MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqfeq3 Structured version   Visualization version   GIF version

Theorem seqfeq3 14105
Description: Equality of series under different addition operations which agree on an additively closed subset. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
seqfeq3.m (𝜑𝑀 ∈ ℤ)
seqfeq3.f ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
seqfeq3.cl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
seqfeq3.id ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑥𝑄𝑦))
Assertion
Ref Expression
seqfeq3 (𝜑 → seq𝑀( + , 𝐹) = seq𝑀(𝑄, 𝐹))
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐹,𝑦   𝑥,𝑀,𝑦   𝑥, + ,𝑦   𝑥,𝑄,𝑦   𝑥,𝑆,𝑦

Proof of Theorem seqfeq3
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 seqfeq3.m . . 3 (𝜑𝑀 ∈ ℤ)
2 seqfn 14066 . . 3 (𝑀 ∈ ℤ → seq𝑀( + , 𝐹) Fn (ℤ𝑀))
31, 2syl 17 . 2 (𝜑 → seq𝑀( + , 𝐹) Fn (ℤ𝑀))
4 seqfn 14066 . . 3 (𝑀 ∈ ℤ → seq𝑀(𝑄, 𝐹) Fn (ℤ𝑀))
51, 4syl 17 . 2 (𝜑 → seq𝑀(𝑄, 𝐹) Fn (ℤ𝑀))
6 simpr 484 . . 3 ((𝜑𝑎 ∈ (ℤ𝑀)) → 𝑎 ∈ (ℤ𝑀))
7 simpll 766 . . . 4 (((𝜑𝑎 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ (𝑀...𝑎)) → 𝜑)
8 elfzuz 13582 . . . . 5 (𝑥 ∈ (𝑀...𝑎) → 𝑥 ∈ (ℤ𝑀))
98adantl 481 . . . 4 (((𝜑𝑎 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ (𝑀...𝑎)) → 𝑥 ∈ (ℤ𝑀))
10 seqfeq3.f . . . 4 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
117, 9, 10syl2anc 583 . . 3 (((𝜑𝑎 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ (𝑀...𝑎)) → (𝐹𝑥) ∈ 𝑆)
12 seqfeq3.cl . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
1312adantlr 714 . . 3 (((𝜑𝑎 ∈ (ℤ𝑀)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
14 seqfeq3.id . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑥𝑄𝑦))
1514adantlr 714 . . 3 (((𝜑𝑎 ∈ (ℤ𝑀)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑥𝑄𝑦))
166, 11, 13, 15seqfeq4 14104 . 2 ((𝜑𝑎 ∈ (ℤ𝑀)) → (seq𝑀( + , 𝐹)‘𝑎) = (seq𝑀(𝑄, 𝐹)‘𝑎))
173, 5, 16eqfnfvd 7069 1 (𝜑 → seq𝑀( + , 𝐹) = seq𝑀(𝑄, 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108   Fn wfn 6570  cfv 6575  (class class class)co 7450  cz 12641  cuz 12905  ...cfz 13569  seqcseq 14054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-cnex 11242  ax-resscn 11243  ax-1cn 11244  ax-icn 11245  ax-addcl 11246  ax-addrcl 11247  ax-mulcl 11248  ax-mulrcl 11249  ax-mulcom 11250  ax-addass 11251  ax-mulass 11252  ax-distr 11253  ax-i2m1 11254  ax-1ne0 11255  ax-1rid 11256  ax-rnegex 11257  ax-rrecex 11258  ax-cnre 11259  ax-pre-lttri 11260  ax-pre-lttrn 11261  ax-pre-ltadd 11262  ax-pre-mulgt0 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6334  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-riota 7406  df-ov 7453  df-oprab 7454  df-mpo 7455  df-om 7906  df-1st 8032  df-2nd 8033  df-frecs 8324  df-wrecs 8355  df-recs 8429  df-rdg 8468  df-er 8765  df-en 9006  df-dom 9007  df-sdom 9008  df-pnf 11328  df-mnf 11329  df-xr 11330  df-ltxr 11331  df-le 11332  df-sub 11524  df-neg 11525  df-nn 12296  df-n0 12556  df-z 12642  df-uz 12906  df-fz 13570  df-seq 14055
This theorem is referenced by:  mulgpropd  19158  esumfsupre  34037
  Copyright terms: Public domain W3C validator