![]() |
Mathbox for Paul Chapman |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > climuzcnv | Structured version Visualization version GIF version |
Description: Utility lemma to convert between 𝑚 ≤ 𝑘 and 𝑘 ∈ (ℤ≥‘𝑚) in limit theorems. (Contributed by Paul Chapman, 10-Nov-2012.) |
Ref | Expression |
---|---|
climuzcnv | ⊢ (𝑚 ∈ ℕ → ((𝑘 ∈ (ℤ≥‘𝑚) → 𝜑) ↔ (𝑘 ∈ ℕ → (𝑚 ≤ 𝑘 → 𝜑)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnnuz 12034 | . . . . . . . 8 ⊢ (𝑚 ∈ ℕ ↔ 𝑚 ∈ (ℤ≥‘1)) | |
2 | uztrn 12013 | . . . . . . . 8 ⊢ ((𝑘 ∈ (ℤ≥‘𝑚) ∧ 𝑚 ∈ (ℤ≥‘1)) → 𝑘 ∈ (ℤ≥‘1)) | |
3 | 1, 2 | sylan2b 587 | . . . . . . 7 ⊢ ((𝑘 ∈ (ℤ≥‘𝑚) ∧ 𝑚 ∈ ℕ) → 𝑘 ∈ (ℤ≥‘1)) |
4 | elnnuz 12034 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ≥‘1)) | |
5 | 3, 4 | sylibr 226 | . . . . . 6 ⊢ ((𝑘 ∈ (ℤ≥‘𝑚) ∧ 𝑚 ∈ ℕ) → 𝑘 ∈ ℕ) |
6 | 5 | expcom 404 | . . . . 5 ⊢ (𝑚 ∈ ℕ → (𝑘 ∈ (ℤ≥‘𝑚) → 𝑘 ∈ ℕ)) |
7 | eluzle 12009 | . . . . . 6 ⊢ (𝑘 ∈ (ℤ≥‘𝑚) → 𝑚 ≤ 𝑘) | |
8 | 7 | a1i 11 | . . . . 5 ⊢ (𝑚 ∈ ℕ → (𝑘 ∈ (ℤ≥‘𝑚) → 𝑚 ≤ 𝑘)) |
9 | 6, 8 | jcad 508 | . . . 4 ⊢ (𝑚 ∈ ℕ → (𝑘 ∈ (ℤ≥‘𝑚) → (𝑘 ∈ ℕ ∧ 𝑚 ≤ 𝑘))) |
10 | nnz 11755 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℤ) | |
11 | nnz 11755 | . . . . . . 7 ⊢ (𝑚 ∈ ℕ → 𝑚 ∈ ℤ) | |
12 | eluz2 12002 | . . . . . . . 8 ⊢ (𝑘 ∈ (ℤ≥‘𝑚) ↔ (𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑚 ≤ 𝑘)) | |
13 | 12 | biimpri 220 | . . . . . . 7 ⊢ ((𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑚 ≤ 𝑘) → 𝑘 ∈ (ℤ≥‘𝑚)) |
14 | 11, 13 | syl3an1 1163 | . . . . . 6 ⊢ ((𝑚 ∈ ℕ ∧ 𝑘 ∈ ℤ ∧ 𝑚 ≤ 𝑘) → 𝑘 ∈ (ℤ≥‘𝑚)) |
15 | 10, 14 | syl3an2 1164 | . . . . 5 ⊢ ((𝑚 ∈ ℕ ∧ 𝑘 ∈ ℕ ∧ 𝑚 ≤ 𝑘) → 𝑘 ∈ (ℤ≥‘𝑚)) |
16 | 15 | 3expib 1113 | . . . 4 ⊢ (𝑚 ∈ ℕ → ((𝑘 ∈ ℕ ∧ 𝑚 ≤ 𝑘) → 𝑘 ∈ (ℤ≥‘𝑚))) |
17 | 9, 16 | impbid 204 | . . 3 ⊢ (𝑚 ∈ ℕ → (𝑘 ∈ (ℤ≥‘𝑚) ↔ (𝑘 ∈ ℕ ∧ 𝑚 ≤ 𝑘))) |
18 | 17 | imbi1d 333 | . 2 ⊢ (𝑚 ∈ ℕ → ((𝑘 ∈ (ℤ≥‘𝑚) → 𝜑) ↔ ((𝑘 ∈ ℕ ∧ 𝑚 ≤ 𝑘) → 𝜑))) |
19 | impexp 443 | . 2 ⊢ (((𝑘 ∈ ℕ ∧ 𝑚 ≤ 𝑘) → 𝜑) ↔ (𝑘 ∈ ℕ → (𝑚 ≤ 𝑘 → 𝜑))) | |
20 | 18, 19 | syl6bb 279 | 1 ⊢ (𝑚 ∈ ℕ → ((𝑘 ∈ (ℤ≥‘𝑚) → 𝜑) ↔ (𝑘 ∈ ℕ → (𝑚 ≤ 𝑘 → 𝜑)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1071 ∈ wcel 2107 class class class wbr 4888 ‘cfv 6137 1c1 10275 ≤ cle 10414 ℕcn 11378 ℤcz 11732 ℤ≥cuz 11996 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-er 8028 df-en 8244 df-dom 8245 df-sdom 8246 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-nn 11379 df-z 11733 df-uz 11997 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |