MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsfac Structured version   Visualization version   GIF version

Theorem dvdsfac 15963
Description: A positive integer divides any greater factorial. (Contributed by Paul Chapman, 28-Nov-2012.)
Assertion
Ref Expression
dvdsfac ((𝐾 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝐾)) → 𝐾 ∥ (!‘𝑁))

Proof of Theorem dvdsfac
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6756 . . . . 5 (𝑥 = 𝐾 → (!‘𝑥) = (!‘𝐾))
21breq2d 5082 . . . 4 (𝑥 = 𝐾 → (𝐾 ∥ (!‘𝑥) ↔ 𝐾 ∥ (!‘𝐾)))
32imbi2d 340 . . 3 (𝑥 = 𝐾 → ((𝐾 ∈ ℕ → 𝐾 ∥ (!‘𝑥)) ↔ (𝐾 ∈ ℕ → 𝐾 ∥ (!‘𝐾))))
4 fveq2 6756 . . . . 5 (𝑥 = 𝑦 → (!‘𝑥) = (!‘𝑦))
54breq2d 5082 . . . 4 (𝑥 = 𝑦 → (𝐾 ∥ (!‘𝑥) ↔ 𝐾 ∥ (!‘𝑦)))
65imbi2d 340 . . 3 (𝑥 = 𝑦 → ((𝐾 ∈ ℕ → 𝐾 ∥ (!‘𝑥)) ↔ (𝐾 ∈ ℕ → 𝐾 ∥ (!‘𝑦))))
7 fveq2 6756 . . . . 5 (𝑥 = (𝑦 + 1) → (!‘𝑥) = (!‘(𝑦 + 1)))
87breq2d 5082 . . . 4 (𝑥 = (𝑦 + 1) → (𝐾 ∥ (!‘𝑥) ↔ 𝐾 ∥ (!‘(𝑦 + 1))))
98imbi2d 340 . . 3 (𝑥 = (𝑦 + 1) → ((𝐾 ∈ ℕ → 𝐾 ∥ (!‘𝑥)) ↔ (𝐾 ∈ ℕ → 𝐾 ∥ (!‘(𝑦 + 1)))))
10 fveq2 6756 . . . . 5 (𝑥 = 𝑁 → (!‘𝑥) = (!‘𝑁))
1110breq2d 5082 . . . 4 (𝑥 = 𝑁 → (𝐾 ∥ (!‘𝑥) ↔ 𝐾 ∥ (!‘𝑁)))
1211imbi2d 340 . . 3 (𝑥 = 𝑁 → ((𝐾 ∈ ℕ → 𝐾 ∥ (!‘𝑥)) ↔ (𝐾 ∈ ℕ → 𝐾 ∥ (!‘𝑁))))
13 nnm1nn0 12204 . . . . . . 7 (𝐾 ∈ ℕ → (𝐾 − 1) ∈ ℕ0)
1413faccld 13926 . . . . . 6 (𝐾 ∈ ℕ → (!‘(𝐾 − 1)) ∈ ℕ)
1514nnzd 12354 . . . . 5 (𝐾 ∈ ℕ → (!‘(𝐾 − 1)) ∈ ℤ)
16 nnz 12272 . . . . 5 (𝐾 ∈ ℕ → 𝐾 ∈ ℤ)
17 dvdsmul2 15916 . . . . 5 (((!‘(𝐾 − 1)) ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝐾 ∥ ((!‘(𝐾 − 1)) · 𝐾))
1815, 16, 17syl2anc 583 . . . 4 (𝐾 ∈ ℕ → 𝐾 ∥ ((!‘(𝐾 − 1)) · 𝐾))
19 facnn2 13924 . . . 4 (𝐾 ∈ ℕ → (!‘𝐾) = ((!‘(𝐾 − 1)) · 𝐾))
2018, 19breqtrrd 5098 . . 3 (𝐾 ∈ ℕ → 𝐾 ∥ (!‘𝐾))
2116adantl 481 . . . . . . 7 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → 𝐾 ∈ ℤ)
22 elnnuz 12551 . . . . . . . . . . . 12 (𝐾 ∈ ℕ ↔ 𝐾 ∈ (ℤ‘1))
23 uztrn 12529 . . . . . . . . . . . 12 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ‘1)) → 𝑦 ∈ (ℤ‘1))
2422, 23sylan2b 593 . . . . . . . . . . 11 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → 𝑦 ∈ (ℤ‘1))
25 elnnuz 12551 . . . . . . . . . . 11 (𝑦 ∈ ℕ ↔ 𝑦 ∈ (ℤ‘1))
2624, 25sylibr 233 . . . . . . . . . 10 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → 𝑦 ∈ ℕ)
2726nnnn0d 12223 . . . . . . . . 9 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → 𝑦 ∈ ℕ0)
2827faccld 13926 . . . . . . . 8 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → (!‘𝑦) ∈ ℕ)
2928nnzd 12354 . . . . . . 7 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → (!‘𝑦) ∈ ℤ)
3026nnzd 12354 . . . . . . . 8 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → 𝑦 ∈ ℤ)
3130peano2zd 12358 . . . . . . 7 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → (𝑦 + 1) ∈ ℤ)
32 dvdsmultr1 15933 . . . . . . 7 ((𝐾 ∈ ℤ ∧ (!‘𝑦) ∈ ℤ ∧ (𝑦 + 1) ∈ ℤ) → (𝐾 ∥ (!‘𝑦) → 𝐾 ∥ ((!‘𝑦) · (𝑦 + 1))))
3321, 29, 31, 32syl3anc 1369 . . . . . 6 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → (𝐾 ∥ (!‘𝑦) → 𝐾 ∥ ((!‘𝑦) · (𝑦 + 1))))
34 facp1 13920 . . . . . . . 8 (𝑦 ∈ ℕ0 → (!‘(𝑦 + 1)) = ((!‘𝑦) · (𝑦 + 1)))
3527, 34syl 17 . . . . . . 7 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → (!‘(𝑦 + 1)) = ((!‘𝑦) · (𝑦 + 1)))
3635breq2d 5082 . . . . . 6 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → (𝐾 ∥ (!‘(𝑦 + 1)) ↔ 𝐾 ∥ ((!‘𝑦) · (𝑦 + 1))))
3733, 36sylibrd 258 . . . . 5 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → (𝐾 ∥ (!‘𝑦) → 𝐾 ∥ (!‘(𝑦 + 1))))
3837ex 412 . . . 4 (𝑦 ∈ (ℤ𝐾) → (𝐾 ∈ ℕ → (𝐾 ∥ (!‘𝑦) → 𝐾 ∥ (!‘(𝑦 + 1)))))
3938a2d 29 . . 3 (𝑦 ∈ (ℤ𝐾) → ((𝐾 ∈ ℕ → 𝐾 ∥ (!‘𝑦)) → (𝐾 ∈ ℕ → 𝐾 ∥ (!‘(𝑦 + 1)))))
403, 6, 9, 12, 20, 39uzind4i 12579 . 2 (𝑁 ∈ (ℤ𝐾) → (𝐾 ∈ ℕ → 𝐾 ∥ (!‘𝑁)))
4140impcom 407 1 ((𝐾 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝐾)) → 𝐾 ∥ (!‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108   class class class wbr 5070  cfv 6418  (class class class)co 7255  1c1 10803   + caddc 10805   · cmul 10807  cmin 11135  cn 11903  0cn0 12163  cz 12249  cuz 12511  !cfa 13915  cdvds 15891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-seq 13650  df-fac 13916  df-dvds 15892
This theorem is referenced by:  lcmflefac  16281  prmunb  16543  prmgaplem1  16678  gexcl3  19107  wilth  26125  chtublem  26264  prmdvdsbc  31032
  Copyright terms: Public domain W3C validator