MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqcl Structured version   Visualization version   GIF version

Theorem seqcl 13989
Description: Closure properties of the recursive sequence builder. (Contributed by Mario Carneiro, 2-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
seqcl.1 (𝜑𝑁 ∈ (ℤ𝑀))
seqcl.2 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝑆)
seqcl.3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
Assertion
Ref Expression
seqcl (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝑆)
Distinct variable groups:   𝑥,𝑦, +   𝑥,𝐹,𝑦   𝑥,𝑀,𝑦   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦   𝑥,𝑁
Allowed substitution hint:   𝑁(𝑦)

Proof of Theorem seqcl
StepHypRef Expression
1 fveq2 6882 . . . 4 (𝑥 = 𝑀 → (𝐹𝑥) = (𝐹𝑀))
21eleq1d 2810 . . 3 (𝑥 = 𝑀 → ((𝐹𝑥) ∈ 𝑆 ↔ (𝐹𝑀) ∈ 𝑆))
3 seqcl.2 . . . 4 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝑆)
43ralrimiva 3138 . . 3 (𝜑 → ∀𝑥 ∈ (𝑀...𝑁)(𝐹𝑥) ∈ 𝑆)
5 seqcl.1 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
6 eluzfz1 13509 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
75, 6syl 17 . . 3 (𝜑𝑀 ∈ (𝑀...𝑁))
82, 4, 7rspcdva 3605 . 2 (𝜑 → (𝐹𝑀) ∈ 𝑆)
9 seqcl.3 . 2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
10 eluzel2 12826 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
115, 10syl 17 . . . . 5 (𝜑𝑀 ∈ ℤ)
12 fzp1ss 13553 . . . . 5 (𝑀 ∈ ℤ → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
1311, 12syl 17 . . . 4 (𝜑 → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
1413sselda 3975 . . 3 ((𝜑𝑥 ∈ ((𝑀 + 1)...𝑁)) → 𝑥 ∈ (𝑀...𝑁))
1514, 3syldan 590 . 2 ((𝜑𝑥 ∈ ((𝑀 + 1)...𝑁)) → (𝐹𝑥) ∈ 𝑆)
168, 9, 5, 15seqcl2 13987 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  wss 3941  cfv 6534  (class class class)co 7402  1c1 11108   + caddc 11110  cz 12557  cuz 12821  ...cfz 13485  seqcseq 13967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-n0 12472  df-z 12558  df-uz 12822  df-fz 13486  df-seq 13968
This theorem is referenced by:  sermono  14001  seqsplit  14002  seqcaopr2  14005  seqf1olem2a  14007  seqf1olem2  14009  seqid3  14013  seqhomo  14016  seqz  14017  seqdistr  14020  serge0  14023  serle  14024  seqof  14026  seqcoll  14427  seqcoll2  14428  fsumcl2lem  15679  prodfn0  15842  prodfrec  15843  prodfdiv  15844  fprodcl2lem  15896  eulerthlem2  16720  gsumwsubmcl  18758  mulgnnsubcl  19009  gsumzcl2  19826  gsumzaddlem  19837  gsummptfzcl  19885  lgscllem  27177  lgsval4a  27192  lgsneg  27194  lgsdir  27205  lgsdilem2  27206  lgsdi  27207  lgsne0  27208  gsumncl  34070  faclim  35238  knoppcnlem8  35876  mblfinlem2  37029  fmul01  44841  fmulcl  44842  fmuldfeq  44844  fmul01lt1lem1  44845  fmul01lt1lem2  44846  stoweidlem3  45264  stoweidlem42  45303  stoweidlem48  45309  wallispilem4  45329  wallispi  45331  wallispi2lem1  45332  wallispi2  45334  stirlinglem5  45339  stirlinglem7  45341  stirlinglem10  45344  sge0isum  45688
  Copyright terms: Public domain W3C validator