Users' Mathboxes Mathbox for Paul Chapman < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climuzcnv Structured version   Visualization version   GIF version

Theorem climuzcnv 35499
Description: Utility lemma to convert between 𝑚𝑘 and 𝑘 ∈ (ℤ𝑚) in limit theorems. (Contributed by Paul Chapman, 10-Nov-2012.)
Assertion
Ref Expression
climuzcnv (𝑚 ∈ ℕ → ((𝑘 ∈ (ℤ𝑚) → 𝜑) ↔ (𝑘 ∈ ℕ → (𝑚𝑘𝜑))))
Distinct variable group:   𝑘,𝑚
Allowed substitution hints:   𝜑(𝑘,𝑚)

Proof of Theorem climuzcnv
StepHypRef Expression
1 elnnuz 12918 . . . . . . . 8 (𝑚 ∈ ℕ ↔ 𝑚 ∈ (ℤ‘1))
2 uztrn 12892 . . . . . . . 8 ((𝑘 ∈ (ℤ𝑚) ∧ 𝑚 ∈ (ℤ‘1)) → 𝑘 ∈ (ℤ‘1))
31, 2sylan2b 592 . . . . . . 7 ((𝑘 ∈ (ℤ𝑚) ∧ 𝑚 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
4 elnnuz 12918 . . . . . . 7 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
53, 4sylibr 233 . . . . . 6 ((𝑘 ∈ (ℤ𝑚) ∧ 𝑚 ∈ ℕ) → 𝑘 ∈ ℕ)
65expcom 412 . . . . 5 (𝑚 ∈ ℕ → (𝑘 ∈ (ℤ𝑚) → 𝑘 ∈ ℕ))
7 eluzle 12887 . . . . . 6 (𝑘 ∈ (ℤ𝑚) → 𝑚𝑘)
87a1i 11 . . . . 5 (𝑚 ∈ ℕ → (𝑘 ∈ (ℤ𝑚) → 𝑚𝑘))
96, 8jcad 511 . . . 4 (𝑚 ∈ ℕ → (𝑘 ∈ (ℤ𝑚) → (𝑘 ∈ ℕ ∧ 𝑚𝑘)))
10 nnz 12631 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
11 nnz 12631 . . . . . . 7 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
12 eluz2 12880 . . . . . . . 8 (𝑘 ∈ (ℤ𝑚) ↔ (𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑚𝑘))
1312biimpri 227 . . . . . . 7 ((𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑚𝑘) → 𝑘 ∈ (ℤ𝑚))
1411, 13syl3an1 1160 . . . . . 6 ((𝑚 ∈ ℕ ∧ 𝑘 ∈ ℤ ∧ 𝑚𝑘) → 𝑘 ∈ (ℤ𝑚))
1510, 14syl3an2 1161 . . . . 5 ((𝑚 ∈ ℕ ∧ 𝑘 ∈ ℕ ∧ 𝑚𝑘) → 𝑘 ∈ (ℤ𝑚))
16153expib 1119 . . . 4 (𝑚 ∈ ℕ → ((𝑘 ∈ ℕ ∧ 𝑚𝑘) → 𝑘 ∈ (ℤ𝑚)))
179, 16impbid 211 . . 3 (𝑚 ∈ ℕ → (𝑘 ∈ (ℤ𝑚) ↔ (𝑘 ∈ ℕ ∧ 𝑚𝑘)))
1817imbi1d 340 . 2 (𝑚 ∈ ℕ → ((𝑘 ∈ (ℤ𝑚) → 𝜑) ↔ ((𝑘 ∈ ℕ ∧ 𝑚𝑘) → 𝜑)))
19 impexp 449 . 2 (((𝑘 ∈ ℕ ∧ 𝑚𝑘) → 𝜑) ↔ (𝑘 ∈ ℕ → (𝑚𝑘𝜑)))
2018, 19bitrdi 286 1 (𝑚 ∈ ℕ → ((𝑘 ∈ (ℤ𝑚) → 𝜑) ↔ (𝑘 ∈ ℕ → (𝑚𝑘𝜑))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084  wcel 2099   class class class wbr 5153  cfv 6554  1c1 11159  cle 11299  cn 12264  cz 12610  cuz 12874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-z 12611  df-uz 12875
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator