Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > decaddi | Structured version Visualization version GIF version |
Description: Add two numerals 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
decaddi.1 | ⊢ 𝐴 ∈ ℕ0 |
decaddi.2 | ⊢ 𝐵 ∈ ℕ0 |
decaddi.3 | ⊢ 𝑁 ∈ ℕ0 |
decaddi.4 | ⊢ 𝑀 = ;𝐴𝐵 |
decaddi.5 | ⊢ (𝐵 + 𝑁) = 𝐶 |
Ref | Expression |
---|---|
decaddi | ⊢ (𝑀 + 𝑁) = ;𝐴𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | decaddi.1 | . 2 ⊢ 𝐴 ∈ ℕ0 | |
2 | decaddi.2 | . 2 ⊢ 𝐵 ∈ ℕ0 | |
3 | 0nn0 11991 | . 2 ⊢ 0 ∈ ℕ0 | |
4 | decaddi.3 | . 2 ⊢ 𝑁 ∈ ℕ0 | |
5 | decaddi.4 | . 2 ⊢ 𝑀 = ;𝐴𝐵 | |
6 | 4 | dec0h 12201 | . 2 ⊢ 𝑁 = ;0𝑁 |
7 | 1 | nn0cni 11988 | . . 3 ⊢ 𝐴 ∈ ℂ |
8 | 7 | addid1i 10905 | . 2 ⊢ (𝐴 + 0) = 𝐴 |
9 | decaddi.5 | . 2 ⊢ (𝐵 + 𝑁) = 𝐶 | |
10 | 1, 2, 3, 4, 5, 6, 8, 9 | decadd 12233 | 1 ⊢ (𝑀 + 𝑁) = ;𝐴𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2114 (class class class)co 7170 0cc0 10615 + caddc 10618 ℕ0cn0 11976 ;cdc 12179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-ov 7173 df-om 7600 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-er 8320 df-en 8556 df-dom 8557 df-sdom 8558 df-pnf 10755 df-mnf 10756 df-ltxr 10758 df-nn 11717 df-2 11779 df-3 11780 df-4 11781 df-5 11782 df-6 11783 df-7 11784 df-8 11785 df-9 11786 df-n0 11977 df-dec 12180 |
This theorem is referenced by: 4t4e16 12278 6t3e18 12284 7t4e28 12290 7t7e49 12293 2exp11 16526 2exp16 16527 17prm 16553 23prm 16555 prmlem2 16556 37prm 16557 83prm 16559 139prm 16560 163prm 16561 317prm 16562 631prm 16563 1259lem1 16567 1259lem2 16568 1259lem3 16569 1259lem4 16570 1259lem5 16571 1259prm 16572 2503lem1 16573 2503lem2 16574 2503lem3 16575 4001lem1 16577 4001lem2 16578 4001lem4 16580 4001prm 16581 log2ublem3 25686 log2ub 25687 birthday 25692 ex-fac 28388 hgt750lem2 32202 60lcm7e420 39638 420lcm8e840 39639 3exp7 39681 3lexlogpow5ineq1 39682 3lexlogpow5ineq5 39688 aks4d1p1p5 39702 decaddcom 39888 sqn5i 39889 sqdeccom12 39893 sq3deccom12 39894 235t711 39895 ex-decpmul 39896 resqrtvalex 40798 imsqrtvalex 40799 fmtno5lem1 44539 fmtno5lem2 44540 fmtno5lem4 44542 257prm 44547 fmtno4prmfac 44558 fmtno4nprmfac193 44560 fmtno5faclem1 44565 fmtno5faclem2 44566 fmtno5faclem3 44567 139prmALT 44582 127prm 44585 11t31e341 44718 ackval3012 45572 ackval41a 45574 |
Copyright terms: Public domain | W3C validator |