MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsfac Structured version   Visualization version   GIF version

Theorem dvdsfac 16303
Description: A positive integer divides any greater factorial. (Contributed by Paul Chapman, 28-Nov-2012.)
Assertion
Ref Expression
dvdsfac ((𝐾 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝐾)) → 𝐾 ∥ (!‘𝑁))

Proof of Theorem dvdsfac
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6861 . . . . 5 (𝑥 = 𝐾 → (!‘𝑥) = (!‘𝐾))
21breq2d 5122 . . . 4 (𝑥 = 𝐾 → (𝐾 ∥ (!‘𝑥) ↔ 𝐾 ∥ (!‘𝐾)))
32imbi2d 340 . . 3 (𝑥 = 𝐾 → ((𝐾 ∈ ℕ → 𝐾 ∥ (!‘𝑥)) ↔ (𝐾 ∈ ℕ → 𝐾 ∥ (!‘𝐾))))
4 fveq2 6861 . . . . 5 (𝑥 = 𝑦 → (!‘𝑥) = (!‘𝑦))
54breq2d 5122 . . . 4 (𝑥 = 𝑦 → (𝐾 ∥ (!‘𝑥) ↔ 𝐾 ∥ (!‘𝑦)))
65imbi2d 340 . . 3 (𝑥 = 𝑦 → ((𝐾 ∈ ℕ → 𝐾 ∥ (!‘𝑥)) ↔ (𝐾 ∈ ℕ → 𝐾 ∥ (!‘𝑦))))
7 fveq2 6861 . . . . 5 (𝑥 = (𝑦 + 1) → (!‘𝑥) = (!‘(𝑦 + 1)))
87breq2d 5122 . . . 4 (𝑥 = (𝑦 + 1) → (𝐾 ∥ (!‘𝑥) ↔ 𝐾 ∥ (!‘(𝑦 + 1))))
98imbi2d 340 . . 3 (𝑥 = (𝑦 + 1) → ((𝐾 ∈ ℕ → 𝐾 ∥ (!‘𝑥)) ↔ (𝐾 ∈ ℕ → 𝐾 ∥ (!‘(𝑦 + 1)))))
10 fveq2 6861 . . . . 5 (𝑥 = 𝑁 → (!‘𝑥) = (!‘𝑁))
1110breq2d 5122 . . . 4 (𝑥 = 𝑁 → (𝐾 ∥ (!‘𝑥) ↔ 𝐾 ∥ (!‘𝑁)))
1211imbi2d 340 . . 3 (𝑥 = 𝑁 → ((𝐾 ∈ ℕ → 𝐾 ∥ (!‘𝑥)) ↔ (𝐾 ∈ ℕ → 𝐾 ∥ (!‘𝑁))))
13 nnm1nn0 12490 . . . . . . 7 (𝐾 ∈ ℕ → (𝐾 − 1) ∈ ℕ0)
1413faccld 14256 . . . . . 6 (𝐾 ∈ ℕ → (!‘(𝐾 − 1)) ∈ ℕ)
1514nnzd 12563 . . . . 5 (𝐾 ∈ ℕ → (!‘(𝐾 − 1)) ∈ ℤ)
16 nnz 12557 . . . . 5 (𝐾 ∈ ℕ → 𝐾 ∈ ℤ)
17 dvdsmul2 16255 . . . . 5 (((!‘(𝐾 − 1)) ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝐾 ∥ ((!‘(𝐾 − 1)) · 𝐾))
1815, 16, 17syl2anc 584 . . . 4 (𝐾 ∈ ℕ → 𝐾 ∥ ((!‘(𝐾 − 1)) · 𝐾))
19 facnn2 14254 . . . 4 (𝐾 ∈ ℕ → (!‘𝐾) = ((!‘(𝐾 − 1)) · 𝐾))
2018, 19breqtrrd 5138 . . 3 (𝐾 ∈ ℕ → 𝐾 ∥ (!‘𝐾))
2116adantl 481 . . . . . . 7 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → 𝐾 ∈ ℤ)
22 elnnuz 12844 . . . . . . . . . . . 12 (𝐾 ∈ ℕ ↔ 𝐾 ∈ (ℤ‘1))
23 uztrn 12818 . . . . . . . . . . . 12 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ‘1)) → 𝑦 ∈ (ℤ‘1))
2422, 23sylan2b 594 . . . . . . . . . . 11 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → 𝑦 ∈ (ℤ‘1))
25 elnnuz 12844 . . . . . . . . . . 11 (𝑦 ∈ ℕ ↔ 𝑦 ∈ (ℤ‘1))
