![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > seqfeq3 | Structured version Visualization version GIF version |
Description: Equality of series under different addition operations which agree on an additively closed subset. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 25-Apr-2016.) |
Ref | Expression |
---|---|
seqfeq3.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
seqfeq3.f | ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
seqfeq3.cl | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
seqfeq3.id | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑥𝑄𝑦)) |
Ref | Expression |
---|---|
seqfeq3 | ⊢ (𝜑 → seq𝑀( + , 𝐹) = seq𝑀(𝑄, 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seqfeq3.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
2 | seqfn 13981 | . . 3 ⊢ (𝑀 ∈ ℤ → seq𝑀( + , 𝐹) Fn (ℤ≥‘𝑀)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → seq𝑀( + , 𝐹) Fn (ℤ≥‘𝑀)) |
4 | seqfn 13981 | . . 3 ⊢ (𝑀 ∈ ℤ → seq𝑀(𝑄, 𝐹) Fn (ℤ≥‘𝑀)) | |
5 | 1, 4 | syl 17 | . 2 ⊢ (𝜑 → seq𝑀(𝑄, 𝐹) Fn (ℤ≥‘𝑀)) |
6 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ (ℤ≥‘𝑀)) → 𝑎 ∈ (ℤ≥‘𝑀)) | |
7 | simpll 764 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ∈ (𝑀...𝑎)) → 𝜑) | |
8 | elfzuz 13500 | . . . . 5 ⊢ (𝑥 ∈ (𝑀...𝑎) → 𝑥 ∈ (ℤ≥‘𝑀)) | |
9 | 8 | adantl 481 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ∈ (𝑀...𝑎)) → 𝑥 ∈ (ℤ≥‘𝑀)) |
10 | seqfeq3.f | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) | |
11 | 7, 9, 10 | syl2anc 583 | . . 3 ⊢ (((𝜑 ∧ 𝑎 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ∈ (𝑀...𝑎)) → (𝐹‘𝑥) ∈ 𝑆) |
12 | seqfeq3.cl | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | |
13 | 12 | adantlr 712 | . . 3 ⊢ (((𝜑 ∧ 𝑎 ∈ (ℤ≥‘𝑀)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
14 | seqfeq3.id | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑥𝑄𝑦)) | |
15 | 14 | adantlr 712 | . . 3 ⊢ (((𝜑 ∧ 𝑎 ∈ (ℤ≥‘𝑀)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑥𝑄𝑦)) |
16 | 6, 11, 13, 15 | seqfeq4 14020 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ (ℤ≥‘𝑀)) → (seq𝑀( + , 𝐹)‘𝑎) = (seq𝑀(𝑄, 𝐹)‘𝑎)) |
17 | 3, 5, 16 | eqfnfvd 7028 | 1 ⊢ (𝜑 → seq𝑀( + , 𝐹) = seq𝑀(𝑄, 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Fn wfn 6531 ‘cfv 6536 (class class class)co 7404 ℤcz 12559 ℤ≥cuz 12823 ...cfz 13487 seqcseq 13969 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-n0 12474 df-z 12560 df-uz 12824 df-fz 13488 df-seq 13970 |
This theorem is referenced by: mulgpropd 19041 esumfsupre 33599 |
Copyright terms: Public domain | W3C validator |