| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzsdom2 | Structured version Visualization version GIF version | ||
| Description: Condition for finite ranges to have a strict dominance relation. (Contributed by Stefan O'Rear, 12-Sep-2014.) (Revised by Mario Carneiro, 15-Apr-2015.) |
| Ref | Expression |
|---|---|
| fzsdom2 | ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → (𝐴...𝐵) ≺ (𝐴...𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelz 12867 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ ℤ) | |
| 2 | 1 | ad2antrr 726 | . . . . . 6 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 𝐵 ∈ ℤ) |
| 3 | 2 | zred 12702 | . . . . 5 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 𝐵 ∈ ℝ) |
| 4 | eluzel2 12862 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐴 ∈ ℤ) | |
| 5 | 4 | ad2antrr 726 | . . . . . 6 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 𝐴 ∈ ℤ) |
| 6 | 5 | zred 12702 | . . . . 5 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 𝐴 ∈ ℝ) |
| 7 | 3, 6 | resubcld 11670 | . . . 4 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → (𝐵 − 𝐴) ∈ ℝ) |
| 8 | simplr 768 | . . . . . 6 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 𝐶 ∈ ℤ) | |
| 9 | 8 | zred 12702 | . . . . 5 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 𝐶 ∈ ℝ) |
| 10 | 9, 6 | resubcld 11670 | . . . 4 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → (𝐶 − 𝐴) ∈ ℝ) |
| 11 | 1red 11241 | . . . 4 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 1 ∈ ℝ) | |
| 12 | simpr 484 | . . . . 5 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 𝐵 < 𝐶) | |
| 13 | 3, 9, 6, 12 | ltsub1dd 11854 | . . . 4 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → (𝐵 − 𝐴) < (𝐶 − 𝐴)) |
| 14 | 7, 10, 11, 13 | ltadd1dd 11853 | . . 3 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → ((𝐵 − 𝐴) + 1) < ((𝐶 − 𝐴) + 1)) |
| 15 | hashfz 14450 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘(𝐴...𝐵)) = ((𝐵 − 𝐴) + 1)) | |
| 16 | 15 | ad2antrr 726 | . . 3 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → (♯‘(𝐴...𝐵)) = ((𝐵 − 𝐴) + 1)) |
| 17 | 3, 9, 12 | ltled 11388 | . . . . . 6 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 𝐵 ≤ 𝐶) |
| 18 | eluz2 12863 | . . . . . 6 ⊢ (𝐶 ∈ (ℤ≥‘𝐵) ↔ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵 ≤ 𝐶)) | |
| 19 | 2, 8, 17, 18 | syl3anbrc 1344 | . . . . 5 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 𝐶 ∈ (ℤ≥‘𝐵)) |
| 20 | simpll 766 | . . . . 5 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 𝐵 ∈ (ℤ≥‘𝐴)) | |
| 21 | uztrn 12875 | . . . . 5 ⊢ ((𝐶 ∈ (ℤ≥‘𝐵) ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → 𝐶 ∈ (ℤ≥‘𝐴)) | |
| 22 | 19, 20, 21 | syl2anc 584 | . . . 4 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 𝐶 ∈ (ℤ≥‘𝐴)) |
| 23 | hashfz 14450 | . . . 4 ⊢ (𝐶 ∈ (ℤ≥‘𝐴) → (♯‘(𝐴...𝐶)) = ((𝐶 − 𝐴) + 1)) | |
| 24 | 22, 23 | syl 17 | . . 3 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → (♯‘(𝐴...𝐶)) = ((𝐶 − 𝐴) + 1)) |
| 25 | 14, 16, 24 | 3brtr4d 5156 | . 2 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → (♯‘(𝐴...𝐵)) < (♯‘(𝐴...𝐶))) |
| 26 | fzfi 13995 | . . 3 ⊢ (𝐴...𝐵) ∈ Fin | |
| 27 | fzfi 13995 | . . 3 ⊢ (𝐴...𝐶) ∈ Fin | |
| 28 | hashsdom 14404 | . . 3 ⊢ (((𝐴...𝐵) ∈ Fin ∧ (𝐴...𝐶) ∈ Fin) → ((♯‘(𝐴...𝐵)) < (♯‘(𝐴...𝐶)) ↔ (𝐴...𝐵) ≺ (𝐴...𝐶))) | |
| 29 | 26, 27, 28 | mp2an 692 | . 2 ⊢ ((♯‘(𝐴...𝐵)) < (♯‘(𝐴...𝐶)) ↔ (𝐴...𝐵) ≺ (𝐴...𝐶)) |
| 30 | 25, 29 | sylib 218 | 1 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → (