| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > serle | Structured version Visualization version GIF version | ||
| Description: Comparison of partial sums of two infinite series of reals. (Contributed by NM, 27-Dec-2005.) (Revised by Mario Carneiro, 27-May-2014.) |
| Ref | Expression |
|---|---|
| serge0.1 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| serge0.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ) |
| serle.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘𝑘) ∈ ℝ) |
| serle.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ≤ (𝐺‘𝑘)) |
| Ref | Expression |
|---|---|
| serle | ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ≤ (seq𝑀( + , 𝐺)‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | serge0.1 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
| 2 | fveq2 6881 | . . . . . . . 8 ⊢ (𝑥 = 𝑘 → (𝐺‘𝑥) = (𝐺‘𝑘)) | |
| 3 | fveq2 6881 | . . . . . . . 8 ⊢ (𝑥 = 𝑘 → (𝐹‘𝑥) = (𝐹‘𝑘)) | |
| 4 | 2, 3 | oveq12d 7428 | . . . . . . 7 ⊢ (𝑥 = 𝑘 → ((𝐺‘𝑥) − (𝐹‘𝑥)) = ((𝐺‘𝑘) − (𝐹‘𝑘))) |
| 5 | eqid 2736 | . . . . . . 7 ⊢ (𝑥 ∈ V ↦ ((𝐺‘𝑥) − (𝐹‘𝑥))) = (𝑥 ∈ V ↦ ((𝐺‘𝑥) − (𝐹‘𝑥))) | |
| 6 | ovex 7443 | . . . . . . 7 ⊢ ((𝐺‘𝑘) − (𝐹‘𝑘)) ∈ V | |
| 7 | 4, 5, 6 | fvmpt 6991 | . . . . . 6 ⊢ (𝑘 ∈ V → ((𝑥 ∈ V ↦ ((𝐺‘𝑥) − (𝐹‘𝑥)))‘𝑘) = ((𝐺‘𝑘) − (𝐹‘𝑘))) |
| 8 | 7 | elv 3469 | . . . . 5 ⊢ ((𝑥 ∈ V ↦ ((𝐺‘𝑥) − (𝐹‘𝑥)))‘𝑘) = ((𝐺‘𝑘) − (𝐹‘𝑘)) |
| 9 | serle.3 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘𝑘) ∈ ℝ) | |
| 10 | serge0.2 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ) | |
| 11 | 9, 10 | resubcld 11670 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → ((𝐺‘𝑘) − (𝐹‘𝑘)) ∈ ℝ) |
| 12 | 8, 11 | eqeltrid 2839 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → ((𝑥 ∈ V ↦ ((𝐺‘𝑥) − (𝐹‘𝑥)))‘𝑘) ∈ ℝ) |
| 13 | serle.4 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ≤ (𝐺‘𝑘)) | |
| 14 | 9, 10 | subge0d 11832 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (0 ≤ ((𝐺‘𝑘) − (𝐹‘𝑘)) ↔ (𝐹‘𝑘) ≤ (𝐺‘𝑘))) |
| 15 | 13, 14 | mpbird 257 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 0 ≤ ((𝐺‘𝑘) − (𝐹‘𝑘))) |
| 16 | 15, 8 | breqtrrdi 5166 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 0 ≤ ((𝑥 ∈ V ↦ ((𝐺‘𝑥) − (𝐹‘𝑥)))‘𝑘)) |
| 17 | 1, 12, 16 | serge0 14079 | . . 3 ⊢ (𝜑 → 0 ≤ (seq𝑀( + , (𝑥 ∈ V ↦ ((𝐺‘𝑥) − (𝐹‘𝑥))))‘𝑁)) |
| 18 | 9 | recnd 11268 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘𝑘) ∈ ℂ) |
| 19 | 10 | recnd 11268 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℂ) |
| 20 | 8 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → ((𝑥 ∈ V ↦ ((𝐺‘𝑥) − (𝐹‘𝑥)))‘𝑘) = ((𝐺‘𝑘) − (𝐹‘𝑘))) |
| 21 | 1, 18, 19, 20 | sersub 14068 | . . 3 ⊢ (𝜑 → (seq𝑀( + , (𝑥 ∈ V ↦ ((𝐺‘𝑥) − (𝐹‘𝑥))))‘𝑁) = ((seq𝑀( + , 𝐺)‘𝑁) − (seq𝑀( + , 𝐹)‘𝑁))) |
| 22 | 17, 21 | breqtrd 5150 | . 2 ⊢ (𝜑 → 0 ≤ ((seq𝑀( + , 𝐺)‘𝑁) − (seq𝑀( + , 𝐹)‘𝑁))) |
| 23 | readdcl 11217 | . . . . 5 ⊢ ((𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑘 + 𝑥) ∈ ℝ) | |
| 24 | 23 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ (𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ)) → (𝑘 + 𝑥) ∈ ℝ) |
| 25 | 1, 9, 24 | seqcl 14045 | . . 3 ⊢ (𝜑 → (seq𝑀( + , 𝐺)‘𝑁) ∈ ℝ) |
| 26 | 1, 10, 24 | seqcl 14045 | . . 3 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ ℝ) |
| 27 | 25, 26 | subge0d 11832 | . 2 ⊢ (𝜑 → (0 ≤ ((seq𝑀( + , 𝐺)‘𝑁) − (seq𝑀( + , 𝐹)‘𝑁)) ↔ (seq𝑀( + , 𝐹)‘𝑁) ≤ (seq𝑀( + , 𝐺)‘𝑁))) |
| 28 | 22, 27 | mpbid 232 | 1 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ≤ (seq𝑀( + , 𝐺)‘𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 class class class wbr 5124 ↦ cmpt 5206 ‘cfv 6536 (class class class)co 7410 ℝcr 11133 0cc0 11134 + caddc 11137 ≤ cle 11275 − cmin 11471 ℤ≥cuz 12857 ...cfz 13529 seqcseq 14024 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-fzo 13677 df-seq 14025 |
| This theorem is referenced by: iserle 15681 cvgcmpub 15838 ioombl1lem4 25519 stirlinglem10 46079 |
| Copyright terms: Public domain | W3C validator |