Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  serge0 Structured version   Visualization version   GIF version

Theorem serge0 13423
 Description: A finite sum of nonnegative terms is nonnegative. (Contributed by Mario Carneiro, 8-Feb-2014.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
serge0.1 (𝜑𝑁 ∈ (ℤ𝑀))
serge0.2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ)
serge0.3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 0 ≤ (𝐹𝑘))
Assertion
Ref Expression
serge0 (𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑁))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘

Proof of Theorem serge0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 serge0.1 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 breq2 5035 . . . 4 (𝑥 = (𝐹𝑘) → (0 ≤ 𝑥 ↔ 0 ≤ (𝐹𝑘)))
3 serge0.2 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ)
4 serge0.3 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 0 ≤ (𝐹𝑘))
52, 3, 4elrabd 3630 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥})
6 breq2 5035 . . . . . 6 (𝑥 = 𝑘 → (0 ≤ 𝑥 ↔ 0 ≤ 𝑘))
76elrab 3628 . . . . 5 (𝑘 ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥} ↔ (𝑘 ∈ ℝ ∧ 0 ≤ 𝑘))
8 breq2 5035 . . . . . 6 (𝑥 = 𝑦 → (0 ≤ 𝑥 ↔ 0 ≤ 𝑦))
98elrab 3628 . . . . 5 (𝑦 ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥} ↔ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦))
10 breq2 5035 . . . . . 6 (𝑥 = (𝑘 + 𝑦) → (0 ≤ 𝑥 ↔ 0 ≤ (𝑘 + 𝑦)))
11 readdcl 10612 . . . . . . 7 ((𝑘 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑘 + 𝑦) ∈ ℝ)
1211ad2ant2r 746 . . . . . 6 (((𝑘 ∈ ℝ ∧ 0 ≤ 𝑘) ∧ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦)) → (𝑘 + 𝑦) ∈ ℝ)
13 addge0 11121 . . . . . . 7 (((𝑘 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (0 ≤ 𝑘 ∧ 0 ≤ 𝑦)) → 0 ≤ (𝑘 + 𝑦))
1413an4s 659 . . . . . 6 (((𝑘 ∈ ℝ ∧ 0 ≤ 𝑘) ∧ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦)) → 0 ≤ (𝑘 + 𝑦))
1510, 12, 14elrabd 3630 . . . . 5 (((𝑘 ∈ ℝ ∧ 0 ≤ 𝑘) ∧ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦)) → (𝑘 + 𝑦) ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥})
167, 9, 15syl2anb 600 . . . 4 ((𝑘 ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥} ∧ 𝑦 ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥}) → (𝑘 + 𝑦) ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥})
1716adantl 485 . . 3 ((𝜑 ∧ (𝑘 ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥} ∧ 𝑦 ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥})) → (𝑘 + 𝑦) ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥})
181, 5, 17seqcl 13389 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥})
19 breq2 5035 . . . 4 (𝑥 = (seq𝑀( + , 𝐹)‘𝑁) → (0 ≤ 𝑥 ↔ 0 ≤ (seq𝑀( + , 𝐹)‘𝑁)))
2019elrab 3628 . . 3 ((seq𝑀( + , 𝐹)‘𝑁) ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥} ↔ ((seq𝑀( + , 𝐹)‘𝑁) ∈ ℝ ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑁)))
2120simprbi 500 . 2 ((seq𝑀( + , 𝐹)‘𝑁) ∈ {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥} → 0 ≤ (seq𝑀( + , 𝐹)‘𝑁))
2218, 21syl 17 1 (𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑁))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∈ wcel 2111  {crab 3110   class class class wbr 5031  ‘cfv 6325  (class class class)co 7136  ℝcr 10528  0cc0 10529   + caddc 10532   ≤ cle 10668  ℤ≥cuz 12234  ...cfz 12888  seqcseq 13367 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-om 7564  df-1st 7674  df-2nd 7675  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-er 8275  df-en 8496  df-dom 8497  df-sdom 8498  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11629  df-n0 11889  df-z 11973  df-uz 12235  df-fz 12889  df-seq 13368 This theorem is referenced by:  serle  13424
 Copyright terms: Public domain W3C validator