Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > serge0 | Structured version Visualization version GIF version |
Description: A finite sum of nonnegative terms is nonnegative. (Contributed by Mario Carneiro, 8-Feb-2014.) (Revised by Mario Carneiro, 27-May-2014.) |
Ref | Expression |
---|---|
serge0.1 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
serge0.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ) |
serge0.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 0 ≤ (𝐹‘𝑘)) |
Ref | Expression |
---|---|
serge0 | ⊢ (𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | serge0.1 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
2 | breq2 5074 | . . . 4 ⊢ (𝑥 = (𝐹‘𝑘) → (0 ≤ 𝑥 ↔ 0 ≤ (𝐹‘𝑘))) | |
3 | serge0.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ) | |
4 | serge0.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 0 ≤ (𝐹‘𝑘)) | |
5 | 2, 3, 4 | elrabd 3619 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥}) |
6 | breq2 5074 | . . . . . 6 ⊢ (𝑥 = 𝑘 → (0 ≤ 𝑥 ↔ 0 ≤ 𝑘)) | |
7 | 6 | elrab 3617 | . . . . 5 ⊢ (𝑘 ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥} ↔ (𝑘 ∈ ℝ ∧ 0 ≤ 𝑘)) |
8 | breq2 5074 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (0 ≤ 𝑥 ↔ 0 ≤ 𝑦)) | |
9 | 8 | elrab 3617 | . . . . 5 ⊢ (𝑦 ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥} ↔ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦)) |
10 | breq2 5074 | . . . . . 6 ⊢ (𝑥 = (𝑘 + 𝑦) → (0 ≤ 𝑥 ↔ 0 ≤ (𝑘 + 𝑦))) | |
11 | readdcl 10885 | . . . . . . 7 ⊢ ((𝑘 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑘 + 𝑦) ∈ ℝ) | |
12 | 11 | ad2ant2r 743 | . . . . . 6 ⊢ (((𝑘 ∈ ℝ ∧ 0 ≤ 𝑘) ∧ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦)) → (𝑘 + 𝑦) ∈ ℝ) |
13 | addge0 11394 | . . . . . . 7 ⊢ (((𝑘 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (0 ≤ 𝑘 ∧ 0 ≤ 𝑦)) → 0 ≤ (𝑘 + 𝑦)) | |
14 | 13 | an4s 656 | . . . . . 6 ⊢ (((𝑘 ∈ ℝ ∧ 0 ≤ 𝑘) ∧ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦)) → 0 ≤ (𝑘 + 𝑦)) |
15 | 10, 12, 14 | elrabd 3619 | . . . . 5 ⊢ (((𝑘 ∈ ℝ ∧ 0 ≤ 𝑘) ∧ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦)) → (𝑘 + 𝑦) ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥}) |
16 | 7, 9, 15 | syl2anb 597 | . . . 4 ⊢ ((𝑘 ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥} ∧ 𝑦 ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥}) → (𝑘 + 𝑦) ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥}) |
17 | 16 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ (𝑘 ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥} ∧ 𝑦 ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥})) → (𝑘 + 𝑦) ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥}) |
18 | 1, 5, 17 | seqcl 13671 | . 2 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥}) |
19 | breq2 5074 | . . . 4 ⊢ (𝑥 = (seq𝑀( + , 𝐹)‘𝑁) → (0 ≤ 𝑥 ↔ 0 ≤ (seq𝑀( + , 𝐹)‘𝑁))) | |
20 | 19 | elrab 3617 | . . 3 ⊢ ((seq𝑀( + , 𝐹)‘𝑁) ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥} ↔ ((seq𝑀( + , 𝐹)‘𝑁) ∈ ℝ ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑁))) |
21 | 20 | simprbi 496 | . 2 ⊢ ((seq𝑀( + , 𝐹)‘𝑁) ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥} → 0 ≤ (seq𝑀( + , 𝐹)‘𝑁)) |
22 | 18, 21 | syl 17 | 1 ⊢ (𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 {crab 3067 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 0cc0 10802 + caddc 10805 ≤ cle 10941 ℤ≥cuz 12511 ...cfz 13168 seqcseq 13649 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-seq 13650 |
This theorem is referenced by: serle 13706 |
Copyright terms: Public domain | W3C validator |