Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smattl Structured version   Visualization version   GIF version

Theorem smattl 33399
Description: Entries of a submatrix, top left. (Contributed by Thierry Arnoux, 19-Aug-2020.)
Hypotheses
Ref Expression
smat.s 𝑆 = (𝐾(subMat1‘𝐴)𝐿)
smat.m (𝜑𝑀 ∈ ℕ)
smat.n (𝜑𝑁 ∈ ℕ)
smat.k (𝜑𝐾 ∈ (1...𝑀))
smat.l (𝜑𝐿 ∈ (1...𝑁))
smat.a (𝜑𝐴 ∈ (𝐵m ((1...𝑀) × (1...𝑁))))
smattl.i (𝜑𝐼 ∈ (1..^𝐾))
smattl.j (𝜑𝐽 ∈ (1..^𝐿))
Assertion
Ref Expression
smattl (𝜑 → (𝐼𝑆𝐽) = (𝐼𝐴𝐽))

Proof of Theorem smattl
StepHypRef Expression
1 smat.s . 2 𝑆 = (𝐾(subMat1‘𝐴)𝐿)
2 smat.m . 2 (𝜑𝑀 ∈ ℕ)
3 smat.n . 2 (𝜑𝑁 ∈ ℕ)
4 smat.k . 2 (𝜑𝐾 ∈ (1...𝑀))
5 smat.l . 2 (𝜑𝐿 ∈ (1...𝑁))
6 smat.a . 2 (𝜑𝐴 ∈ (𝐵m ((1...𝑀) × (1...𝑁))))
7 fzossnn 13714 . . 3 (1..^𝐾) ⊆ ℕ
8 smattl.i . . 3 (𝜑𝐼 ∈ (1..^𝐾))
97, 8sselid 3978 . 2 (𝜑𝐼 ∈ ℕ)
10 fzossnn 13714 . . 3 (1..^𝐿) ⊆ ℕ
11 smattl.j . . 3 (𝜑𝐽 ∈ (1..^𝐿))
1210, 11sselid 3978 . 2 (𝜑𝐽 ∈ ℕ)
13 elfzolt2 13674 . . . 4 (𝐼 ∈ (1..^𝐾) → 𝐼 < 𝐾)
148, 13syl 17 . . 3 (𝜑𝐼 < 𝐾)
1514iftrued 4537 . 2 (𝜑 → if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)) = 𝐼)
16 elfzolt2 13674 . . . 4 (𝐽 ∈ (1..^𝐿) → 𝐽 < 𝐿)
1711, 16syl 17 . . 3 (𝜑𝐽 < 𝐿)
1817iftrued 4537 . 2 (𝜑 → if(𝐽 < 𝐿, 𝐽, (𝐽 + 1)) = 𝐽)
191, 2, 3, 4, 5, 6, 9, 12, 15, 18smatlem 33398 1 (𝜑 → (𝐼𝑆𝐽) = (𝐼𝐴𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099   class class class wbr 5148   × cxp 5676  cfv 6548  (class class class)co 7420  m cmap 8845  1c1 11140   + caddc 11142   < clt 11279  cn 12243  ...cfz 13517  ..^cfzo 13660  subMat1csmat 33394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-nn 12244  df-n0 12504  df-z 12590  df-uz 12854  df-fz 13518  df-fzo 13661  df-smat 33395
This theorem is referenced by:  submat1n  33406  submateq  33410
  Copyright terms: Public domain W3C validator