MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  serle Structured version   Visualization version   GIF version

Theorem serle 14022
Description: Comparison of partial sums of two infinite series of reals. (Contributed by NM, 27-Dec-2005.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
serge0.1 (𝜑𝑁 ∈ (ℤ𝑀))
serge0.2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ)
serle.3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ∈ ℝ)
serle.4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ≤ (𝐺𝑘))
Assertion
Ref Expression
serle (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ≤ (seq𝑀( + , 𝐺)‘𝑁))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘

Proof of Theorem serle
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 serge0.1 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
2 fveq2 6891 . . . . . . . 8 (𝑥 = 𝑘 → (𝐺𝑥) = (𝐺𝑘))
3 fveq2 6891 . . . . . . . 8 (𝑥 = 𝑘 → (𝐹𝑥) = (𝐹𝑘))
42, 3oveq12d 7426 . . . . . . 7 (𝑥 = 𝑘 → ((𝐺𝑥) − (𝐹𝑥)) = ((𝐺𝑘) − (𝐹𝑘)))
5 eqid 2732 . . . . . . 7 (𝑥 ∈ V ↦ ((𝐺𝑥) − (𝐹𝑥))) = (𝑥 ∈ V ↦ ((𝐺𝑥) − (𝐹𝑥)))
6 ovex 7441 . . . . . . 7 ((𝐺𝑘) − (𝐹𝑘)) ∈ V
74, 5, 6fvmpt 6998 . . . . . 6 (𝑘 ∈ V → ((𝑥 ∈ V ↦ ((𝐺𝑥) − (𝐹𝑥)))‘𝑘) = ((𝐺𝑘) − (𝐹𝑘)))
87elv 3480 . . . . 5 ((𝑥 ∈ V ↦ ((𝐺𝑥) − (𝐹𝑥)))‘𝑘) = ((𝐺𝑘) − (𝐹𝑘))
9 serle.3 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ∈ ℝ)
10 serge0.2 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ)
119, 10resubcld 11641 . . . . 5 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ((𝐺𝑘) − (𝐹𝑘)) ∈ ℝ)
128, 11eqeltrid 2837 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ((𝑥 ∈ V ↦ ((𝐺𝑥) − (𝐹𝑥)))‘𝑘) ∈ ℝ)
13 serle.4 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ≤ (𝐺𝑘))
149, 10subge0d 11803 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (0 ≤ ((𝐺𝑘) − (𝐹𝑘)) ↔ (𝐹𝑘) ≤ (𝐺𝑘)))
1513, 14mpbird 256 . . . . 5 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 0 ≤ ((𝐺𝑘) − (𝐹𝑘)))
1615, 8breqtrrdi 5190 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 0 ≤ ((𝑥 ∈ V ↦ ((𝐺𝑥) − (𝐹𝑥)))‘𝑘))
171, 12, 16serge0 14021 . . 3 (𝜑 → 0 ≤ (seq𝑀( + , (𝑥 ∈ V ↦ ((𝐺𝑥) − (𝐹𝑥))))‘𝑁))
189recnd 11241 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ∈ ℂ)
1910recnd 11241 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℂ)
208a1i 11 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ((𝑥 ∈ V ↦ ((𝐺𝑥) − (𝐹𝑥)))‘𝑘) = ((𝐺𝑘) − (𝐹𝑘)))
211, 18, 19, 20sersub 14010 . . 3 (𝜑 → (seq𝑀( + , (𝑥 ∈ V ↦ ((𝐺𝑥) − (𝐹𝑥))))‘𝑁) = ((seq𝑀( + , 𝐺)‘𝑁) − (seq𝑀( + , 𝐹)‘𝑁)))
2217, 21breqtrd 5174 . 2 (𝜑 → 0 ≤ ((seq𝑀( + , 𝐺)‘𝑁) − (seq𝑀( + , 𝐹)‘𝑁)))
23 readdcl 11192 . . . . 5 ((𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑘 + 𝑥) ∈ ℝ)
2423adantl 482 . . . 4 ((𝜑 ∧ (𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ)) → (𝑘 + 𝑥) ∈ ℝ)
251, 9, 24seqcl 13987 . . 3 (𝜑 → (seq𝑀( + , 𝐺)‘𝑁) ∈ ℝ)
261, 10, 24seqcl 13987 . . 3 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ ℝ)
2725, 26subge0d 11803 . 2 (𝜑 → (0 ≤ ((seq𝑀( + , 𝐺)‘𝑁) − (seq𝑀( + , 𝐹)‘𝑁)) ↔ (seq𝑀( + , 𝐹)‘𝑁) ≤ (seq𝑀( + , 𝐺)‘𝑁)))
2822, 27mpbid 231 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ≤ (seq𝑀( + , 𝐺)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3474   class class class wbr 5148  cmpt 5231  cfv 6543  (class class class)co 7408  cr 11108  0cc0 11109   + caddc 11112  cle 11248  cmin 11443  cuz 12821  ...cfz 13483  seqcseq 13965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-n0 12472  df-z 12558  df-uz 12822  df-fz 13484  df-fzo 13627  df-seq 13966
This theorem is referenced by:  iserle  15605  cvgcmpub  15762  ioombl1lem4  25077  stirlinglem10  44789
  Copyright terms: Public domain W3C validator