![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sq3deccom12 | Structured version Visualization version GIF version |
Description: Variant of sqdeccom12 41927 with a three digit square. (Contributed by Steven Nguyen, 3-Jan-2023.) |
Ref | Expression |
---|---|
sqdeccom12.a | โข ๐ด โ โ0 |
sqdeccom12.b | โข ๐ต โ โ0 |
sq3deccom12.c | โข ๐ถ โ โ0 |
sq3deccom12.d | โข (๐ด + ๐ถ) = ๐ท |
Ref | Expression |
---|---|
sq3deccom12 | โข ((;;๐ด๐ต๐ถ ยท ;;๐ด๐ต๐ถ) โ (;๐ท๐ต ยท ;๐ท๐ต)) = (;99 ยท ((;๐ด๐ต ยท ;๐ด๐ต) โ (๐ถ ยท ๐ถ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sq3deccom12.c | . . . . . 6 โข ๐ถ โ โ0 | |
2 | 0nn0 12515 | . . . . . 6 โข 0 โ โ0 | |
3 | sqdeccom12.a | . . . . . 6 โข ๐ด โ โ0 | |
4 | sqdeccom12.b | . . . . . 6 โข ๐ต โ โ0 | |
5 | eqid 2725 | . . . . . 6 โข ;๐ถ0 = ;๐ถ0 | |
6 | eqid 2725 | . . . . . 6 โข ;๐ด๐ต = ;๐ด๐ต | |
7 | 3 | nn0cni 12512 | . . . . . . 7 โข ๐ด โ โ |
8 | 1 | nn0cni 12512 | . . . . . . 7 โข ๐ถ โ โ |
9 | sq3deccom12.d | . . . . . . 7 โข (๐ด + ๐ถ) = ๐ท | |
10 | 7, 8, 9 | addcomli 11434 | . . . . . 6 โข (๐ถ + ๐ด) = ๐ท |
11 | 4 | nn0cni 12512 | . . . . . . 7 โข ๐ต โ โ |
12 | 11 | addlidi 11430 | . . . . . 6 โข (0 + ๐ต) = ๐ต |
13 | 1, 2, 3, 4, 5, 6, 10, 12 | decadd 12759 | . . . . 5 โข (;๐ถ0 + ;๐ด๐ต) = ;๐ท๐ต |
14 | 3, 4 | deccl 12720 | . . . . . 6 โข ;๐ด๐ต โ โ0 |
15 | 14 | nn0cni 12512 | . . . . . . 7 โข ;๐ด๐ต โ โ |
16 | 15 | addlidi 11430 | . . . . . 6 โข (0 + ;๐ด๐ต) = ;๐ด๐ต |
17 | 1, 2, 14, 5, 16 | decaddi 12765 | . . . . 5 โข (;๐ถ0 + ;๐ด๐ต) = ;๐ถ;๐ด๐ต |
18 | 13, 17 | eqtr3i 2755 | . . . 4 โข ;๐ท๐ต = ;๐ถ;๐ด๐ต |
19 | 18, 18 | oveq12i 7427 | . . 3 โข (;๐ท๐ต ยท ;๐ท๐ต) = (;๐ถ;๐ด๐ต ยท ;๐ถ;๐ด๐ต) |
20 | 19 | oveq2i 7426 | . 2 โข ((;;๐ด๐ต๐ถ ยท ;;๐ด๐ต๐ถ) โ (;๐ท๐ต ยท ;๐ท๐ต)) = ((;;๐ด๐ต๐ถ ยท ;;๐ด๐ต๐ถ) โ (;๐ถ;๐ด๐ต ยท ;๐ถ;๐ด๐ต)) |
21 | 14, 1 | sqdeccom12 41927 | . 2 โข ((;;๐ด๐ต๐ถ ยท ;;๐ด๐ต๐ถ) โ (;๐ถ;๐ด๐ต ยท ;๐ถ;๐ด๐ต)) = (;99 ยท ((;๐ด๐ต ยท ;๐ด๐ต) โ (๐ถ ยท ๐ถ))) |
22 | 20, 21 | eqtri 2753 | 1 โข ((;;๐ด๐ต๐ถ ยท ;;๐ด๐ต๐ถ) โ (;๐ท๐ต ยท ;๐ท๐ต)) = (;99 ยท ((;๐ด๐ต ยท ;๐ด๐ต) โ (๐ถ ยท ๐ถ))) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 โ wcel 2098 (class class class)co 7415 0cc0 11136 + caddc 11139 ยท cmul 11141 โ cmin 11472 9c9 12302 โ0cn0 12500 ;cdc 12705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-pnf 11278 df-mnf 11279 df-ltxr 11281 df-sub 11474 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12501 df-dec 12706 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |