![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > decaddi | Structured version Visualization version GIF version |
Description: Add two numerals 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
decaddi.1 | ⊢ 𝐴 ∈ ℕ0 |
decaddi.2 | ⊢ 𝐵 ∈ ℕ0 |
decaddi.3 | ⊢ 𝑁 ∈ ℕ0 |
decaddi.4 | ⊢ 𝑀 = ;𝐴𝐵 |
decaddi.5 | ⊢ (𝐵 + 𝑁) = 𝐶 |
Ref | Expression |
---|---|
decaddi | ⊢ (𝑀 + 𝑁) = ;𝐴𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | decaddi.1 | . 2 ⊢ 𝐴 ∈ ℕ0 | |
2 | decaddi.2 | . 2 ⊢ 𝐵 ∈ ℕ0 | |
3 | 0nn0 12494 | . 2 ⊢ 0 ∈ ℕ0 | |
4 | decaddi.3 | . 2 ⊢ 𝑁 ∈ ℕ0 | |
5 | decaddi.4 | . 2 ⊢ 𝑀 = ;𝐴𝐵 | |
6 | 4 | dec0h 12706 | . 2 ⊢ 𝑁 = ;0𝑁 |
7 | 1 | nn0cni 12491 | . . 3 ⊢ 𝐴 ∈ ℂ |
8 | 7 | addridi 11408 | . 2 ⊢ (𝐴 + 0) = 𝐴 |
9 | decaddi.5 | . 2 ⊢ (𝐵 + 𝑁) = 𝐶 | |
10 | 1, 2, 3, 4, 5, 6, 8, 9 | decadd 12738 | 1 ⊢ (𝑀 + 𝑁) = ;𝐴𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 (class class class)co 7412 0cc0 11116 + caddc 11119 ℕ0cn0 12479 ;cdc 12684 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-om 7860 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-pnf 11257 df-mnf 11258 df-ltxr 11260 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-dec 12685 |
This theorem is referenced by: 4t4e16 12783 6t3e18 12789 7t4e28 12795 7t7e49 12798 2exp11 17030 2exp16 17031 17prm 17057 23prm 17059 prmlem2 17060 37prm 17061 83prm 17063 139prm 17064 163prm 17065 317prm 17066 631prm 17067 1259lem1 17071 1259lem2 17072 1259lem3 17073 1259lem4 17074 1259lem5 17075 1259prm 17076 2503lem1 17077 2503lem2 17078 2503lem3 17079 4001lem1 17081 4001lem2 17082 4001lem4 17084 4001prm 17085 log2ublem3 26793 log2ub 26794 birthday 26799 ex-fac 30136 hgt750lem2 34127 60lcm7e420 41341 420lcm8e840 41342 3exp7 41384 3lexlogpow5ineq1 41385 3lexlogpow5ineq5 41391 aks4d1p1p5 41406 decaddcom 41658 sqn5i 41659 sqdeccom12 41663 sq3deccom12 41664 235t711 41667 ex-decpmul 41668 resqrtvalex 42858 imsqrtvalex 42859 fmtno5lem1 46679 fmtno5lem2 46680 fmtno5lem4 46682 257prm 46687 fmtno4prmfac 46698 fmtno4nprmfac193 46700 fmtno5faclem1 46705 fmtno5faclem2 46706 fmtno5faclem3 46707 139prmALT 46722 127prm 46725 11t31e341 46858 ackval3012 47539 ackval41a 47541 |
Copyright terms: Public domain | W3C validator |