![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > smattl | Structured version Visualization version GIF version |
Description: Entries of a submatrix, top left. (Contributed by Thierry Arnoux, 19-Aug-2020.) |
Ref | Expression |
---|---|
smat.s | ⊢ 𝑆 = (𝐾(subMat1‘𝐴)𝐿) |
smat.m | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
smat.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
smat.k | ⊢ (𝜑 → 𝐾 ∈ (1...𝑀)) |
smat.l | ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) |
smat.a | ⊢ (𝜑 → 𝐴 ∈ (𝐵 ↑m ((1...𝑀) × (1...𝑁)))) |
smattl.i | ⊢ (𝜑 → 𝐼 ∈ (1..^𝐾)) |
smattl.j | ⊢ (𝜑 → 𝐽 ∈ (1..^𝐿)) |
Ref | Expression |
---|---|
smattl | ⊢ (𝜑 → (𝐼𝑆𝐽) = (𝐼𝐴𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smat.s | . 2 ⊢ 𝑆 = (𝐾(subMat1‘𝐴)𝐿) | |
2 | smat.m | . 2 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
3 | smat.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
4 | smat.k | . 2 ⊢ (𝜑 → 𝐾 ∈ (1...𝑀)) | |
5 | smat.l | . 2 ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) | |
6 | smat.a | . 2 ⊢ (𝜑 → 𝐴 ∈ (𝐵 ↑m ((1...𝑀) × (1...𝑁)))) | |
7 | fzossnn 13682 | . . 3 ⊢ (1..^𝐾) ⊆ ℕ | |
8 | smattl.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ (1..^𝐾)) | |
9 | 7, 8 | sselid 3973 | . 2 ⊢ (𝜑 → 𝐼 ∈ ℕ) |
10 | fzossnn 13682 | . . 3 ⊢ (1..^𝐿) ⊆ ℕ | |
11 | smattl.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ (1..^𝐿)) | |
12 | 10, 11 | sselid 3973 | . 2 ⊢ (𝜑 → 𝐽 ∈ ℕ) |
13 | elfzolt2 13642 | . . . 4 ⊢ (𝐼 ∈ (1..^𝐾) → 𝐼 < 𝐾) | |
14 | 8, 13 | syl 17 | . . 3 ⊢ (𝜑 → 𝐼 < 𝐾) |
15 | 14 | iftrued 4529 | . 2 ⊢ (𝜑 → if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)) = 𝐼) |
16 | elfzolt2 13642 | . . . 4 ⊢ (𝐽 ∈ (1..^𝐿) → 𝐽 < 𝐿) | |
17 | 11, 16 | syl 17 | . . 3 ⊢ (𝜑 → 𝐽 < 𝐿) |
18 | 17 | iftrued 4529 | . 2 ⊢ (𝜑 → if(𝐽 < 𝐿, 𝐽, (𝐽 + 1)) = 𝐽) |
19 | 1, 2, 3, 4, 5, 6, 9, 12, 15, 18 | smatlem 33297 | 1 ⊢ (𝜑 → (𝐼𝑆𝐽) = (𝐼𝐴𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 class class class wbr 5139 × cxp 5665 ‘cfv 6534 (class class class)co 7402 ↑m cmap 8817 1c1 11108 + caddc 11110 < clt 11247 ℕcn 12211 ...cfz 13485 ..^cfzo 13628 subMat1csmat 33293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-1st 7969 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-n0 12472 df-z 12558 df-uz 12822 df-fz 13486 df-fzo 13629 df-smat 33294 |
This theorem is referenced by: submat1n 33305 submateq 33309 |
Copyright terms: Public domain | W3C validator |