|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > serle | Structured version Visualization version GIF version | ||
| Description: Comparison of partial sums of two infinite series of reals. (Contributed by NM, 27-Dec-2005.) (Revised by Mario Carneiro, 27-May-2014.) | 
| Ref | Expression | 
|---|---|
| serge0.1 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | 
| serge0.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ) | 
| serle.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘𝑘) ∈ ℝ) | 
| serle.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ≤ (𝐺‘𝑘)) | 
| Ref | Expression | 
|---|---|
| serle | ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ≤ (seq𝑀( + , 𝐺)‘𝑁)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | serge0.1 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
| 2 | fveq2 6906 | . . . . . . . 8 ⊢ (𝑥 = 𝑘 → (𝐺‘𝑥) = (𝐺‘𝑘)) | |
| 3 | fveq2 6906 | . . . . . . . 8 ⊢ (𝑥 = 𝑘 → (𝐹‘𝑥) = (𝐹‘𝑘)) | |
| 4 | 2, 3 | oveq12d 7449 | . . . . . . 7 ⊢ (𝑥 = 𝑘 → ((𝐺‘𝑥) − (𝐹‘𝑥)) = ((𝐺‘𝑘) − (𝐹‘𝑘))) | 
| 5 | eqid 2737 | . . . . . . 7 ⊢ (𝑥 ∈ V ↦ ((𝐺‘𝑥) − (𝐹‘𝑥))) = (𝑥 ∈ V ↦ ((𝐺‘𝑥) − (𝐹‘𝑥))) | |
| 6 | ovex 7464 | . . . . . . 7 ⊢ ((𝐺‘𝑘) − (𝐹‘𝑘)) ∈ V | |
| 7 | 4, 5, 6 | fvmpt 7016 | . . . . . 6 ⊢ (𝑘 ∈ V → ((𝑥 ∈ V ↦ ((𝐺‘𝑥) − (𝐹‘𝑥)))‘𝑘) = ((𝐺‘𝑘) − (𝐹‘𝑘))) | 
| 8 | 7 | elv 3485 | . . . . 5 ⊢ ((𝑥 ∈ V ↦ ((𝐺‘𝑥) − (𝐹‘𝑥)))‘𝑘) = ((𝐺‘𝑘) − (𝐹‘𝑘)) | 
| 9 | serle.3 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘𝑘) ∈ ℝ) | |
| 10 | serge0.2 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ) | |
| 11 | 9, 10 | resubcld 11691 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → ((𝐺‘𝑘) − (𝐹‘𝑘)) ∈ ℝ) | 
| 12 | 8, 11 | eqeltrid 2845 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → ((𝑥 ∈ V ↦ ((𝐺‘𝑥) − (𝐹‘𝑥)))‘𝑘) ∈ ℝ) | 
| 13 | serle.4 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ≤ (𝐺‘𝑘)) | |
| 14 | 9, 10 | subge0d 11853 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (0 ≤ ((𝐺‘𝑘) − (𝐹‘𝑘)) ↔ (𝐹‘𝑘) ≤ (𝐺‘𝑘))) | 
| 15 | 13, 14 | mpbird 257 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 0 ≤ ((𝐺‘𝑘) − (𝐹‘𝑘))) | 
| 16 | 15, 8 | breqtrrdi 5185 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 0 ≤ ((𝑥 ∈ V ↦ ((𝐺‘𝑥) − (𝐹‘𝑥)))‘𝑘)) | 
| 17 | 1, 12, 16 | serge0 14097 | . . 3 ⊢ (𝜑 → 0 ≤ (seq𝑀( + , (𝑥 ∈ V ↦ ((𝐺‘𝑥) − (𝐹‘𝑥))))‘𝑁)) | 
| 18 | 9 | recnd 11289 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘𝑘) ∈ ℂ) | 
| 19 | 10 | recnd 11289 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℂ) | 
| 20 | 8 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → ((𝑥 ∈ V ↦ ((𝐺‘𝑥) − (𝐹‘𝑥)))‘𝑘) = ((𝐺‘𝑘) − (𝐹‘𝑘))) | 
| 21 | 1, 18, 19, 20 | sersub 14086 | . . 3 ⊢ (𝜑 → (seq𝑀( + , (𝑥 ∈ V ↦ ((𝐺‘𝑥) − (𝐹‘𝑥))))‘𝑁) = ((seq𝑀( + , 𝐺)‘𝑁) − (seq𝑀( + , 𝐹)‘𝑁))) | 
| 22 | 17, 21 | breqtrd 5169 | . 2 ⊢ (𝜑 → 0 ≤ ((seq𝑀( + , 𝐺)‘𝑁) − (seq𝑀( + , 𝐹)‘𝑁))) | 
| 23 | readdcl 11238 | . . . . 5 ⊢ ((𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑘 + 𝑥) ∈ ℝ) | |
| 24 | 23 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ (𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ)) → (𝑘 + 𝑥) ∈ ℝ) | 
| 25 | 1, 9, 24 | seqcl 14063 | . . 3 ⊢ (𝜑 → (seq𝑀( + , 𝐺)‘𝑁) ∈ ℝ) | 
| 26 | 1, 10, 24 | seqcl 14063 | . . 3 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ ℝ) | 
| 27 | 25, 26 | subge0d 11853 | . 2 ⊢ (𝜑 → (0 ≤ ((seq𝑀( + , 𝐺)‘𝑁) − (seq𝑀( + , 𝐹)‘𝑁)) ↔ (seq𝑀( + , 𝐹)‘𝑁) ≤ (seq𝑀( + , 𝐺)‘𝑁))) | 
| 28 | 22, 27 | mpbid 232 | 1 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ≤ (seq𝑀( + , 𝐺)‘𝑁)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3480 class class class wbr 5143 ↦ cmpt 5225 ‘cfv 6561 (class class class)co 7431 ℝcr 11154 0cc0 11155 + caddc 11158 ≤ cle 11296 − cmin 11492 ℤ≥cuz 12878 ...cfz 13547 seqcseq 14042 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-n0 12527 df-z 12614 df-uz 12879 df-fz 13548 df-fzo 13695 df-seq 14043 | 
| This theorem is referenced by: iserle 15696 cvgcmpub 15853 ioombl1lem4 25596 stirlinglem10 46098 | 
| Copyright terms: Public domain | W3C validator |