Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fzsdom2 | Structured version Visualization version GIF version |
Description: Condition for finite ranges to have a strict dominance relation. (Contributed by Stefan O'Rear, 12-Sep-2014.) (Revised by Mario Carneiro, 15-Apr-2015.) |
Ref | Expression |
---|---|
fzsdom2 | ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → (𝐴...𝐵) ≺ (𝐴...𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelz 12665 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ ℤ) | |
2 | 1 | ad2antrr 723 | . . . . . 6 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 𝐵 ∈ ℤ) |
3 | 2 | zred 12499 | . . . . 5 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 𝐵 ∈ ℝ) |
4 | eluzel2 12660 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐴 ∈ ℤ) | |
5 | 4 | ad2antrr 723 | . . . . . 6 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 𝐴 ∈ ℤ) |
6 | 5 | zred 12499 | . . . . 5 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 𝐴 ∈ ℝ) |
7 | 3, 6 | resubcld 11476 | . . . 4 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → (𝐵 − 𝐴) ∈ ℝ) |
8 | simplr 766 | . . . . . 6 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 𝐶 ∈ ℤ) | |
9 | 8 | zred 12499 | . . . . 5 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 𝐶 ∈ ℝ) |
10 | 9, 6 | resubcld 11476 | . . . 4 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → (𝐶 − 𝐴) ∈ ℝ) |
11 | 1red 11049 | . . . 4 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 1 ∈ ℝ) | |
12 | simpr 485 | . . . . 5 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 𝐵 < 𝐶) | |
13 | 3, 9, 6, 12 | ltsub1dd 11660 | . . . 4 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → (𝐵 − 𝐴) < (𝐶 − 𝐴)) |
14 | 7, 10, 11, 13 | ltadd1dd 11659 | . . 3 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → ((𝐵 − 𝐴) + 1) < ((𝐶 − 𝐴) + 1)) |
15 | hashfz 14214 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘(𝐴...𝐵)) = ((𝐵 − 𝐴) + 1)) | |
16 | 15 | ad2antrr 723 | . . 3 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → (♯‘(𝐴...𝐵)) = ((𝐵 − 𝐴) + 1)) |
17 | 3, 9, 12 | ltled 11196 | . . . . . 6 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 𝐵 ≤ 𝐶) |
18 | eluz2 12661 | . . . . . 6 ⊢ (𝐶 ∈ (ℤ≥‘𝐵) ↔ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵 ≤ 𝐶)) | |
19 | 2, 8, 17, 18 | syl3anbrc 1342 | . . . . 5 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 𝐶 ∈ (ℤ≥‘𝐵)) |
20 | simpll 764 | . . . . 5 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 𝐵 ∈ (ℤ≥‘𝐴)) | |
21 | uztrn 12673 | . . . . 5 ⊢ ((𝐶 ∈ (ℤ≥‘𝐵) ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → 𝐶 ∈ (ℤ≥‘𝐴)) | |
22 | 19, 20, 21 | syl2anc 584 | . . . 4 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 𝐶 ∈ (ℤ≥‘𝐴)) |
23 | hashfz 14214 | . . . 4 ⊢ (𝐶 ∈ (ℤ≥‘𝐴) → (♯‘(𝐴...𝐶)) = ((𝐶 − 𝐴) + 1)) | |
24 | 22, 23 | syl 17 | . . 3 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → (♯‘(𝐴...𝐶)) = ((𝐶 − 𝐴) + 1)) |
25 | 14, 16, 24 | 3brtr4d 5119 | . 2 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → (♯‘(𝐴...𝐵)) < (♯‘(𝐴...𝐶))) |
26 | fzfi 13765 | . . 3 ⊢ (𝐴...𝐵) ∈ Fin | |
27 | fzfi 13765 | . . 3 ⊢ (𝐴...𝐶) ∈ Fin | |
28 | hashsdom 14168 | . . 3 ⊢ (((𝐴...𝐵) ∈ Fin ∧ (𝐴...𝐶) ∈ Fin) → ((♯‘(𝐴...𝐵)) < (♯‘(𝐴...𝐶)) ↔ (𝐴...𝐵) ≺ (𝐴...𝐶))) | |
29 | 26, 27, 28 | mp2an 689 | . 2 ⊢ ((♯‘(𝐴...𝐵)) < (♯‘(𝐴...𝐶)) ↔ (𝐴...𝐵) ≺ (𝐴...𝐶)) |
30 | 25, 29 | sylib 217 | 1 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → (𝐴...𝐵) ≺ (𝐴...𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 class class class wbr 5087 ‘cfv 6465 (class class class)co 7315 ≺ csdm 8780 Fincfn 8781 1c1 10945 + caddc 10947 < clt 11082 ≤ cle 11083 − cmin 11278 ℤcz 12392 ℤ≥cuz 12655 ...cfz 13312 ♯chash 14117 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-cnex 11000 ax-resscn 11001 ax-1cn 11002 ax-icn 11003 ax-addcl 11004 ax-addrcl 11005 ax-mulcl 11006 ax-mulrcl 11007 ax-mulcom 11008 ax-addass 11009 ax-mulass 11010 ax-distr 11011 ax-i2m1 11012 ax-1ne0 11013 ax-1rid 11014 ax-rnegex 11015 ax-rrecex 11016 ax-cnre 11017 ax-pre-lttri 11018 ax-pre-lttrn 11019 ax-pre-ltadd 11020 ax-pre-mulgt0 11021 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-int 4893 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7272 df-ov 7318 df-oprab 7319 df-mpo 7320 df-om 7758 df-1st 7876 df-2nd 7877 df-frecs 8144 df-wrecs 8175 df-recs 8249 df-rdg 8288 df-1o 8344 df-oadd 8348 df-er 8546 df-en 8782 df-dom 8783 df-sdom 8784 df-fin 8785 df-card 9768 df-pnf 11084 df-mnf 11085 df-xr 11086 df-ltxr 11087 df-le 11088 df-sub 11280 df-neg 11281 df-nn 12047 df-n0 12307 df-xnn0 12379 df-z 12393 df-uz 12656 df-fz 13313 df-hash 14118 |
This theorem is referenced by: irrapxlem1 40847 |
Copyright terms: Public domain | W3C validator |