Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sq3deccom12 Structured version   Visualization version   GIF version

Theorem sq3deccom12 42408
Description: Variant of sqdeccom12 42407 with a three digit square. (Contributed by Steven Nguyen, 3-Jan-2023.)
Hypotheses
Ref Expression
sqdeccom12.a 𝐴 ∈ ℕ0
sqdeccom12.b 𝐵 ∈ ℕ0
sq3deccom12.c 𝐶 ∈ ℕ0
sq3deccom12.d (𝐴 + 𝐶) = 𝐷
Assertion
Ref Expression
sq3deccom12 ((𝐴𝐵𝐶 · 𝐴𝐵𝐶) − (𝐷𝐵 · 𝐷𝐵)) = (99 · ((𝐴𝐵 · 𝐴𝐵) − (𝐶 · 𝐶)))

Proof of Theorem sq3deccom12
StepHypRef Expression
1 sq3deccom12.c . . . . . 6 𝐶 ∈ ℕ0
2 0nn0 12403 . . . . . 6 0 ∈ ℕ0
3 sqdeccom12.a . . . . . 6 𝐴 ∈ ℕ0
4 sqdeccom12.b . . . . . 6 𝐵 ∈ ℕ0
5 eqid 2733 . . . . . 6 𝐶0 = 𝐶0
6 eqid 2733 . . . . . 6 𝐴𝐵 = 𝐴𝐵
73nn0cni 12400 . . . . . . 7 𝐴 ∈ ℂ
81nn0cni 12400 . . . . . . 7 𝐶 ∈ ℂ
9 sq3deccom12.d . . . . . . 7 (𝐴 + 𝐶) = 𝐷
107, 8, 9addcomli 11312 . . . . . 6 (𝐶 + 𝐴) = 𝐷
114nn0cni 12400 . . . . . . 7 𝐵 ∈ ℂ
1211addlidi 11308 . . . . . 6 (0 + 𝐵) = 𝐵
131, 2, 3, 4, 5, 6, 10, 12decadd 12648 . . . . 5 (𝐶0 + 𝐴𝐵) = 𝐷𝐵
143, 4deccl 12609 . . . . . 6 𝐴𝐵 ∈ ℕ0
1514nn0cni 12400 . . . . . . 7 𝐴𝐵 ∈ ℂ
1615addlidi 11308 . . . . . 6 (0 + 𝐴𝐵) = 𝐴𝐵
171, 2, 14, 5, 16decaddi 12654 . . . . 5 (𝐶0 + 𝐴𝐵) = 𝐶𝐴𝐵
1813, 17eqtr3i 2758 . . . 4 𝐷𝐵 = 𝐶𝐴𝐵
1918, 18oveq12i 7364 . . 3 (𝐷𝐵 · 𝐷𝐵) = (𝐶𝐴𝐵 · 𝐶𝐴𝐵)
2019oveq2i 7363 . 2 ((𝐴𝐵𝐶 · 𝐴𝐵𝐶) − (𝐷𝐵 · 𝐷𝐵)) = ((𝐴𝐵𝐶 · 𝐴𝐵𝐶) − (𝐶𝐴𝐵 · 𝐶𝐴𝐵))
2114, 1sqdeccom12 42407 . 2 ((𝐴𝐵𝐶 · 𝐴𝐵𝐶) − (𝐶𝐴𝐵 · 𝐶𝐴𝐵)) = (99 · ((𝐴𝐵 · 𝐴𝐵) − (𝐶 · 𝐶)))
2220, 21eqtri 2756 1 ((𝐴𝐵𝐶 · 𝐴𝐵𝐶) − (𝐷𝐵 · 𝐷𝐵)) = (99 · ((𝐴𝐵 · 𝐴𝐵) − (𝐶 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2113  (class class class)co 7352  0cc0 11013   + caddc 11016   · cmul 11018  cmin 11351  9c9 12194  0cn0 12388  cdc 12594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-ltxr 11158  df-sub 11353  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-dec 12595
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator