Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smattr Structured version   Visualization version   GIF version

Theorem smattr 33798
Description: Entries of a submatrix, top right. (Contributed by Thierry Arnoux, 19-Aug-2020.)
Hypotheses
Ref Expression
smat.s 𝑆 = (𝐾(subMat1‘𝐴)𝐿)
smat.m (𝜑𝑀 ∈ ℕ)
smat.n (𝜑𝑁 ∈ ℕ)
smat.k (𝜑𝐾 ∈ (1...𝑀))
smat.l (𝜑𝐿 ∈ (1...𝑁))
smat.a (𝜑𝐴 ∈ (𝐵m ((1...𝑀) × (1...𝑁))))
smattr.i (𝜑𝐼 ∈ (𝐾...𝑀))
smattr.j (𝜑𝐽 ∈ (1..^𝐿))
Assertion
Ref Expression
smattr (𝜑 → (𝐼𝑆𝐽) = ((𝐼 + 1)𝐴𝐽))

Proof of Theorem smattr
StepHypRef Expression
1 smat.s . 2 𝑆 = (𝐾(subMat1‘𝐴)𝐿)
2 smat.m . 2 (𝜑𝑀 ∈ ℕ)
3 smat.n . 2 (𝜑𝑁 ∈ ℕ)
4 smat.k . 2 (𝜑𝐾 ∈ (1...𝑀))
5 smat.l . 2 (𝜑𝐿 ∈ (1...𝑁))
6 smat.a . 2 (𝜑𝐴 ∈ (𝐵m ((1...𝑀) × (1...𝑁))))
7 fz1ssnn 13595 . . . . 5 (1...𝑀) ⊆ ℕ
87, 4sselid 3981 . . . 4 (𝜑𝐾 ∈ ℕ)
9 fzssnn 13608 . . . 4 (𝐾 ∈ ℕ → (𝐾...𝑀) ⊆ ℕ)
108, 9syl 17 . . 3 (𝜑 → (𝐾...𝑀) ⊆ ℕ)
11 smattr.i . . 3 (𝜑𝐼 ∈ (𝐾...𝑀))
1210, 11sseldd 3984 . 2 (𝜑𝐼 ∈ ℕ)
13 fzossnn 13751 . . 3 (1..^𝐿) ⊆ ℕ
14 smattr.j . . 3 (𝜑𝐽 ∈ (1..^𝐿))
1513, 14sselid 3981 . 2 (𝜑𝐽 ∈ ℕ)
16 elfzle1 13567 . . . . 5 (𝐼 ∈ (𝐾...𝑀) → 𝐾𝐼)
1711, 16syl 17 . . . 4 (𝜑𝐾𝐼)
188nnred 12281 . . . . 5 (𝜑𝐾 ∈ ℝ)
1912nnred 12281 . . . . 5 (𝜑𝐼 ∈ ℝ)
2018, 19lenltd 11407 . . . 4 (𝜑 → (𝐾𝐼 ↔ ¬ 𝐼 < 𝐾))
2117, 20mpbid 232 . . 3 (𝜑 → ¬ 𝐼 < 𝐾)
2221iffalsed 4536 . 2 (𝜑 → if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)) = (𝐼 + 1))
23 elfzolt2 13708 . . . 4 (𝐽 ∈ (1..^𝐿) → 𝐽 < 𝐿)
2414, 23syl 17 . . 3 (𝜑𝐽 < 𝐿)
2524iftrued 4533 . 2 (𝜑 → if(𝐽 < 𝐿, 𝐽, (𝐽 + 1)) = 𝐽)
261, 2, 3, 4, 5, 6, 12, 15, 22, 25smatlem 33796 1 (𝜑 → (𝐼𝑆𝐽) = ((𝐼 + 1)𝐴𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2108  wss 3951   class class class wbr 5143   × cxp 5683  cfv 6561  (class class class)co 7431  m cmap 8866  1c1 11156   + caddc 11158   < clt 11295  cle 11296  cn 12266  ...cfz 13547  ..^cfzo 13694  subMat1csmat 33792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-smat 33793
This theorem is referenced by:  submateq  33808
  Copyright terms: Public domain W3C validator