Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > serle | Structured version Visualization version GIF version |
Description: Comparison of partial sums of two infinite series of reals. (Contributed by NM, 27-Dec-2005.) (Revised by Mario Carneiro, 27-May-2014.) |
Ref | Expression |
---|---|
serge0.1 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
serge0.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ) |
serle.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘𝑘) ∈ ℝ) |
serle.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ≤ (𝐺‘𝑘)) |
Ref | Expression |
---|---|
serle | ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ≤ (seq𝑀( + , 𝐺)‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | serge0.1 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
2 | fveq2 6756 | . . . . . . . 8 ⊢ (𝑥 = 𝑘 → (𝐺‘𝑥) = (𝐺‘𝑘)) | |
3 | fveq2 6756 | . . . . . . . 8 ⊢ (𝑥 = 𝑘 → (𝐹‘𝑥) = (𝐹‘𝑘)) | |
4 | 2, 3 | oveq12d 7273 | . . . . . . 7 ⊢ (𝑥 = 𝑘 → ((𝐺‘𝑥) − (𝐹‘𝑥)) = ((𝐺‘𝑘) − (𝐹‘𝑘))) |
5 | eqid 2738 | . . . . . . 7 ⊢ (𝑥 ∈ V ↦ ((𝐺‘𝑥) − (𝐹‘𝑥))) = (𝑥 ∈ V ↦ ((𝐺‘𝑥) − (𝐹‘𝑥))) | |
6 | ovex 7288 | . . . . . . 7 ⊢ ((𝐺‘𝑘) − (𝐹‘𝑘)) ∈ V | |
7 | 4, 5, 6 | fvmpt 6857 | . . . . . 6 ⊢ (𝑘 ∈ V → ((𝑥 ∈ V ↦ ((𝐺‘𝑥) − (𝐹‘𝑥)))‘𝑘) = ((𝐺‘𝑘) − (𝐹‘𝑘))) |
8 | 7 | elv 3428 | . . . . 5 ⊢ ((𝑥 ∈ V ↦ ((𝐺‘𝑥) − (𝐹‘𝑥)))‘𝑘) = ((𝐺‘𝑘) − (𝐹‘𝑘)) |
9 | serle.3 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘𝑘) ∈ ℝ) | |
10 | serge0.2 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ) | |
11 | 9, 10 | resubcld 11333 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → ((𝐺‘𝑘) − (𝐹‘𝑘)) ∈ ℝ) |
12 | 8, 11 | eqeltrid 2843 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → ((𝑥 ∈ V ↦ ((𝐺‘𝑥) − (𝐹‘𝑥)))‘𝑘) ∈ ℝ) |
13 | serle.4 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ≤ (𝐺‘𝑘)) | |
14 | 9, 10 | subge0d 11495 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (0 ≤ ((𝐺‘𝑘) − (𝐹‘𝑘)) ↔ (𝐹‘𝑘) ≤ (𝐺‘𝑘))) |
15 | 13, 14 | mpbird 256 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 0 ≤ ((𝐺‘𝑘) − (𝐹‘𝑘))) |
16 | 15, 8 | breqtrrdi 5112 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 0 ≤ ((𝑥 ∈ V ↦ ((𝐺‘𝑥) − (𝐹‘𝑥)))‘𝑘)) |
17 | 1, 12, 16 | serge0 13705 | . . 3 ⊢ (𝜑 → 0 ≤ (seq𝑀( + , (𝑥 ∈ V ↦ ((𝐺‘𝑥) − (𝐹‘𝑥))))‘𝑁)) |
18 | 9 | recnd 10934 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘𝑘) ∈ ℂ) |
19 | 10 | recnd 10934 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℂ) |
20 | 8 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → ((𝑥 ∈ V ↦ ((𝐺‘𝑥) − (𝐹‘𝑥)))‘𝑘) = ((𝐺‘𝑘) − (𝐹‘𝑘))) |
21 | 1, 18, 19, 20 | sersub 13694 | . . 3 ⊢ (𝜑 → (seq𝑀( + , (𝑥 ∈ V ↦ ((𝐺‘𝑥) − (𝐹‘𝑥))))‘𝑁) = ((seq𝑀( + , 𝐺)‘𝑁) − (seq𝑀( + , 𝐹)‘𝑁))) |
22 | 17, 21 | breqtrd 5096 | . 2 ⊢ (𝜑 → 0 ≤ ((seq𝑀( + , 𝐺)‘𝑁) − (seq𝑀( + , 𝐹)‘𝑁))) |
23 | readdcl 10885 | . . . . 5 ⊢ ((𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑘 + 𝑥) ∈ ℝ) | |
24 | 23 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ (𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ)) → (𝑘 + 𝑥) ∈ ℝ) |
25 | 1, 9, 24 | seqcl 13671 | . . 3 ⊢ (𝜑 → (seq𝑀( + , 𝐺)‘𝑁) ∈ ℝ) |
26 | 1, 10, 24 | seqcl 13671 | . . 3 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ ℝ) |
27 | 25, 26 | subge0d 11495 | . 2 ⊢ (𝜑 → (0 ≤ ((seq𝑀( + , 𝐺)‘𝑁) − (seq𝑀( + , 𝐹)‘𝑁)) ↔ (seq𝑀( + , 𝐹)‘𝑁) ≤ (seq𝑀( + , 𝐺)‘𝑁))) |
28 | 22, 27 | mpbid 231 | 1 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ≤ (seq𝑀( + , 𝐺)‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 class class class wbr 5070 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 0cc0 10802 + caddc 10805 ≤ cle 10941 − cmin 11135 ℤ≥cuz 12511 ...cfz 13168 seqcseq 13649 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-seq 13650 |
This theorem is referenced by: iserle 15299 cvgcmpub 15457 ioombl1lem4 24630 stirlinglem10 43514 |
Copyright terms: Public domain | W3C validator |