2624, 25sylibr 234 . . . . . . . . . 10 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → 𝑦 ∈ ℕ)
2726nnnn0d 12510 . . . . . . . . 9 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → 𝑦 ∈ ℕ0)
2827faccld 14256 . . . . . . . 8 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → (!‘𝑦) ∈ ℕ)
2928nnzd 12563 . . . . . . 7 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → (!‘𝑦) ∈ ℤ)
3026nnzd 12563 . . . . . . . 8 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → 𝑦 ∈ ℤ)
3130peano2zd 12648 . . . . . . 7 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → (𝑦 + 1) ∈ ℤ)
32 dvdsmultr1 16273 . . . . . . 7 ((𝐾 ∈ ℤ ∧ (!‘𝑦) ∈ ℤ ∧ (𝑦 + 1) ∈ ℤ) → (𝐾 ∥ (!‘𝑦) → 𝐾 ∥ ((!‘𝑦) · (𝑦 + 1))))
3321, 29, 31, 32syl3anc 1373 . . . . . 6 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → (𝐾 ∥ (!‘𝑦) → 𝐾 ∥ ((!‘𝑦) · (𝑦 + 1))))
34 facp1 14250 . . . . . . . 8 (𝑦 ∈ ℕ0 → (!‘(𝑦 + 1)) = ((!‘𝑦) · (𝑦 + 1)))
3527, 34syl 17 . . . . . . 7 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → (!‘(𝑦 + 1)) = ((!‘𝑦) · (𝑦 + 1)))
3635breq2d 5122 . . . . . 6 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → (𝐾 ∥ (!‘(𝑦 + 1)) ↔ 𝐾 ∥ ((!‘𝑦) · (𝑦 + 1))))
3733, 36sylibrd 259 . . . . 5 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → (𝐾 ∥ (!‘𝑦) → 𝐾 ∥ (!‘(𝑦 + 1))))
3837ex 412 . . . 4 (𝑦 ∈ (ℤ𝐾) → (𝐾 ∈ ℕ → (𝐾 ∥ (!‘𝑦) → 𝐾 ∥ (!‘(𝑦 + 1)))))
3938a2d 29 . . 3 (𝑦 ∈ (ℤ𝐾) → ((𝐾 ∈ ℕ → 𝐾 ∥ (!‘𝑦)) → (𝐾 ∈ ℕ → 𝐾 ∥ (!‘(𝑦 + 1)))))
403, 6, 9, 12, 20, 39uzind4i 12876 . 2 (𝑁 ∈ (ℤ𝐾) → (𝐾 ∈ ℕ → 𝐾 ∥ (!‘𝑁)))
4140impcom 407 1 ((𝐾 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝐾)) → 𝐾 ∥ (!‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   class class class wbr 5110  cfv 6514  (class class class)co 7390  1c1 11076   + caddc 11078   · cmul 11080  cmin 11412  cn 12193  0cn0 12449  cz 12536  cuz 12800  !cfa 14245  cdvds 16229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-seq 13974  df-fac 14246  df-dvds 16230
This theorem is referenced by:  lcmflefac  16625  prmdvdsbc  16703  prmunb  16892  prmgaplem1  17027  gexcl3  19524  wilth  26988  chtublem  27129
  Copyright terms: Public domain W3C validator