MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  serge0 Structured version   Visualization version   GIF version

Theorem serge0 14021
Description: A finite sum of nonnegative terms is nonnegative. (Contributed by Mario Carneiro, 8-Feb-2014.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
serge0.1 (𝜑𝑁 ∈ (ℤ𝑀))
serge0.2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ)
serge0.3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 0 ≤ (𝐹𝑘))
Assertion
Ref Expression
serge0 (𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑁))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘

Proof of Theorem serge0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 serge0.1 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 breq2 5111 . . . 4 (𝑥 = (𝐹𝑘) → (0 ≤ 𝑥 ↔ 0 ≤ (𝐹𝑘)))
3 serge0.2 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ)
4 serge0.3 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 0 ≤ (𝐹𝑘))
52, 3, 4elrabd 3661 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥})
6 breq2 5111 . . . . . 6 (𝑥 = 𝑘 → (0 ≤ 𝑥 ↔ 0 ≤ 𝑘))
76elrab 3659 . . . . 5 (𝑘 ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥} ↔ (𝑘 ∈ ℝ ∧ 0 ≤ 𝑘))
8 breq2 5111 . . . . . 6 (𝑥 = 𝑦 → (0 ≤ 𝑥 ↔ 0 ≤ 𝑦))
98elrab 3659 . . . . 5 (𝑦 ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥} ↔ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦))
10 breq2 5111 . . . . . 6 (𝑥 = (𝑘 + 𝑦) → (0 ≤ 𝑥 ↔ 0 ≤ (𝑘 + 𝑦)))
11 readdcl 11151 . . . . . . 7 ((𝑘 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑘 + 𝑦) ∈ ℝ)
1211ad2ant2r 747 . . . . . 6 (((𝑘 ∈ ℝ ∧ 0 ≤ 𝑘) ∧ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦)) → (𝑘 + 𝑦) ∈ ℝ)
13 addge0 11667 . . . . . . 7 (((𝑘 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (0 ≤ 𝑘 ∧ 0 ≤ 𝑦)) → 0 ≤ (𝑘 + 𝑦))
1413an4s 660 . . . . . 6 (((𝑘 ∈ ℝ ∧ 0 ≤ 𝑘) ∧ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦)) → 0 ≤ (𝑘 + 𝑦))
1510, 12, 14elrabd 3661 . . . . 5 (((𝑘 ∈ ℝ ∧ 0 ≤ 𝑘) ∧ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦)) → (𝑘 + 𝑦) ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥})
167, 9, 15syl2anb 598 . . . 4 ((𝑘 ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥} ∧ 𝑦 ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥}) → (𝑘 + 𝑦) ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥})
1716adantl 481 . . 3 ((𝜑 ∧ (𝑘 ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥} ∧ 𝑦 ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥})) → (𝑘 + 𝑦) ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥})
181, 5, 17seqcl 13987 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥})
19 breq2 5111 . . . 4 (𝑥 = (seq𝑀( + , 𝐹)‘𝑁) → (0 ≤ 𝑥 ↔ 0 ≤ (seq𝑀( + , 𝐹)‘𝑁)))
2019elrab 3659 . . 3 ((seq𝑀( + , 𝐹)‘𝑁) ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥} ↔ ((seq𝑀( + , 𝐹)‘𝑁) ∈ ℝ ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑁)))
2120simprbi 496 . 2 ((seq𝑀( + , 𝐹)‘𝑁) ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥} → 0 ≤ (seq𝑀( + , 𝐹)‘𝑁))
2218, 21syl 17 1 (𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  {crab 3405   class class class wbr 5107  cfv 6511  (class class class)co 7387  cr 11067  0cc0 11068   + caddc 11071  cle 11209  cuz 12793  ...cfz 13468  seqcseq 13966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-seq 13967
This theorem is referenced by:  serle  14022
  Copyright terms: Public domain W3C validator