| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > decaddi | Structured version Visualization version GIF version | ||
| Description: Add two numerals 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| decaddi.1 | ⊢ 𝐴 ∈ ℕ0 |
| decaddi.2 | ⊢ 𝐵 ∈ ℕ0 |
| decaddi.3 | ⊢ 𝑁 ∈ ℕ0 |
| decaddi.4 | ⊢ 𝑀 = ;𝐴𝐵 |
| decaddi.5 | ⊢ (𝐵 + 𝑁) = 𝐶 |
| Ref | Expression |
|---|---|
| decaddi | ⊢ (𝑀 + 𝑁) = ;𝐴𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | decaddi.1 | . 2 ⊢ 𝐴 ∈ ℕ0 | |
| 2 | decaddi.2 | . 2 ⊢ 𝐵 ∈ ℕ0 | |
| 3 | 0nn0 12391 | . 2 ⊢ 0 ∈ ℕ0 | |
| 4 | decaddi.3 | . 2 ⊢ 𝑁 ∈ ℕ0 | |
| 5 | decaddi.4 | . 2 ⊢ 𝑀 = ;𝐴𝐵 | |
| 6 | 4 | dec0h 12605 | . 2 ⊢ 𝑁 = ;0𝑁 |
| 7 | 1 | nn0cni 12388 | . . 3 ⊢ 𝐴 ∈ ℂ |
| 8 | 7 | addridi 11295 | . 2 ⊢ (𝐴 + 0) = 𝐴 |
| 9 | decaddi.5 | . 2 ⊢ (𝐵 + 𝑁) = 𝐶 | |
| 10 | 1, 2, 3, 4, 5, 6, 8, 9 | decadd 12637 | 1 ⊢ (𝑀 + 𝑁) = ;𝐴𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 (class class class)co 7341 0cc0 11001 + caddc 11004 ℕ0cn0 12376 ;cdc 12583 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-ltxr 11146 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-dec 12584 |
| This theorem is referenced by: 4t4e16 12682 6t3e18 12688 7t4e28 12694 7t7e49 12697 2exp11 16996 2exp16 16997 17prm 17023 23prm 17025 prmlem2 17026 37prm 17027 83prm 17029 139prm 17030 163prm 17031 317prm 17032 631prm 17033 1259lem1 17037 1259lem2 17038 1259lem3 17039 1259lem4 17040 1259lem5 17041 1259prm 17042 2503lem1 17043 2503lem2 17044 2503lem3 17045 4001lem1 17047 4001lem2 17048 4001lem4 17050 4001prm 17051 log2ublem3 26880 log2ub 26881 birthday 26886 ex-fac 30423 hgt750lem2 34657 60lcm7e420 42043 420lcm8e840 42044 3exp7 42086 3lexlogpow5ineq1 42087 3lexlogpow5ineq5 42093 aks4d1p1p5 42108 decaddcom 42317 sqn5i 42318 sqdeccom12 42322 sq3deccom12 42323 235t711 42338 ex-decpmul 42339 resqrtvalex 43678 imsqrtvalex 43679 fmtno5lem1 47584 fmtno5lem2 47585 fmtno5lem4 47587 257prm 47592 fmtno4prmfac 47603 fmtno4nprmfac193 47605 fmtno5faclem1 47610 fmtno5faclem2 47611 fmtno5faclem3 47612 139prmALT 47627 127prm 47630 11t31e341 47763 ackval3012 48724 ackval41a 48726 |
| Copyright terms: Public domain | W3C validator |