Users' Mathboxes Mathbox for Paul Chapman < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climuzcnv Structured version   Visualization version   GIF version

Theorem climuzcnv 33296
Description: Utility lemma to convert between 𝑚𝑘 and 𝑘 ∈ (ℤ𝑚) in limit theorems. (Contributed by Paul Chapman, 10-Nov-2012.)
Assertion
Ref Expression
climuzcnv (𝑚 ∈ ℕ → ((𝑘 ∈ (ℤ𝑚) → 𝜑) ↔ (𝑘 ∈ ℕ → (𝑚𝑘𝜑))))
Distinct variable group:   𝑘,𝑚
Allowed substitution hints:   𝜑(𝑘,𝑚)

Proof of Theorem climuzcnv
StepHypRef Expression
1 elnnuz 12443 . . . . . . . 8 (𝑚 ∈ ℕ ↔ 𝑚 ∈ (ℤ‘1))
2 uztrn 12421 . . . . . . . 8 ((𝑘 ∈ (ℤ𝑚) ∧ 𝑚 ∈ (ℤ‘1)) → 𝑘 ∈ (ℤ‘1))
31, 2sylan2b 597 . . . . . . 7 ((𝑘 ∈ (ℤ𝑚) ∧ 𝑚 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
4 elnnuz 12443 . . . . . . 7 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
53, 4sylibr 237 . . . . . 6 ((𝑘 ∈ (ℤ𝑚) ∧ 𝑚 ∈ ℕ) → 𝑘 ∈ ℕ)
65expcom 417 . . . . 5 (𝑚 ∈ ℕ → (𝑘 ∈ (ℤ𝑚) → 𝑘 ∈ ℕ))
7 eluzle 12416 . . . . . 6 (𝑘 ∈ (ℤ𝑚) → 𝑚𝑘)
87a1i 11 . . . . 5 (𝑚 ∈ ℕ → (𝑘 ∈ (ℤ𝑚) → 𝑚𝑘))
96, 8jcad 516 . . . 4 (𝑚 ∈ ℕ → (𝑘 ∈ (ℤ𝑚) → (𝑘 ∈ ℕ ∧ 𝑚𝑘)))
10 nnz 12164 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
11 nnz 12164 . . . . . . 7 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
12 eluz2 12409 . . . . . . . 8 (𝑘 ∈ (ℤ𝑚) ↔ (𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑚𝑘))
1312biimpri 231 . . . . . . 7 ((𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑚𝑘) → 𝑘 ∈ (ℤ𝑚))
1411, 13syl3an1 1165 . . . . . 6 ((𝑚 ∈ ℕ ∧ 𝑘 ∈ ℤ ∧ 𝑚𝑘) → 𝑘 ∈ (ℤ𝑚))
1510, 14syl3an2 1166 . . . . 5 ((𝑚 ∈ ℕ ∧ 𝑘 ∈ ℕ ∧ 𝑚𝑘) → 𝑘 ∈ (ℤ𝑚))
16153expib 1124 . . . 4 (𝑚 ∈ ℕ → ((𝑘 ∈ ℕ ∧ 𝑚𝑘) → 𝑘 ∈ (ℤ𝑚)))
179, 16impbid 215 . . 3 (𝑚 ∈ ℕ → (𝑘 ∈ (ℤ𝑚) ↔ (𝑘 ∈ ℕ ∧ 𝑚𝑘)))
1817imbi1d 345 . 2 (𝑚 ∈ ℕ → ((𝑘 ∈ (ℤ𝑚) → 𝜑) ↔ ((𝑘 ∈ ℕ ∧ 𝑚𝑘) → 𝜑)))
19 impexp 454 . 2 (((𝑘 ∈ ℕ ∧ 𝑚𝑘) → 𝜑) ↔ (𝑘 ∈ ℕ → (𝑚𝑘𝜑)))
2018, 19bitrdi 290 1 (𝑚 ∈ ℕ → ((𝑘 ∈ (ℤ𝑚) → 𝜑) ↔ (𝑘 ∈ ℕ → (𝑚𝑘𝜑))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089  wcel 2112   class class class wbr 5039  cfv 6358  1c1 10695  cle 10833  cn 11795  cz 12141  cuz 12403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-z 12142  df-uz 12404
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator