑇𝑧))
7 ovex 7308 . . . . . 6 (𝐶𝑇(𝑥 + 𝑦)) ∈ V
85, 6, 7fvmpt 6875 . . . . 5 ((𝑥 + 𝑦) ∈ 𝑆 → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘(𝑥 + 𝑦)) = (𝐶𝑇(𝑥 + 𝑦)))
91, 8syl 17 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘(𝑥 + 𝑦)) = (𝐶𝑇(𝑥 + 𝑦)))
10 oveq2 7283 . . . . . . 7 (𝑧 = 𝑥 → (𝐶𝑇𝑧) = (𝐶𝑇𝑥))
11 ovex 7308 . . . . . . 7 (𝐶𝑇𝑥) ∈ V
1210, 6, 11fvmpt 6875 . . . . . 6 (𝑥𝑆 → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘𝑥) = (𝐶𝑇𝑥))
1312ad2antrl 725 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘𝑥) = (𝐶𝑇𝑥))
14 oveq2 7283 . . . . . . 7 (𝑧 = 𝑦 → (𝐶𝑇𝑧) = (𝐶𝑇𝑦))
15 ovex 7308 . . . . . . 7 (𝐶𝑇𝑦) ∈ V
1614, 6, 15fvmpt 6875 . . . . . 6 (𝑦𝑆 → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘𝑦) = (𝐶𝑇𝑦))
1716ad2antll 726 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘𝑦) = (𝐶𝑇𝑦))
1813, 17oveq12d 7293 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘𝑥) + ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘𝑦)) = ((𝐶𝑇𝑥) + (𝐶𝑇𝑦)))
194, 9, 183eqtr4d 2788 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘(𝑥 + 𝑦)) = (((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘𝑥) + ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘𝑦)))
20 oveq2 7283 . . . . . 6 (𝑧 = (𝐺𝑥) → (𝐶𝑇𝑧) = (𝐶𝑇(𝐺𝑥)))
21 ovex 7308 . . . . . 6 (𝐶𝑇(𝐺𝑥)) ∈ V
2220, 6, 21fvmpt 6875 . . . . 5 ((𝐺𝑥) ∈ 𝑆 → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘(𝐺𝑥)) = (𝐶𝑇(𝐺𝑥)))
232, 22syl 17 . . . 4 ((𝜑𝑥 ∈ (𝑀...𝑁)) → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘(𝐺𝑥)) = (𝐶𝑇(𝐺𝑥)))
24 seqdistr.5 . . . 4 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) = (𝐶𝑇(𝐺𝑥)))
2523, 24eqtr4d 2781 . . 3 ((𝜑𝑥 ∈ (𝑀...𝑁)) → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘(𝐺𝑥)) = (𝐹𝑥))
261, 2, 3, 19, 25seqhomo 13770 . 2 (𝜑 → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘(seq𝑀( + , 𝐺)‘𝑁)) = (seq𝑀( + , 𝐹)‘𝑁))
273, 2, 1seqcl 13743 . . 3 (𝜑 → (seq𝑀( + , 𝐺)‘𝑁) ∈ 𝑆)
28 oveq2 7283 . . . 4 (𝑧 = (seq𝑀( + , 𝐺)‘𝑁) → (𝐶𝑇𝑧) = (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁)))
29 ovex 7308 . . . 4 (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁)) ∈ V
3028, 6, 29fvmpt 6875 . . 3 ((seq𝑀( + , 𝐺)‘𝑁) ∈ 𝑆 → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘(seq𝑀( + , 𝐺)‘𝑁)) = (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁)))
3127, 30syl 17 . 2 (𝜑 → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘(seq𝑀( + , 𝐺)‘𝑁)) = (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁)))
3226, 31eqtr3d 2780 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  cmpt 5157  cfv 6433  (class class class)co 7275  cuz 12582  ...cfz 13239  seqcseq 13721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-seq 13722
This theorem is referenced by:  isermulc2  15369  fsummulc2  15496  stirlinglem7  43621
  Copyright terms: Public domain W3C validator