MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqcl Structured version   Visualization version   GIF version

Theorem seqcl 14019
Description: Closure properties of the recursive sequence builder. (Contributed by Mario Carneiro, 2-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
seqcl.1 (𝜑𝑁 ∈ (ℤ𝑀))
seqcl.2 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝑆)
seqcl.3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
Assertion
Ref Expression
seqcl (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝑆)
Distinct variable groups:   𝑥,𝑦, +   𝑥,𝐹,𝑦   𝑥,𝑀,𝑦   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦   𝑥,𝑁
Allowed substitution hint:   𝑁(𝑦)

Proof of Theorem seqcl
StepHypRef Expression
1 fveq2 6897 . . . 4 (𝑥 = 𝑀 → (𝐹𝑥) = (𝐹𝑀))
21eleq1d 2814 . . 3 (𝑥 = 𝑀 → ((𝐹𝑥) ∈ 𝑆 ↔ (𝐹𝑀) ∈ 𝑆))
3 seqcl.2 . . . 4 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝑆)
43ralrimiva 3143 . . 3 (𝜑 → ∀𝑥 ∈ (𝑀...𝑁)(𝐹𝑥) ∈ 𝑆)
5 seqcl.1 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
6 eluzfz1 13540 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
75, 6syl 17 . . 3 (𝜑𝑀 ∈ (𝑀...𝑁))
82, 4, 7rspcdva 3610 . 2 (𝜑 → (𝐹𝑀) ∈ 𝑆)
9 seqcl.3 . 2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
10 eluzel2 12857 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
115, 10syl 17 . . . . 5 (𝜑𝑀 ∈ ℤ)
12 fzp1ss 13584 . . . . 5 (𝑀 ∈ ℤ → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
1311, 12syl 17 . . . 4 (𝜑 → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
1413sselda 3980 . . 3 ((𝜑𝑥 ∈ ((𝑀 + 1)...𝑁)) → 𝑥 ∈ (𝑀...𝑁))
1514, 3syldan 590 . 2 ((𝜑𝑥 ∈ ((𝑀 + 1)...𝑁)) → (𝐹𝑥) ∈ 𝑆)
168, 9, 5, 15seqcl2 14017 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wss 3947  cfv 6548  (class class class)co 7420  1c1 11139   + caddc 11141  cz 12588  cuz 12852  ...cfz 13516  seqcseq 13998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-er 8724  df-en 8964  df-dom 8965  df-sdom 8966  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-n0 12503  df-z 12589  df-uz 12853  df-fz 13517  df-seq 13999
This theorem is referenced by:  sermono  14031  seqsplit  14032  seqcaopr2  14035  seqf1olem2a  14037  seqf1olem2  14039  seqid3  14043  seqhomo  14046  seqz  14047  seqdistr  14050  serge0  14053  serle  14054  seqof  14056  seqcoll  14457  seqcoll2  14458  fsumcl2lem  15709  prodfn0  15872  prodfrec  15873  prodfdiv  15874  fprodcl2lem  15926  eulerthlem2  16750  gsumwsubmcl  18788  mulgnnsubcl  19040  gsumzcl2  19864  gsumzaddlem  19875  gsummptfzcl  19923  lgscllem  27236  lgsval4a  27251  lgsneg  27253  lgsdir  27264  lgsdilem2  27265  lgsdi  27266  lgsne0  27267  gsumncl  34172  faclim  35340  knoppcnlem8  35975  mblfinlem2  37131  fmul01  44968  fmulcl  44969  fmuldfeq  44971  fmul01lt1lem1  44972  fmul01lt1lem2  44973  stoweidlem3  45391  stoweidlem42  45430  stoweidlem48  45436  wallispilem4  45456  wallispi  45458  wallispi2lem1  45459  wallispi2  45461  stirlinglem5  45466  stirlinglem7  45468  stirlinglem10  45471  sge0isum  45815
  Copyright terms: Public domain W3C validator