MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  serle Structured version   Visualization version   GIF version

Theorem serle 13971
Description: Comparison of partial sums of two infinite series of reals. (Contributed by NM, 27-Dec-2005.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
serge0.1 (𝜑𝑁 ∈ (ℤ𝑀))
serge0.2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ)
serle.3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ∈ ℝ)
serle.4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ≤ (𝐺𝑘))
Assertion
Ref Expression
serle (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ≤ (seq𝑀( + , 𝐺)‘𝑁))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘

Proof of Theorem serle
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 serge0.1 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
2 fveq2 6831 . . . . . . . 8 (𝑥 = 𝑘 → (𝐺𝑥) = (𝐺𝑘))
3 fveq2 6831 . . . . . . . 8 (𝑥 = 𝑘 → (𝐹𝑥) = (𝐹𝑘))
42, 3oveq12d 7373 . . . . . . 7 (𝑥 = 𝑘 → ((𝐺𝑥) − (𝐹𝑥)) = ((𝐺𝑘) − (𝐹𝑘)))
5 eqid 2733 . . . . . . 7 (𝑥 ∈ V ↦ ((𝐺𝑥) − (𝐹𝑥))) = (𝑥 ∈ V ↦ ((𝐺𝑥) − (𝐹𝑥)))
6 ovex 7388 . . . . . . 7 ((𝐺𝑘) − (𝐹𝑘)) ∈ V
74, 5, 6fvmpt 6938 . . . . . 6 (𝑘 ∈ V → ((𝑥 ∈ V ↦ ((𝐺𝑥) − (𝐹𝑥)))‘𝑘) = ((𝐺𝑘) − (𝐹𝑘)))
87elv 3442 . . . . 5 ((𝑥 ∈ V ↦ ((𝐺𝑥) − (𝐹𝑥)))‘𝑘) = ((𝐺𝑘) − (𝐹𝑘))
9 serle.3 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ∈ ℝ)
10 serge0.2 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ)
119, 10resubcld 11556 . . . . 5 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ((𝐺𝑘) − (𝐹𝑘)) ∈ ℝ)
128, 11eqeltrid 2837 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ((𝑥 ∈ V ↦ ((𝐺𝑥) − (𝐹𝑥)))‘𝑘) ∈ ℝ)
13 serle.4 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ≤ (𝐺𝑘))
149, 10subge0d 11718 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (0 ≤ ((𝐺𝑘) − (𝐹𝑘)) ↔ (𝐹𝑘) ≤ (𝐺𝑘)))
1513, 14mpbird 257 . . . . 5 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 0 ≤ ((𝐺𝑘) − (𝐹𝑘)))
1615, 8breqtrrdi 5137 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 0 ≤ ((𝑥 ∈ V ↦ ((𝐺𝑥) − (𝐹𝑥)))‘𝑘))
171, 12, 16serge0 13970 . . 3 (𝜑 → 0 ≤ (seq𝑀( + , (𝑥 ∈ V ↦ ((𝐺𝑥) − (𝐹𝑥))))‘𝑁))
189recnd 11151 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ∈ ℂ)
1910recnd 11151 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℂ)
208a1i 11 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ((𝑥 ∈ V ↦ ((𝐺𝑥) − (𝐹𝑥)))‘𝑘) = ((𝐺𝑘) − (𝐹𝑘)))
211, 18, 19, 20sersub 13959 . . 3 (𝜑 → (seq𝑀( + , (𝑥 ∈ V ↦ ((𝐺𝑥) − (𝐹𝑥))))‘𝑁) = ((seq𝑀( + , 𝐺)‘𝑁) − (seq𝑀( + , 𝐹)‘𝑁)))
2217, 21breqtrd 5121 . 2 (𝜑 → 0 ≤ ((seq𝑀( + , 𝐺)‘𝑁) − (seq𝑀( + , 𝐹)‘𝑁)))
23 readdcl 11100 . . . . 5 ((𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑘 + 𝑥) ∈ ℝ)
2423adantl 481 . . . 4 ((𝜑 ∧ (𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ)) → (𝑘 + 𝑥) ∈ ℝ)
251, 9, 24seqcl 13936 . . 3 (𝜑 → (seq𝑀( + , 𝐺)‘𝑁) ∈ ℝ)
261, 10, 24seqcl 13936 . . 3 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ ℝ)
2725, 26subge0d 11718 . 2 (𝜑 → (0 ≤ ((seq𝑀( + , 𝐺)‘𝑁) − (seq𝑀( + , 𝐹)‘𝑁)) ↔ (seq𝑀( + , 𝐹)‘𝑁) ≤ (seq𝑀( + , 𝐺)‘𝑁)))
2822, 27mpbid 232 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ≤ (seq𝑀( + , 𝐺)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  Vcvv 3437   class class class wbr 5095  cmpt 5176  cfv 6489  (class class class)co 7355  cr 11016  0cc0 11017   + caddc 11020  cle 11158  cmin 11355  cuz 12742  ...cfz 13414  seqcseq 13915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-n0 12393  df-z 12480  df-uz 12743  df-fz 13415  df-fzo 13562  df-seq 13916
This theorem is referenced by:  iserle  15574  cvgcmpub  15731  ioombl1lem4  25509  stirlinglem10  46243
  Copyright terms: Public domain W3C validator