Users' Mathboxes Mathbox for Paul Chapman < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climuzcnv Structured version   Visualization version   GIF version

Theorem climuzcnv 33529
Description: Utility lemma to convert between 𝑚𝑘 and 𝑘 ∈ (ℤ𝑚) in limit theorems. (Contributed by Paul Chapman, 10-Nov-2012.)
Assertion
Ref Expression
climuzcnv (𝑚 ∈ ℕ → ((𝑘 ∈ (ℤ𝑚) → 𝜑) ↔ (𝑘 ∈ ℕ → (𝑚𝑘𝜑))))
Distinct variable group:   𝑘,𝑚
Allowed substitution hints:   𝜑(𝑘,𝑚)

Proof of Theorem climuzcnv
StepHypRef Expression
1 elnnuz 12551 . . . . . . . 8 (𝑚 ∈ ℕ ↔ 𝑚 ∈ (ℤ‘1))
2 uztrn 12529 . . . . . . . 8 ((𝑘 ∈ (ℤ𝑚) ∧ 𝑚 ∈ (ℤ‘1)) → 𝑘 ∈ (ℤ‘1))
31, 2sylan2b 593 . . . . . . 7 ((𝑘 ∈ (ℤ𝑚) ∧ 𝑚 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
4 elnnuz 12551 . . . . . . 7 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
53, 4sylibr 233 . . . . . 6 ((𝑘 ∈ (ℤ𝑚) ∧ 𝑚 ∈ ℕ) → 𝑘 ∈ ℕ)
65expcom 413 . . . . 5 (𝑚 ∈ ℕ → (𝑘 ∈ (ℤ𝑚) → 𝑘 ∈ ℕ))
7 eluzle 12524 . . . . . 6 (𝑘 ∈ (ℤ𝑚) → 𝑚𝑘)
87a1i 11 . . . . 5 (𝑚 ∈ ℕ → (𝑘 ∈ (ℤ𝑚) → 𝑚𝑘))
96, 8jcad 512 . . . 4 (𝑚 ∈ ℕ → (𝑘 ∈ (ℤ𝑚) → (𝑘 ∈ ℕ ∧ 𝑚𝑘)))
10 nnz 12272 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
11 nnz 12272 . . . . . . 7 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
12 eluz2 12517 . . . . . . . 8 (𝑘 ∈ (ℤ𝑚) ↔ (𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑚𝑘))
1312biimpri 227 . . . . . . 7 ((𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑚𝑘) → 𝑘 ∈ (ℤ𝑚))
1411, 13syl3an1 1161 . . . . . 6 ((𝑚 ∈ ℕ ∧ 𝑘 ∈ ℤ ∧ 𝑚𝑘) → 𝑘 ∈ (ℤ𝑚))
1510, 14syl3an2 1162 . . . . 5 ((𝑚 ∈ ℕ ∧ 𝑘 ∈ ℕ ∧ 𝑚𝑘) → 𝑘 ∈ (ℤ𝑚))
16153expib 1120 . . . 4 (𝑚 ∈ ℕ → ((𝑘 ∈ ℕ ∧ 𝑚𝑘) → 𝑘 ∈ (ℤ𝑚)))
179, 16impbid 211 . . 3 (𝑚 ∈ ℕ → (𝑘 ∈ (ℤ𝑚) ↔ (𝑘 ∈ ℕ ∧ 𝑚𝑘)))
1817imbi1d 341 . 2 (𝑚 ∈ ℕ → ((𝑘 ∈ (ℤ𝑚) → 𝜑) ↔ ((𝑘 ∈ ℕ ∧ 𝑚𝑘) → 𝜑)))
19 impexp 450 . 2 (((𝑘 ∈ ℕ ∧ 𝑚𝑘) → 𝜑) ↔ (𝑘 ∈ ℕ → (𝑚𝑘𝜑)))
2018, 19bitrdi 286 1 (𝑚 ∈ ℕ → ((𝑘 ∈ (ℤ𝑚) → 𝜑) ↔ (𝑘 ∈ ℕ → (𝑚𝑘𝜑))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085  wcel 2108   class class class wbr 5070  cfv 6418  1c1 10803  cle 10941  cn 11903  cz 12249  cuz 12511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-z 12250  df-uz 12512
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator