| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > seqdistr | Structured version Visualization version GIF version | ||
| Description: The distributive property for series. (Contributed by Mario Carneiro, 28-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.) |
| Ref | Expression |
|---|---|
| seqdistr.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| seqdistr.2 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝐶𝑇(𝑥 + 𝑦)) = ((𝐶𝑇𝑥) + (𝐶𝑇𝑦))) |
| seqdistr.3 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| seqdistr.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐺‘𝑥) ∈ 𝑆) |
| seqdistr.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) = (𝐶𝑇(𝐺‘𝑥))) |
| Ref | Expression |
|---|---|
| seqdistr | ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqdistr.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | |
| 2 | seqdistr.4 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐺‘𝑥) ∈ 𝑆) | |
| 3 | seqdistr.3 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
| 4 | seqdistr.2 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝐶𝑇(𝑥 + 𝑦)) = ((𝐶𝑇𝑥) + (𝐶𝑇𝑦))) | |
| 5 | oveq2 7439 | . . . . . 6 ⊢ (𝑧 = (𝑥 + 𝑦) → (𝐶𝑇𝑧) = (𝐶𝑇(𝑥 + 𝑦))) | |
| 6 | eqid 2737 | . . . . . 6 ⊢ (𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧)) = (𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧)) | |
| 7 | ovex 7464 | . . . . . 6 ⊢ (𝐶𝑇(𝑥 + 𝑦)) ∈ V | |
| 8 | 5, 6, 7 | fvmpt 7016 | . . . . 5 ⊢ ((𝑥 + 𝑦) ∈ 𝑆 → ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘(𝑥 + 𝑦)) = (𝐶𝑇(𝑥 + 𝑦))) |
| 9 | 1, 8 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘(𝑥 + 𝑦)) = (𝐶𝑇(𝑥 + 𝑦))) |
| 10 | oveq2 7439 | . . . . . . 7 ⊢ (𝑧 = 𝑥 → (𝐶𝑇𝑧) = (𝐶𝑇𝑥)) | |
| 11 | ovex 7464 | . . . . . . 7 ⊢ (𝐶𝑇𝑥) ∈ V | |
| 12 | 10, 6, 11 | fvmpt 7016 | . . . . . 6 ⊢ (𝑥 ∈ 𝑆 → ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘𝑥) = (𝐶𝑇𝑥)) |
| 13 | 12 | ad2antrl 728 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘𝑥) = (𝐶𝑇𝑥)) |
| 14 | oveq2 7439 | . . . . . . 7 ⊢ (𝑧 = 𝑦 → (𝐶𝑇𝑧) = (𝐶𝑇𝑦)) | |
| 15 | ovex 7464 | . . . . . . 7 ⊢ (𝐶𝑇𝑦) ∈ V | |
| 16 | 14, 6, 15 | fvmpt 7016 | . . . . . 6 ⊢ (𝑦 ∈ 𝑆 → ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘𝑦) = (𝐶𝑇𝑦)) |
| 17 | 16 | ad2antll 729 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘𝑦) = (𝐶𝑇𝑦)) |
| 18 | 13, 17 | oveq12d 7449 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘𝑥) + ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘𝑦)) = ((𝐶𝑇𝑥) + (𝐶𝑇𝑦))) |
| 19 | 4, 9, 18 | 3eqtr4d 2787 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘(𝑥 + 𝑦)) = (((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘𝑥) + ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘𝑦))) |
| 20 | oveq2 7439 | . . . . . 6 ⊢ (𝑧 = (𝐺‘𝑥) → (𝐶𝑇𝑧) = (𝐶𝑇(𝐺‘𝑥))) | |
| 21 | ovex 7464 | . . . . . 6 ⊢ (𝐶𝑇(𝐺‘𝑥)) ∈ V | |
| 22 | 20, 6, 21 | fvmpt 7016 | . . . . 5 ⊢ ((𝐺‘𝑥) ∈ 𝑆 → ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘(𝐺‘𝑥)) = (𝐶𝑇(𝐺‘𝑥))) |
| 23 | 2, 22 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘(𝐺‘𝑥)) = (𝐶𝑇(𝐺‘𝑥))) |
| 24 | seqdistr.5 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) = (𝐶𝑇(𝐺‘𝑥))) | |
| 25 | 23, 24 | eqtr4d 2780 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘(𝐺‘𝑥)) = (𝐹‘𝑥)) |
| 26 | 1, 2, 3, 19, 25 | seqhomo 14090 | . 2 ⊢ (𝜑 → ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘(seq𝑀( + , 𝐺)‘𝑁)) = (seq𝑀( + , 𝐹)‘𝑁)) |
| 27 | 3, 2, 1 | seqcl 14063 | . . 3 ⊢ (𝜑 → (seq𝑀( + , 𝐺)‘𝑁) ∈ 𝑆) |
| 28 | oveq2 7439 | . . . 4 ⊢ (𝑧 = (seq𝑀( + , 𝐺)‘𝑁) → (𝐶𝑇𝑧) = (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁))) | |
| 29 | ovex 7464 | . . . 4 ⊢ (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁)) ∈ V | |
| 30 | 28, 6, 29 | fvmpt 7016 | . . 3 ⊢ ((seq𝑀( + , 𝐺)‘𝑁) ∈ 𝑆 → ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘(seq𝑀( + , 𝐺)‘𝑁)) = (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁))) |
| 31 | 27, 30 | syl 17 | . 2 ⊢ (𝜑 → ((𝑧 ∈ 𝑆 ↦ (𝐶𝑇𝑧))‘(seq𝑀( + , 𝐺)‘𝑁)) = (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁))) |
| 32 | 26, 31 | eqtr3d 2779 | 1 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ↦ cmpt 5225 ‘cfv 6561 (class class class)co 7431 ℤ≥cuz 12878 ...cfz 13547 seqcseq 14042 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-n0 12527 df-z 12614 df-uz 12879 df-fz 13548 df-seq 14043 |
| This theorem is referenced by: isermulc2 15694 fsummulc2 15820 stirlinglem7 46095 |
| Copyright terms: Public domain | W3C validator |