MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsfac Structured version   Visualization version   GIF version

Theorem dvdsfac 15539
Description: A positive integer divides any greater factorial. (Contributed by Paul Chapman, 28-Nov-2012.)
Assertion
Ref Expression
dvdsfac ((𝐾 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝐾)) → 𝐾 ∥ (!‘𝑁))

Proof of Theorem dvdsfac
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6501 . . . . 5 (𝑥 = 𝐾 → (!‘𝑥) = (!‘𝐾))
21breq2d 4942 . . . 4 (𝑥 = 𝐾 → (𝐾 ∥ (!‘𝑥) ↔ 𝐾 ∥ (!‘𝐾)))
32imbi2d 333 . . 3 (𝑥 = 𝐾 → ((𝐾 ∈ ℕ → 𝐾 ∥ (!‘𝑥)) ↔ (𝐾 ∈ ℕ → 𝐾 ∥ (!‘𝐾))))
4 fveq2 6501 . . . . 5 (𝑥 = 𝑦 → (!‘𝑥) = (!‘𝑦))
54breq2d 4942 . . . 4 (𝑥 = 𝑦 → (𝐾 ∥ (!‘𝑥) ↔ 𝐾 ∥ (!‘𝑦)))
65imbi2d 333 . . 3 (𝑥 = 𝑦 → ((𝐾 ∈ ℕ → 𝐾 ∥ (!‘𝑥)) ↔ (𝐾 ∈ ℕ → 𝐾 ∥ (!‘𝑦))))
7 fveq2 6501 . . . . 5 (𝑥 = (𝑦 + 1) → (!‘𝑥) = (!‘(𝑦 + 1)))
87breq2d 4942 . . . 4 (𝑥 = (𝑦 + 1) → (𝐾 ∥ (!‘𝑥) ↔ 𝐾 ∥ (!‘(𝑦 + 1))))
98imbi2d 333 . . 3 (𝑥 = (𝑦 + 1) → ((𝐾 ∈ ℕ → 𝐾 ∥ (!‘𝑥)) ↔ (𝐾 ∈ ℕ → 𝐾 ∥ (!‘(𝑦 + 1)))))
10 fveq2 6501 . . . . 5 (𝑥 = 𝑁 → (!‘𝑥) = (!‘𝑁))
1110breq2d 4942 . . . 4 (𝑥 = 𝑁 → (𝐾 ∥ (!‘𝑥) ↔ 𝐾 ∥ (!‘𝑁)))
1211imbi2d 333 . . 3 (𝑥 = 𝑁 → ((𝐾 ∈ ℕ → 𝐾 ∥ (!‘𝑥)) ↔ (𝐾 ∈ ℕ → 𝐾 ∥ (!‘𝑁))))
13 nnm1nn0 11753 . . . . . . 7 (𝐾 ∈ ℕ → (𝐾 − 1) ∈ ℕ0)
1413faccld 13462 . . . . . 6 (𝐾 ∈ ℕ → (!‘(𝐾 − 1)) ∈ ℕ)
1514nnzd 11902 . . . . 5 (𝐾 ∈ ℕ → (!‘(𝐾 − 1)) ∈ ℤ)
16 nnz 11820 . . . . 5 (𝐾 ∈ ℕ → 𝐾 ∈ ℤ)
17 dvdsmul2 15495 . . . . 5 (((!‘(𝐾 − 1)) ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝐾 ∥ ((!‘(𝐾 − 1)) · 𝐾))
1815, 16, 17syl2anc 576 . . . 4 (𝐾 ∈ ℕ → 𝐾 ∥ ((!‘(𝐾 − 1)) · 𝐾))
19 facnn2 13460 . . . 4 (𝐾 ∈ ℕ → (!‘𝐾) = ((!‘(𝐾 − 1)) · 𝐾))
2018, 19breqtrrd 4958 . . 3 (𝐾 ∈ ℕ → 𝐾 ∥ (!‘𝐾))
2116adantl 474 . . . . . . 7 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → 𝐾 ∈ ℤ)
22 elnnuz 12099 . . . . . . . . . . . 12 (𝐾 ∈ ℕ ↔ 𝐾 ∈ (ℤ‘1))
23 uztrn 12078 . . . . . . . . . . . 12 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ‘1)) → 𝑦 ∈ (ℤ‘1))
2422, 23sylan2b 584 . . . . . . . . . . 11 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → 𝑦 ∈ (ℤ‘1))
25 elnnuz 12099 . . . . . . . . . . 11 (𝑦 ∈ ℕ ↔ 𝑦 ∈ (ℤ‘1))
2624, 25sylibr 226 . . . . . . . . . 10 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → 𝑦 ∈ ℕ)
2726nnnn0d 11770 . . . . . . . . 9 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → 𝑦 ∈ ℕ0)
2827faccld 13462 . . . . . . . 8 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → (!‘𝑦) ∈ ℕ)
2928nnzd 11902 . . . . . . 7 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → (!‘𝑦) ∈ ℤ)
3026nnzd 11902 . . . . . . . 8 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → 𝑦 ∈ ℤ)
3130peano2zd 11906 . . . . . . 7 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → (𝑦 + 1) ∈ ℤ)
