| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > serge0 | Structured version Visualization version GIF version | ||
| Description: A finite sum of nonnegative terms is nonnegative. (Contributed by Mario Carneiro, 8-Feb-2014.) (Revised by Mario Carneiro, 27-May-2014.) |
| Ref | Expression |
|---|---|
| serge0.1 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| serge0.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ) |
| serge0.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 0 ≤ (𝐹‘𝑘)) |
| Ref | Expression |
|---|---|
| serge0 | ⊢ (𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | serge0.1 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
| 2 | breq2 5114 | . . . 4 ⊢ (𝑥 = (𝐹‘𝑘) → (0 ≤ 𝑥 ↔ 0 ≤ (𝐹‘𝑘))) | |
| 3 | serge0.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ) | |
| 4 | serge0.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 0 ≤ (𝐹‘𝑘)) | |
| 5 | 2, 3, 4 | elrabd 3664 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥}) |
| 6 | breq2 5114 | . . . . . 6 ⊢ (𝑥 = 𝑘 → (0 ≤ 𝑥 ↔ 0 ≤ 𝑘)) | |
| 7 | 6 | elrab 3662 | . . . . 5 ⊢ (𝑘 ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥} ↔ (𝑘 ∈ ℝ ∧ 0 ≤ 𝑘)) |
| 8 | breq2 5114 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (0 ≤ 𝑥 ↔ 0 ≤ 𝑦)) | |
| 9 | 8 | elrab 3662 | . . . . 5 ⊢ (𝑦 ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥} ↔ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦)) |
| 10 | breq2 5114 | . . . . . 6 ⊢ (𝑥 = (𝑘 + 𝑦) → (0 ≤ 𝑥 ↔ 0 ≤ (𝑘 + 𝑦))) | |
| 11 | readdcl 11158 | . . . . . . 7 ⊢ ((𝑘 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑘 + 𝑦) ∈ ℝ) | |
| 12 | 11 | ad2ant2r 747 | . . . . . 6 ⊢ (((𝑘 ∈ ℝ ∧ 0 ≤ 𝑘) ∧ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦)) → (𝑘 + 𝑦) ∈ ℝ) |
| 13 | addge0 11674 | . . . . . . 7 ⊢ (((𝑘 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (0 ≤ 𝑘 ∧ 0 ≤ 𝑦)) → 0 ≤ (𝑘 + 𝑦)) | |
| 14 | 13 | an4s 660 | . . . . . 6 ⊢ (((𝑘 ∈ ℝ ∧ 0 ≤ 𝑘) ∧ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦)) → 0 ≤ (𝑘 + 𝑦)) |
| 15 | 10, 12, 14 | elrabd 3664 | . . . . 5 ⊢ (((𝑘 ∈ ℝ ∧ 0 ≤ 𝑘) ∧ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦)) → (𝑘 + 𝑦) ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥}) |
| 16 | 7, 9, 15 | syl2anb 598 | . . . 4 ⊢ ((𝑘 ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥} ∧ 𝑦 ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥}) → (𝑘 + 𝑦) ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥}) |
| 17 | 16 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ (𝑘 ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥} ∧ 𝑦 ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥})) → (𝑘 + 𝑦) ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥}) |
| 18 | 1, 5, 17 | seqcl 13994 | . 2 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥}) |
| 19 | breq2 5114 | . . . 4 ⊢ (𝑥 = (seq𝑀( + , 𝐹)‘𝑁) → (0 ≤ 𝑥 ↔ 0 ≤ (seq𝑀( + , 𝐹)‘𝑁))) | |
| 20 | 19 | elrab 3662 | . . 3 ⊢ ((seq𝑀( + , 𝐹)‘𝑁) ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥} ↔ ((seq𝑀( + , 𝐹)‘𝑁) ∈ ℝ ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑁))) |
| 21 | 20 | simprbi 496 | . 2 ⊢ ((seq𝑀( + , 𝐹)‘𝑁) ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥} → 0 ≤ (seq𝑀( + , 𝐹)‘𝑁)) |
| 22 | 18, 21 | syl 17 | 1 ⊢ (𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 {crab 3408 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 ℝcr 11074 0cc0 11075 + caddc 11078 ≤ cle 11216 ℤ≥cuz 12800 ...cfz 13475 seqcseq 13973 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-seq 13974 |
| This theorem is referenced by: serle 14029 |
| Copyright terms: Public domain | W3C validator |