Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > smattr | Structured version Visualization version GIF version |
Description: Entries of a submatrix, top right. (Contributed by Thierry Arnoux, 19-Aug-2020.) |
Ref | Expression |
---|---|
smat.s | ⊢ 𝑆 = (𝐾(subMat1‘𝐴)𝐿) |
smat.m | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
smat.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
smat.k | ⊢ (𝜑 → 𝐾 ∈ (1...𝑀)) |
smat.l | ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) |
smat.a | ⊢ (𝜑 → 𝐴 ∈ (𝐵 ↑m ((1...𝑀) × (1...𝑁)))) |
smattr.i | ⊢ (𝜑 → 𝐼 ∈ (𝐾...𝑀)) |
smattr.j | ⊢ (𝜑 → 𝐽 ∈ (1..^𝐿)) |
Ref | Expression |
---|---|
smattr | ⊢ (𝜑 → (𝐼𝑆𝐽) = ((𝐼 + 1)𝐴𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smat.s | . 2 ⊢ 𝑆 = (𝐾(subMat1‘𝐴)𝐿) | |
2 | smat.m | . 2 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
3 | smat.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
4 | smat.k | . 2 ⊢ (𝜑 → 𝐾 ∈ (1...𝑀)) | |
5 | smat.l | . 2 ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) | |
6 | smat.a | . 2 ⊢ (𝜑 → 𝐴 ∈ (𝐵 ↑m ((1...𝑀) × (1...𝑁)))) | |
7 | fz1ssnn 13031 | . . . . 5 ⊢ (1...𝑀) ⊆ ℕ | |
8 | 7, 4 | sseldi 3875 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℕ) |
9 | fzssnn 13044 | . . . 4 ⊢ (𝐾 ∈ ℕ → (𝐾...𝑀) ⊆ ℕ) | |
10 | 8, 9 | syl 17 | . . 3 ⊢ (𝜑 → (𝐾...𝑀) ⊆ ℕ) |
11 | smattr.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ (𝐾...𝑀)) | |
12 | 10, 11 | sseldd 3878 | . 2 ⊢ (𝜑 → 𝐼 ∈ ℕ) |
13 | fzossnn 13179 | . . 3 ⊢ (1..^𝐿) ⊆ ℕ | |
14 | smattr.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ (1..^𝐿)) | |
15 | 13, 14 | sseldi 3875 | . 2 ⊢ (𝜑 → 𝐽 ∈ ℕ) |
16 | elfzle1 13003 | . . . . 5 ⊢ (𝐼 ∈ (𝐾...𝑀) → 𝐾 ≤ 𝐼) | |
17 | 11, 16 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐾 ≤ 𝐼) |
18 | 8 | nnred 11733 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ ℝ) |
19 | 12 | nnred 11733 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ ℝ) |
20 | 18, 19 | lenltd 10866 | . . . 4 ⊢ (𝜑 → (𝐾 ≤ 𝐼 ↔ ¬ 𝐼 < 𝐾)) |
21 | 17, 20 | mpbid 235 | . . 3 ⊢ (𝜑 → ¬ 𝐼 < 𝐾) |
22 | 21 | iffalsed 4425 | . 2 ⊢ (𝜑 → if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)) = (𝐼 + 1)) |
23 | elfzolt2 13140 | . . . 4 ⊢ (𝐽 ∈ (1..^𝐿) → 𝐽 < 𝐿) | |
24 | 14, 23 | syl 17 | . . 3 ⊢ (𝜑 → 𝐽 < 𝐿) |
25 | 24 | iftrued 4422 | . 2 ⊢ (𝜑 → if(𝐽 < 𝐿, 𝐽, (𝐽 + 1)) = 𝐽) |
26 | 1, 2, 3, 4, 5, 6, 12, 15, 22, 25 | smatlem 31321 | 1 ⊢ (𝜑 → (𝐼𝑆𝐽) = ((𝐼 + 1)𝐴𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1542 ∈ wcel 2114 ⊆ wss 3843 class class class wbr 5030 × cxp 5523 ‘cfv 6339 (class class class)co 7172 ↑m cmap 8439 1c1 10618 + caddc 10620 < clt 10755 ≤ cle 10756 ℕcn 11718 ...cfz 12983 ..^cfzo 13126 subMat1csmat 31317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7481 ax-cnex 10673 ax-resscn 10674 ax-1cn 10675 ax-icn 10676 ax-addcl 10677 ax-addrcl 10678 ax-mulcl 10679 ax-mulrcl 10680 ax-mulcom 10681 ax-addass 10682 ax-mulass 10683 ax-distr 10684 ax-i2m1 10685 ax-1ne0 10686 ax-1rid 10687 ax-rnegex 10688 ax-rrecex 10689 ax-cnre 10690 ax-pre-lttri 10691 ax-pre-lttrn 10692 ax-pre-ltadd 10693 ax-pre-mulgt0 10694 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7129 df-ov 7175 df-oprab 7176 df-mpo 7177 df-om 7602 df-1st 7716 df-2nd 7717 df-wrecs 7978 df-recs 8039 df-rdg 8077 df-er 8322 df-en 8558 df-dom 8559 df-sdom 8560 df-pnf 10757 df-mnf 10758 df-xr 10759 df-ltxr 10760 df-le 10761 df-sub 10952 df-neg 10953 df-nn 11719 df-n0 11979 df-z 12065 df-uz 12327 df-fz 12984 df-fzo 13127 df-smat 31318 |
This theorem is referenced by: submateq 31333 |
Copyright terms: Public domain | W3C validator |