Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smattr Structured version   Visualization version   GIF version

Theorem smattr 33830
Description: Entries of a submatrix, top right. (Contributed by Thierry Arnoux, 19-Aug-2020.)
Hypotheses
Ref Expression
smat.s 𝑆 = (𝐾(subMat1‘𝐴)𝐿)
smat.m (𝜑𝑀 ∈ ℕ)
smat.n (𝜑𝑁 ∈ ℕ)
smat.k (𝜑𝐾 ∈ (1...𝑀))
smat.l (𝜑𝐿 ∈ (1...𝑁))
smat.a (𝜑𝐴 ∈ (𝐵m ((1...𝑀) × (1...𝑁))))
smattr.i (𝜑𝐼 ∈ (𝐾...𝑀))
smattr.j (𝜑𝐽 ∈ (1..^𝐿))
Assertion
Ref Expression
smattr (𝜑 → (𝐼𝑆𝐽) = ((𝐼 + 1)𝐴𝐽))

Proof of Theorem smattr
StepHypRef Expression
1 smat.s . 2 𝑆 = (𝐾(subMat1‘𝐴)𝐿)
2 smat.m . 2 (𝜑𝑀 ∈ ℕ)
3 smat.n . 2 (𝜑𝑁 ∈ ℕ)
4 smat.k . 2 (𝜑𝐾 ∈ (1...𝑀))
5 smat.l . 2 (𝜑𝐿 ∈ (1...𝑁))
6 smat.a . 2 (𝜑𝐴 ∈ (𝐵m ((1...𝑀) × (1...𝑁))))
7 fz1ssnn 13572 . . . . 5 (1...𝑀) ⊆ ℕ
87, 4sselid 3956 . . . 4 (𝜑𝐾 ∈ ℕ)
9 fzssnn 13585 . . . 4 (𝐾 ∈ ℕ → (𝐾...𝑀) ⊆ ℕ)
108, 9syl 17 . . 3 (𝜑 → (𝐾...𝑀) ⊆ ℕ)
11 smattr.i . . 3 (𝜑𝐼 ∈ (𝐾...𝑀))
1210, 11sseldd 3959 . 2 (𝜑𝐼 ∈ ℕ)
13 fzossnn 13728 . . 3 (1..^𝐿) ⊆ ℕ
14 smattr.j . . 3 (𝜑𝐽 ∈ (1..^𝐿))
1513, 14sselid 3956 . 2 (𝜑𝐽 ∈ ℕ)
16 elfzle1 13544 . . . . 5 (𝐼 ∈ (𝐾...𝑀) → 𝐾𝐼)
1711, 16syl 17 . . . 4 (𝜑𝐾𝐼)
188nnred 12255 . . . . 5 (𝜑𝐾 ∈ ℝ)
1912nnred 12255 . . . . 5 (𝜑𝐼 ∈ ℝ)
2018, 19lenltd 11381 . . . 4 (𝜑 → (𝐾𝐼 ↔ ¬ 𝐼 < 𝐾))
2117, 20mpbid 232 . . 3 (𝜑 → ¬ 𝐼 < 𝐾)
2221iffalsed 4511 . 2 (𝜑 → if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)) = (𝐼 + 1))
23 elfzolt2 13685 . . . 4 (𝐽 ∈ (1..^𝐿) → 𝐽 < 𝐿)
2414, 23syl 17 . . 3 (𝜑𝐽 < 𝐿)
2524iftrued 4508 . 2 (𝜑 → if(𝐽 < 𝐿, 𝐽, (𝐽 + 1)) = 𝐽)
261, 2, 3, 4, 5, 6, 12, 15, 22, 25smatlem 33828 1 (𝜑 → (𝐼𝑆𝐽) = ((𝐼 + 1)𝐴𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2108  wss 3926   class class class wbr 5119   × cxp 5652  cfv 6531  (class class class)co 7405  m cmap 8840  1c1 11130   + caddc 11132   < clt 11269  cle 11270  cn 12240  ...cfz 13524  ..^cfzo 13671  subMat1csmat 33824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672  df-smat 33825
This theorem is referenced by:  submateq  33840
  Copyright terms: Public domain W3C validator