MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqcl Structured version   Visualization version   GIF version

Theorem seqcl 14038
Description: Closure properties of the recursive sequence builder. (Contributed by Mario Carneiro, 2-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
seqcl.1 (𝜑𝑁 ∈ (ℤ𝑀))
seqcl.2 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝑆)
seqcl.3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
Assertion
Ref Expression
seqcl (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝑆)
Distinct variable groups:   𝑥,𝑦, +   𝑥,𝐹,𝑦   𝑥,𝑀,𝑦   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦   𝑥,𝑁
Allowed substitution hint:   𝑁(𝑦)

Proof of Theorem seqcl
StepHypRef Expression
1 fveq2 6875 . . . 4 (𝑥 = 𝑀 → (𝐹𝑥) = (𝐹𝑀))
21eleq1d 2819 . . 3 (𝑥 = 𝑀 → ((𝐹𝑥) ∈ 𝑆 ↔ (𝐹𝑀) ∈ 𝑆))
3 seqcl.2 . . . 4 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝑆)
43ralrimiva 3132 . . 3 (𝜑 → ∀𝑥 ∈ (𝑀...𝑁)(𝐹𝑥) ∈ 𝑆)
5 seqcl.1 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
6 eluzfz1 13546 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
75, 6syl 17 . . 3 (𝜑𝑀 ∈ (𝑀...𝑁))
82, 4, 7rspcdva 3602 . 2 (𝜑 → (𝐹𝑀) ∈ 𝑆)
9 seqcl.3 . 2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
10 eluzel2 12855 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
115, 10syl 17 . . . . 5 (𝜑𝑀 ∈ ℤ)
12 fzp1ss 13590 . . . . 5 (𝑀 ∈ ℤ → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
1311, 12syl 17 . . . 4 (𝜑 → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
1413sselda 3958 . . 3 ((𝜑𝑥 ∈ ((𝑀 + 1)...𝑁)) → 𝑥 ∈ (𝑀...𝑁))
1514, 3syldan 591 . 2 ((𝜑𝑥 ∈ ((𝑀 + 1)...𝑁)) → (𝐹𝑥) ∈ 𝑆)
168, 9, 5, 15seqcl2 14036 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wss 3926  cfv 6530  (class class class)co 7403  1c1 11128   + caddc 11130  cz 12586  cuz 12850  ...cfz 13522  seqcseq 14017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-n0 12500  df-z 12587  df-uz 12851  df-fz 13523  df-seq 14018
This theorem is referenced by:  sermono  14050  seqsplit  14051  seqcaopr2  14054  seqf1olem2a  14056  seqf1olem2  14058  seqid3  14062  seqhomo  14065  seqz  14066  seqdistr  14069  serge0  14072  serle  14073  seqof  14075  seqcoll  14480  seqcoll2  14481  fsumcl2lem  15745  prodfn0  15908  prodfrec  15909  prodfdiv  15910  fprodcl2lem  15964  eulerthlem2  16799  gsumwsubmcl  18813  mulgnnsubcl  19067  gsumzcl2  19889  gsumzaddlem  19900  gsummptfzcl  19948  lgscllem  27265  lgsval4a  27280  lgsneg  27282  lgsdir  27293  lgsdilem2  27294  lgsdi  27295  lgsne0  27296  gsumncl  34518  faclim  35709  knoppcnlem8  36464  mblfinlem2  37628  fmul01  45557  fmulcl  45558  fmuldfeq  45560  fmul01lt1lem1  45561  fmul01lt1lem2  45562  stoweidlem3  45980  stoweidlem42  46019  stoweidlem48  46025  wallispilem4  46045  wallispi  46047  wallispi2lem1  46048  wallispi2  46050  stirlinglem5  46055  stirlinglem7  46057  stirlinglem10  46060  sge0isum  46404
  Copyright terms: Public domain W3C validator