Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sq3deccom12 Structured version   Visualization version   GIF version

Theorem sq3deccom12 42278
Description: Variant of sqdeccom12 42277 with a three digit square. (Contributed by Steven Nguyen, 3-Jan-2023.)
Hypotheses
Ref Expression
sqdeccom12.a 𝐴 ∈ ℕ0
sqdeccom12.b 𝐵 ∈ ℕ0
sq3deccom12.c 𝐶 ∈ ℕ0
sq3deccom12.d (𝐴 + 𝐶) = 𝐷
Assertion
Ref Expression
sq3deccom12 ((𝐴𝐵𝐶 · 𝐴𝐵𝐶) − (𝐷𝐵 · 𝐷𝐵)) = (99 · ((𝐴𝐵 · 𝐴𝐵) − (𝐶 · 𝐶)))

Proof of Theorem sq3deccom12
StepHypRef Expression
1 sq3deccom12.c . . . . . 6 𝐶 ∈ ℕ0
2 0nn0 12457 . . . . . 6 0 ∈ ℕ0
3 sqdeccom12.a . . . . . 6 𝐴 ∈ ℕ0
4 sqdeccom12.b . . . . . 6 𝐵 ∈ ℕ0
5 eqid 2729 . . . . . 6 𝐶0 = 𝐶0
6 eqid 2729 . . . . . 6 𝐴𝐵 = 𝐴𝐵
73nn0cni 12454 . . . . . . 7 𝐴 ∈ ℂ
81nn0cni 12454 . . . . . . 7 𝐶 ∈ ℂ
9 sq3deccom12.d . . . . . . 7 (𝐴 + 𝐶) = 𝐷
107, 8, 9addcomli 11366 . . . . . 6 (𝐶 + 𝐴) = 𝐷
114nn0cni 12454 . . . . . . 7 𝐵 ∈ ℂ
1211addlidi 11362 . . . . . 6 (0 + 𝐵) = 𝐵
131, 2, 3, 4, 5, 6, 10, 12decadd 12703 . . . . 5 (𝐶0 + 𝐴𝐵) = 𝐷𝐵
143, 4deccl 12664 . . . . . 6 𝐴𝐵 ∈ ℕ0
1514nn0cni 12454 . . . . . . 7 𝐴𝐵 ∈ ℂ
1615addlidi 11362 . . . . . 6 (0 + 𝐴𝐵) = 𝐴𝐵
171, 2, 14, 5, 16decaddi 12709 . . . . 5 (𝐶0 + 𝐴𝐵) = 𝐶𝐴𝐵
1813, 17eqtr3i 2754 . . . 4 𝐷𝐵 = 𝐶𝐴𝐵
1918, 18oveq12i 7399 . . 3 (𝐷𝐵 · 𝐷𝐵) = (𝐶𝐴𝐵 · 𝐶𝐴𝐵)
2019oveq2i 7398 . 2 ((𝐴𝐵𝐶 · 𝐴𝐵𝐶) − (𝐷𝐵 · 𝐷𝐵)) = ((𝐴𝐵𝐶 · 𝐴𝐵𝐶) − (𝐶𝐴𝐵 · 𝐶𝐴𝐵))
2114, 1sqdeccom12 42277 . 2 ((𝐴𝐵𝐶 · 𝐴𝐵𝐶) − (𝐶𝐴𝐵 · 𝐶𝐴𝐵)) = (99 · ((𝐴𝐵 · 𝐴𝐵) − (𝐶 · 𝐶)))
2220, 21eqtri 2752 1 ((𝐴𝐵𝐶 · 𝐴𝐵𝐶) − (𝐷𝐵 · 𝐷𝐵)) = (99 · ((𝐴𝐵 · 𝐴𝐵) − (𝐶 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  (class class class)co 7387  0cc0 11068   + caddc 11071   · cmul 11073  cmin 11405  9c9 12248  0cn0 12442  cdc 12649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-ltxr 11213  df-sub 11407  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-dec 12650
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator