| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smattr | Structured version Visualization version GIF version | ||
| Description: Entries of a submatrix, top right. (Contributed by Thierry Arnoux, 19-Aug-2020.) |
| Ref | Expression |
|---|---|
| smat.s | ⊢ 𝑆 = (𝐾(subMat1‘𝐴)𝐿) |
| smat.m | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| smat.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| smat.k | ⊢ (𝜑 → 𝐾 ∈ (1...𝑀)) |
| smat.l | ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) |
| smat.a | ⊢ (𝜑 → 𝐴 ∈ (𝐵 ↑m ((1...𝑀) × (1...𝑁)))) |
| smattr.i | ⊢ (𝜑 → 𝐼 ∈ (𝐾...𝑀)) |
| smattr.j | ⊢ (𝜑 → 𝐽 ∈ (1..^𝐿)) |
| Ref | Expression |
|---|---|
| smattr | ⊢ (𝜑 → (𝐼𝑆𝐽) = ((𝐼 + 1)𝐴𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smat.s | . 2 ⊢ 𝑆 = (𝐾(subMat1‘𝐴)𝐿) | |
| 2 | smat.m | . 2 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
| 3 | smat.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 4 | smat.k | . 2 ⊢ (𝜑 → 𝐾 ∈ (1...𝑀)) | |
| 5 | smat.l | . 2 ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) | |
| 6 | smat.a | . 2 ⊢ (𝜑 → 𝐴 ∈ (𝐵 ↑m ((1...𝑀) × (1...𝑁)))) | |
| 7 | fz1ssnn 13457 | . . . . 5 ⊢ (1...𝑀) ⊆ ℕ | |
| 8 | 7, 4 | sselid 3928 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℕ) |
| 9 | fzssnn 13470 | . . . 4 ⊢ (𝐾 ∈ ℕ → (𝐾...𝑀) ⊆ ℕ) | |
| 10 | 8, 9 | syl 17 | . . 3 ⊢ (𝜑 → (𝐾...𝑀) ⊆ ℕ) |
| 11 | smattr.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ (𝐾...𝑀)) | |
| 12 | 10, 11 | sseldd 3931 | . 2 ⊢ (𝜑 → 𝐼 ∈ ℕ) |
| 13 | fzossnn 13613 | . . 3 ⊢ (1..^𝐿) ⊆ ℕ | |
| 14 | smattr.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ (1..^𝐿)) | |
| 15 | 13, 14 | sselid 3928 | . 2 ⊢ (𝜑 → 𝐽 ∈ ℕ) |
| 16 | elfzle1 13429 | . . . . 5 ⊢ (𝐼 ∈ (𝐾...𝑀) → 𝐾 ≤ 𝐼) | |
| 17 | 11, 16 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐾 ≤ 𝐼) |
| 18 | 8 | nnred 12147 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ ℝ) |
| 19 | 12 | nnred 12147 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ ℝ) |
| 20 | 18, 19 | lenltd 11266 | . . . 4 ⊢ (𝜑 → (𝐾 ≤ 𝐼 ↔ ¬ 𝐼 < 𝐾)) |
| 21 | 17, 20 | mpbid 232 | . . 3 ⊢ (𝜑 → ¬ 𝐼 < 𝐾) |
| 22 | 21 | iffalsed 4485 | . 2 ⊢ (𝜑 → if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)) = (𝐼 + 1)) |
| 23 | elfzolt2 13570 | . . . 4 ⊢ (𝐽 ∈ (1..^𝐿) → 𝐽 < 𝐿) | |
| 24 | 14, 23 | syl 17 | . . 3 ⊢ (𝜑 → 𝐽 < 𝐿) |
| 25 | 24 | iftrued 4482 | . 2 ⊢ (𝜑 → if(𝐽 < 𝐿, 𝐽, (𝐽 + 1)) = 𝐽) |
| 26 | 1, 2, 3, 4, 5, 6, 12, 15, 22, 25 | smatlem 33831 | 1 ⊢ (𝜑 → (𝐼𝑆𝐽) = ((𝐼 + 1)𝐴𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 class class class wbr 5093 × cxp 5617 ‘cfv 6486 (class class class)co 7352 ↑m cmap 8756 1c1 11014 + caddc 11016 < clt 11153 ≤ cle 11154 ℕcn 12132 ...cfz 13409 ..^cfzo 13556 subMat1csmat 33827 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-fzo 13557 df-smat 33828 |
| This theorem is referenced by: submateq 33843 |
| Copyright terms: Public domain | W3C validator |