MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsfac Structured version   Visualization version   GIF version

Theorem dvdsfac 16363
Description: A positive integer divides any greater factorial. (Contributed by Paul Chapman, 28-Nov-2012.)
Assertion
Ref Expression
dvdsfac ((𝐾 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝐾)) → 𝐾 ∥ (!‘𝑁))

Proof of Theorem dvdsfac
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6906 . . . . 5 (𝑥 = 𝐾 → (!‘𝑥) = (!‘𝐾))
21breq2d 5155 . . . 4 (𝑥 = 𝐾 → (𝐾 ∥ (!‘𝑥) ↔ 𝐾 ∥ (!‘𝐾)))
32imbi2d 340 . . 3 (𝑥 = 𝐾 → ((𝐾 ∈ ℕ → 𝐾 ∥ (!‘𝑥)) ↔ (𝐾 ∈ ℕ → 𝐾 ∥ (!‘𝐾))))
4 fveq2 6906 . . . . 5 (𝑥 = 𝑦 → (!‘𝑥) = (!‘𝑦))
54breq2d 5155 . . . 4 (𝑥 = 𝑦 → (𝐾 ∥ (!‘𝑥) ↔ 𝐾 ∥ (!‘𝑦)))
65imbi2d 340 . . 3 (𝑥 = 𝑦 → ((𝐾 ∈ ℕ → 𝐾 ∥ (!‘𝑥)) ↔ (𝐾 ∈ ℕ → 𝐾 ∥ (!‘𝑦))))
7 fveq2 6906 . . . . 5 (𝑥 = (𝑦 + 1) → (!‘𝑥) = (!‘(𝑦 + 1)))
87breq2d 5155 . . . 4 (𝑥 = (𝑦 + 1) → (𝐾 ∥ (!‘𝑥) ↔ 𝐾 ∥ (!‘(𝑦 + 1))))
98imbi2d 340 . . 3 (𝑥 = (𝑦 + 1) → ((𝐾 ∈ ℕ → 𝐾 ∥ (!‘𝑥)) ↔ (𝐾 ∈ ℕ → 𝐾 ∥ (!‘(𝑦 + 1)))))
10 fveq2 6906 . . . . 5 (𝑥 = 𝑁 → (!‘𝑥) = (!‘𝑁))
1110breq2d 5155 . . . 4 (𝑥 = 𝑁 → (𝐾 ∥ (!‘𝑥) ↔ 𝐾 ∥ (!‘𝑁)))
1211imbi2d 340 . . 3 (𝑥 = 𝑁 → ((𝐾 ∈ ℕ → 𝐾 ∥ (!‘𝑥)) ↔ (𝐾 ∈ ℕ → 𝐾 ∥ (!‘𝑁))))
13 nnm1nn0 12567 . . . . . . 7 (𝐾 ∈ ℕ → (𝐾 − 1) ∈ ℕ0)
1413faccld 14323 . . . . . 6 (𝐾 ∈ ℕ → (!‘(𝐾 − 1)) ∈ ℕ)
1514nnzd 12640 . . . . 5 (𝐾 ∈ ℕ → (!‘(𝐾 − 1)) ∈ ℤ)
16 nnz 12634 . . . . 5 (𝐾 ∈ ℕ → 𝐾 ∈ ℤ)
17 dvdsmul2 16316 . . . . 5 (((!‘(𝐾 − 1)) ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝐾 ∥ ((!‘(𝐾 − 1)) · 𝐾))
1815, 16, 17syl2anc 584 . . . 4 (𝐾 ∈ ℕ → 𝐾 ∥ ((!‘(𝐾 − 1)) · 𝐾))
19 facnn2 14321 . . . 4 (𝐾 ∈ ℕ → (!‘𝐾) = ((!‘(𝐾 − 1)) · 𝐾))
2018, 19breqtrrd 5171 . . 3 (𝐾 ∈ ℕ → 𝐾 ∥ (!‘𝐾))
2116adantl 481 . . . . . . 7 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → 𝐾 ∈ ℤ)
22 elnnuz 12922 . . . . . . . . . . . 12 (𝐾 ∈ ℕ ↔ 𝐾 ∈ (ℤ‘1))
23 uztrn 12896 . . . . . . . . . . . 12 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ‘1)) → 𝑦 ∈ (ℤ‘1))
2422, 23sylan2b 594 . . . . . . . . . . 11 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → 𝑦 ∈ (ℤ‘1))
25 elnnuz 12922 . . . . . . . . . . 11 (𝑦 ∈ ℕ ↔ 𝑦 ∈ (ℤ‘1))
