![]() |
Mathbox for Paul Chapman |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > climuzcnv | Structured version Visualization version GIF version |
Description: Utility lemma to convert between 𝑚 ≤ 𝑘 and 𝑘 ∈ (ℤ≥‘𝑚) in limit theorems. (Contributed by Paul Chapman, 10-Nov-2012.) |
Ref | Expression |
---|---|
climuzcnv | ⊢ (𝑚 ∈ ℕ → ((𝑘 ∈ (ℤ≥‘𝑚) → 𝜑) ↔ (𝑘 ∈ ℕ → (𝑚 ≤ 𝑘 → 𝜑)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnnuz 12906 | . . . . . . . 8 ⊢ (𝑚 ∈ ℕ ↔ 𝑚 ∈ (ℤ≥‘1)) | |
2 | uztrn 12880 | . . . . . . . 8 ⊢ ((𝑘 ∈ (ℤ≥‘𝑚) ∧ 𝑚 ∈ (ℤ≥‘1)) → 𝑘 ∈ (ℤ≥‘1)) | |
3 | 1, 2 | sylan2b 592 | . . . . . . 7 ⊢ ((𝑘 ∈ (ℤ≥‘𝑚) ∧ 𝑚 ∈ ℕ) → 𝑘 ∈ (ℤ≥‘1)) |
4 | elnnuz 12906 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ≥‘1)) | |
5 | 3, 4 | sylibr 233 | . . . . . 6 ⊢ ((𝑘 ∈ (ℤ≥‘𝑚) ∧ 𝑚 ∈ ℕ) → 𝑘 ∈ ℕ) |
6 | 5 | expcom 412 | . . . . 5 ⊢ (𝑚 ∈ ℕ → (𝑘 ∈ (ℤ≥‘𝑚) → 𝑘 ∈ ℕ)) |
7 | eluzle 12875 | . . . . . 6 ⊢ (𝑘 ∈ (ℤ≥‘𝑚) → 𝑚 ≤ 𝑘) | |
8 | 7 | a1i 11 | . . . . 5 ⊢ (𝑚 ∈ ℕ → (𝑘 ∈ (ℤ≥‘𝑚) → 𝑚 ≤ 𝑘)) |
9 | 6, 8 | jcad 511 | . . . 4 ⊢ (𝑚 ∈ ℕ → (𝑘 ∈ (ℤ≥‘𝑚) → (𝑘 ∈ ℕ ∧ 𝑚 ≤ 𝑘))) |
10 | nnz 12619 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℤ) | |
11 | nnz 12619 | . . . . . . 7 ⊢ (𝑚 ∈ ℕ → 𝑚 ∈ ℤ) | |
12 | eluz2 12868 | . . . . . . . 8 ⊢ (𝑘 ∈ (ℤ≥‘𝑚) ↔ (𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑚 ≤ 𝑘)) | |
13 | 12 | biimpri 227 | . . . . . . 7 ⊢ ((𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑚 ≤ 𝑘) → 𝑘 ∈ (ℤ≥‘𝑚)) |
14 | 11, 13 | syl3an1 1160 | . . . . . 6 ⊢ ((𝑚 ∈ ℕ ∧ 𝑘 ∈ ℤ ∧ 𝑚 ≤ 𝑘) → 𝑘 ∈ (ℤ≥‘𝑚)) |
15 | 10, 14 | syl3an2 1161 | . . . . 5 ⊢ ((𝑚 ∈ ℕ ∧ 𝑘 ∈ ℕ ∧ 𝑚 ≤ 𝑘) → 𝑘 ∈ (ℤ≥‘𝑚)) |
16 | 15 | 3expib 1119 | . . . 4 ⊢ (𝑚 ∈ ℕ → ((𝑘 ∈ ℕ ∧ 𝑚 ≤ 𝑘) → 𝑘 ∈ (ℤ≥‘𝑚))) |
17 | 9, 16 | impbid 211 | . . 3 ⊢ (𝑚 ∈ ℕ → (𝑘 ∈ (ℤ≥‘𝑚) ↔ (𝑘 ∈ ℕ ∧ 𝑚 ≤ 𝑘))) |
18 | 17 | imbi1d 340 | . 2 ⊢ (𝑚 ∈ ℕ → ((𝑘 ∈ (ℤ≥‘𝑚) → 𝜑) ↔ ((𝑘 ∈ ℕ ∧ 𝑚 ≤ 𝑘) → 𝜑))) |
19 | impexp 449 | . 2 ⊢ (((𝑘 ∈ ℕ ∧ 𝑚 ≤ 𝑘) → 𝜑) ↔ (𝑘 ∈ ℕ → (𝑚 ≤ 𝑘 → 𝜑))) | |
20 | 18, 19 | bitrdi 286 | 1 ⊢ (𝑚 ∈ ℕ → ((𝑘 ∈ (ℤ≥‘𝑚) → 𝜑) ↔ (𝑘 ∈ ℕ → (𝑚 ≤ 𝑘 → 𝜑)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 ∈ wcel 2098 class class class wbr 5152 ‘cfv 6553 1c1 11149 ≤ cle 11289 ℕcn 12252 ℤcz 12598 ℤ≥cuz 12862 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-cnex 11204 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-2nd 8002 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-er 8733 df-en 8973 df-dom 8974 df-sdom 8975 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-nn 12253 df-z 12599 df-uz 12863 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |