![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > serge0 | Structured version Visualization version GIF version |
Description: A finite sum of nonnegative terms is nonnegative. (Contributed by Mario Carneiro, 8-Feb-2014.) (Revised by Mario Carneiro, 27-May-2014.) |
Ref | Expression |
---|---|
serge0.1 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
serge0.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ) |
serge0.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 0 ≤ (𝐹‘𝑘)) |
Ref | Expression |
---|---|
serge0 | ⊢ (𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | serge0.1 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
2 | serge0.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ) | |
3 | serge0.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 0 ≤ (𝐹‘𝑘)) | |
4 | breq2 4790 | . . . . 5 ⊢ (𝑥 = (𝐹‘𝑘) → (0 ≤ 𝑥 ↔ 0 ≤ (𝐹‘𝑘))) | |
5 | 4 | elrab 3515 | . . . 4 ⊢ ((𝐹‘𝑘) ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥} ↔ ((𝐹‘𝑘) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑘))) |
6 | 2, 3, 5 | sylanbrc 572 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥}) |
7 | breq2 4790 | . . . . . 6 ⊢ (𝑥 = 𝑘 → (0 ≤ 𝑥 ↔ 0 ≤ 𝑘)) | |
8 | 7 | elrab 3515 | . . . . 5 ⊢ (𝑘 ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥} ↔ (𝑘 ∈ ℝ ∧ 0 ≤ 𝑘)) |
9 | breq2 4790 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (0 ≤ 𝑥 ↔ 0 ≤ 𝑦)) | |
10 | 9 | elrab 3515 | . . . . 5 ⊢ (𝑦 ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥} ↔ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦)) |
11 | readdcl 10221 | . . . . . . 7 ⊢ ((𝑘 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑘 + 𝑦) ∈ ℝ) | |
12 | 11 | ad2ant2r 741 | . . . . . 6 ⊢ (((𝑘 ∈ ℝ ∧ 0 ≤ 𝑘) ∧ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦)) → (𝑘 + 𝑦) ∈ ℝ) |
13 | addge0 10719 | . . . . . . 7 ⊢ (((𝑘 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (0 ≤ 𝑘 ∧ 0 ≤ 𝑦)) → 0 ≤ (𝑘 + 𝑦)) | |
14 | 13 | an4s 639 | . . . . . 6 ⊢ (((𝑘 ∈ ℝ ∧ 0 ≤ 𝑘) ∧ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦)) → 0 ≤ (𝑘 + 𝑦)) |
15 | breq2 4790 | . . . . . . 7 ⊢ (𝑥 = (𝑘 + 𝑦) → (0 ≤ 𝑥 ↔ 0 ≤ (𝑘 + 𝑦))) | |
16 | 15 | elrab 3515 | . . . . . 6 ⊢ ((𝑘 + 𝑦) ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥} ↔ ((𝑘 + 𝑦) ∈ ℝ ∧ 0 ≤ (𝑘 + 𝑦))) |
17 | 12, 14, 16 | sylanbrc 572 | . . . . 5 ⊢ (((𝑘 ∈ ℝ ∧ 0 ≤ 𝑘) ∧ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦)) → (𝑘 + 𝑦) ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥}) |
18 | 8, 10, 17 | syl2anb 585 | . . . 4 ⊢ ((𝑘 ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥} ∧ 𝑦 ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥}) → (𝑘 + 𝑦) ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥}) |
19 | 18 | adantl 467 | . . 3 ⊢ ((𝜑 ∧ (𝑘 ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥} ∧ 𝑦 ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥})) → (𝑘 + 𝑦) ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥}) |
20 | 1, 6, 19 | seqcl 13028 | . 2 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥}) |
21 | breq2 4790 | . . . 4 ⊢ (𝑥 = (seq𝑀( + , 𝐹)‘𝑁) → (0 ≤ 𝑥 ↔ 0 ≤ (seq𝑀( + , 𝐹)‘𝑁))) | |
22 | 21 | elrab 3515 | . . 3 ⊢ ((seq𝑀( + , 𝐹)‘𝑁) ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥} ↔ ((seq𝑀( + , 𝐹)‘𝑁) ∈ ℝ ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑁))) |
23 | 22 | simprbi 484 | . 2 ⊢ ((seq𝑀( + , 𝐹)‘𝑁) ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥} → 0 ≤ (seq𝑀( + , 𝐹)‘𝑁)) |
24 | 20, 23 | syl 17 | 1 ⊢ (𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∈ wcel 2145 {crab 3065 class class class wbr 4786 ‘cfv 6031 (class class class)co 6793 ℝcr 10137 0cc0 10138 + caddc 10141 ≤ cle 10277 ℤ≥cuz 11888 ...cfz 12533 seqcseq 13008 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-n0 11495 df-z 11580 df-uz 11889 df-fz 12534 df-seq 13009 |
This theorem is referenced by: serle 13063 |
Copyright terms: Public domain | W3C validator |