![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > seqfeq3 | Structured version Visualization version GIF version |
Description: Equality of series under different addition operations which agree on an additively closed subset. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 25-Apr-2016.) |
Ref | Expression |
---|---|
seqfeq3.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
seqfeq3.f | ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
seqfeq3.cl | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
seqfeq3.id | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑥𝑄𝑦)) |
Ref | Expression |
---|---|
seqfeq3 | ⊢ (𝜑 → seq𝑀( + , 𝐹) = seq𝑀(𝑄, 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seqfeq3.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
2 | seqfn 13135 | . . 3 ⊢ (𝑀 ∈ ℤ → seq𝑀( + , 𝐹) Fn (ℤ≥‘𝑀)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → seq𝑀( + , 𝐹) Fn (ℤ≥‘𝑀)) |
4 | seqfn 13135 | . . 3 ⊢ (𝑀 ∈ ℤ → seq𝑀(𝑄, 𝐹) Fn (ℤ≥‘𝑀)) | |
5 | 1, 4 | syl 17 | . 2 ⊢ (𝜑 → seq𝑀(𝑄, 𝐹) Fn (ℤ≥‘𝑀)) |
6 | simpr 479 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ (ℤ≥‘𝑀)) → 𝑎 ∈ (ℤ≥‘𝑀)) | |
7 | simpll 757 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ∈ (𝑀...𝑎)) → 𝜑) | |
8 | elfzuz 12659 | . . . . 5 ⊢ (𝑥 ∈ (𝑀...𝑎) → 𝑥 ∈ (ℤ≥‘𝑀)) | |
9 | 8 | adantl 475 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ∈ (𝑀...𝑎)) → 𝑥 ∈ (ℤ≥‘𝑀)) |
10 | seqfeq3.f | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) | |
11 | 7, 9, 10 | syl2anc 579 | . . 3 ⊢ (((𝜑 ∧ 𝑎 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ∈ (𝑀...𝑎)) → (𝐹‘𝑥) ∈ 𝑆) |
12 | seqfeq3.cl | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | |
13 | 12 | adantlr 705 | . . 3 ⊢ (((𝜑 ∧ 𝑎 ∈ (ℤ≥‘𝑀)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
14 | seqfeq3.id | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑥𝑄𝑦)) | |
15 | 14 | adantlr 705 | . . 3 ⊢ (((𝜑 ∧ 𝑎 ∈ (ℤ≥‘𝑀)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑥𝑄𝑦)) |
16 | 6, 11, 13, 15 | seqfeq4 13172 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ (ℤ≥‘𝑀)) → (seq𝑀( + , 𝐹)‘𝑎) = (seq𝑀(𝑄, 𝐹)‘𝑎)) |
17 | 3, 5, 16 | eqfnfvd 6579 | 1 ⊢ (𝜑 → seq𝑀( + , 𝐹) = seq𝑀(𝑄, 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 Fn wfn 6132 ‘cfv 6137 (class class class)co 6924 ℤcz 11732 ℤ≥cuz 11996 ...cfz 12647 seqcseq 13123 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-1st 7447 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-er 8028 df-en 8244 df-dom 8245 df-sdom 8246 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-nn 11379 df-n0 11647 df-z 11733 df-uz 11997 df-fz 12648 df-seq 13124 |
This theorem is referenced by: mulgpropd 17972 esumfsupre 30735 |
Copyright terms: Public domain | W3C validator |