2624, 25sylibr 234 . . . . . . . . . 10 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → 𝑦 ∈ ℕ)
2726nnnn0d 12587 . . . . . . . . 9 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → 𝑦 ∈ ℕ0)
2827faccld 14323 . . . . . . . 8 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → (!‘𝑦) ∈ ℕ)
2928nnzd 12640 . . . . . . 7 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → (!‘𝑦) ∈ ℤ)
3026nnzd 12640 . . . . . . . 8 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → 𝑦 ∈ ℤ)
3130peano2zd 12725 . . . . . . 7 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → (𝑦 + 1) ∈ ℤ)
32 dvdsmultr1 16333 . . . . . . 7 ((𝐾 ∈ ℤ ∧ (!‘𝑦) ∈ ℤ ∧ (𝑦 + 1) ∈ ℤ) → (𝐾 ∥ (!‘𝑦) → 𝐾 ∥ ((!‘𝑦) · (𝑦 + 1))))
3321, 29, 31, 32syl3anc 1373 . . . . . 6 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → (𝐾 ∥ (!‘𝑦) → 𝐾 ∥ ((!‘𝑦) · (𝑦 + 1))))
34 facp1 14317 . . . . . . . 8 (𝑦 ∈ ℕ0 → (!‘(𝑦 + 1)) = ((!‘𝑦) · (𝑦 + 1)))
3527, 34syl 17 . . . . . . 7 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → (!‘(𝑦 + 1)) = ((!‘𝑦) · (𝑦 + 1)))
3635breq2d 5155 . . . . . 6 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → (𝐾 ∥ (!‘(𝑦 + 1)) ↔ 𝐾 ∥ ((!‘𝑦) · (𝑦 + 1))))
3733, 36sylibrd 259 . . . . 5 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → (𝐾 ∥ (!‘𝑦) → 𝐾 ∥ (!‘(𝑦 + 1))))
3837ex 412 . . . 4 (𝑦 ∈ (ℤ𝐾) → (𝐾 ∈ ℕ → (𝐾 ∥ (!‘𝑦) → 𝐾 ∥ (!‘(𝑦 + 1)))))
3938a2d 29 . . 3 (𝑦 ∈ (ℤ𝐾) → ((𝐾 ∈ ℕ → 𝐾 ∥ (!‘𝑦)) → (𝐾 ∈ ℕ → 𝐾 ∥ (!‘(𝑦 + 1)))))
403, 6, 9, 12, 20, 39uzind4i 12952 . 2 (𝑁 ∈ (ℤ𝐾) → (𝐾 ∈ ℕ → 𝐾 ∥ (!‘𝑁)))
4140impcom 407 1 ((𝐾 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝐾)) → 𝐾 ∥ (!‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108   class class class wbr 5143  cfv 6561  (class class class)co 7431  1c1 11156   + caddc 11158   · cmul 11160  cmin 11492  cn 12266  0cn0 12526  cz 12613  cuz 12878  !cfa 14312  cdvds 16290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-seq 14043  df-fac 14313  df-dvds 16291
This theorem is referenced by:  lcmflefac  16685  prmdvdsbc  16763  prmunb  16952  prmgaplem1  17087  gexcl3  19605  wilth  27114  chtublem  27255
  Copyright terms: Public domain W3C validator