MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqcl Structured version   Visualization version   GIF version

Theorem seqcl 14060
Description: Closure properties of the recursive sequence builder. (Contributed by Mario Carneiro, 2-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
seqcl.1 (𝜑𝑁 ∈ (ℤ𝑀))
seqcl.2 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝑆)
seqcl.3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
Assertion
Ref Expression
seqcl (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝑆)
Distinct variable groups:   𝑥,𝑦, +   𝑥,𝐹,𝑦   𝑥,𝑀,𝑦   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦   𝑥,𝑁
Allowed substitution hint:   𝑁(𝑦)

Proof of Theorem seqcl
StepHypRef Expression
1 fveq2 6907 . . . 4 (𝑥 = 𝑀 → (𝐹𝑥) = (𝐹𝑀))
21eleq1d 2824 . . 3 (𝑥 = 𝑀 → ((𝐹𝑥) ∈ 𝑆 ↔ (𝐹𝑀) ∈ 𝑆))
3 seqcl.2 . . . 4 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝑆)
43ralrimiva 3144 . . 3 (𝜑 → ∀𝑥 ∈ (𝑀...𝑁)(𝐹𝑥) ∈ 𝑆)
5 seqcl.1 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
6 eluzfz1 13568 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
75, 6syl 17 . . 3 (𝜑𝑀 ∈ (𝑀...𝑁))
82, 4, 7rspcdva 3623 . 2 (𝜑 → (𝐹𝑀) ∈ 𝑆)
9 seqcl.3 . 2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
10 eluzel2 12881 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
115, 10syl 17 . . . . 5 (𝜑𝑀 ∈ ℤ)
12 fzp1ss 13612 . . . . 5 (𝑀 ∈ ℤ → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
1311, 12syl 17 . . . 4 (𝜑 → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
1413sselda 3995 . . 3 ((𝜑𝑥 ∈ ((𝑀 + 1)...𝑁)) → 𝑥 ∈ (𝑀...𝑁))
1514, 3syldan 591 . 2 ((𝜑𝑥 ∈ ((𝑀 + 1)...𝑁)) → (𝐹𝑥) ∈ 𝑆)
168, 9, 5, 15seqcl2 14058 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wss 3963  cfv 6563  (class class class)co 7431  1c1 11154   + caddc 11156  cz 12611  cuz 12876  ...cfz 13544  seqcseq 14039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-seq 14040
This theorem is referenced by:  sermono  14072  seqsplit  14073  seqcaopr2  14076  seqf1olem2a  14078  seqf1olem2  14080  seqid3  14084  seqhomo  14087  seqz  14088  seqdistr  14091  serge0  14094  serle  14095  seqof  14097  seqcoll  14500  seqcoll2  14501  fsumcl2lem  15764  prodfn0  15927  prodfrec  15928  prodfdiv  15929  fprodcl2lem  15983  eulerthlem2  16816  gsumwsubmcl  18863  mulgnnsubcl  19117  gsumzcl2  19943  gsumzaddlem  19954  gsummptfzcl  20002  lgscllem  27363  lgsval4a  27378  lgsneg  27380  lgsdir  27391  lgsdilem2  27392  lgsdi  27393  lgsne0  27394  gsumncl  34534  faclim  35726  knoppcnlem8  36483  mblfinlem2  37645  fmul01  45536  fmulcl  45537  fmuldfeq  45539  fmul01lt1lem1  45540  fmul01lt1lem2  45541  stoweidlem3  45959  stoweidlem42  45998  stoweidlem48  46004  wallispilem4  46024  wallispi  46026  wallispi2lem1  46027  wallispi2  46029  stirlinglem5  46034  stirlinglem7  46036  stirlinglem10  46039  sge0isum  46383
  Copyright terms: Public domain W3C validator