32 dvdsmultr1 15510 . . . . . . 7 ((𝐾 ∈ ℤ ∧ (!‘𝑦) ∈ ℤ ∧ (𝑦 + 1) ∈ ℤ) → (𝐾 ∥ (!‘𝑦) → 𝐾 ∥ ((!‘𝑦) · (𝑦 + 1))))
3321, 29, 31, 32syl3anc 1351 . . . . . 6 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → (𝐾 ∥ (!‘𝑦) → 𝐾 ∥ ((!‘𝑦) · (𝑦 + 1))))
34 facp1 13456 . . . . . . . 8 (𝑦 ∈ ℕ0 → (!‘(𝑦 + 1)) = ((!‘𝑦) · (𝑦 + 1)))
3527, 34syl 17 . . . . . . 7 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → (!‘(𝑦 + 1)) = ((!‘𝑦) · (𝑦 + 1)))
3635breq2d 4942 . . . . . 6 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → (𝐾 ∥ (!‘(𝑦 + 1)) ↔ 𝐾 ∥ ((!‘𝑦) · (𝑦 + 1))))
3733, 36sylibrd 251 . . . . 5 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → (𝐾 ∥ (!‘𝑦) → 𝐾 ∥ (!‘(𝑦 + 1))))
3837ex 405 . . . 4 (𝑦 ∈ (ℤ𝐾) → (𝐾 ∈ ℕ → (𝐾 ∥ (!‘𝑦) → 𝐾 ∥ (!‘(𝑦 + 1)))))
3938a2d 29 . . 3 (𝑦 ∈ (ℤ𝐾) → ((𝐾 ∈ ℕ → 𝐾 ∥ (!‘𝑦)) → (𝐾 ∈ ℕ → 𝐾 ∥ (!‘(𝑦 + 1)))))
403, 6, 9, 12, 20, 39uzind4i 12127 . 2 (𝑁 ∈ (ℤ𝐾) → (𝐾 ∈ ℕ → 𝐾 ∥ (!‘𝑁)))
4140impcom 399 1 ((𝐾 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝐾)) → 𝐾 ∥ (!‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1507  wcel 2050   class class class wbr 4930  cfv 6190  (class class class)co 6978  1c1 10338   + caddc 10340   · cmul 10342  cmin 10672  cn 11441  0cn0 11710  cz 11796  cuz 12061  !cfa 13451  cdvds 15470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281  ax-cnex 10393  ax-resscn 10394  ax-1cn 10395  ax-icn 10396  ax-addcl 10397  ax-addrcl 10398  ax-mulcl 10399  ax-mulrcl 10400  ax-mulcom 10401  ax-addass 10402  ax-mulass 10403  ax-distr 10404  ax-i2m1 10405  ax-1ne0 10406  ax-1rid 10407  ax-rnegex 10408  ax-rrecex 10409  ax-cnre 10410  ax-pre-lttri 10411  ax-pre-lttrn 10412  ax-pre-ltadd 10413  ax-pre-mulgt0 10414
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-tp 4447  df-op 4449  df-uni 4714  df-iun 4795  df-br 4931  df-opab 4993  df-mpt 5010  df-tr 5032  df-id 5313  df-eprel 5318  df-po 5327  df-so 5328  df-fr 5367  df-we 5369  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-pred 5988  df-ord 6034  df-on 6035  df-lim 6036  df-suc 6037  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-riota 6939  df-ov 6981  df-oprab 6982  df-mpo 6983  df-om 7399  df-2nd 7504  df-wrecs 7752  df-recs 7814  df-rdg 7852  df-er 8091  df-en 8309  df-dom 8310  df-sdom 8311  df-pnf 10478  df-mnf 10479  df-xr 10480  df-ltxr 10481  df-le 10482  df-sub 10674  df-neg 10675  df-nn 11442  df-n0 11711  df-z 11797  df-uz 12062  df-seq 13188  df-fac 13452  df-dvds 15471
This theorem is referenced by:  lcmflefac  15851  prmunb  16109  prmgaplem1  16244  gexcl3  18476  wilth  25353  chtublem  25492  prmdvdsbc  30281
  Copyright terms: Public domain W3C validator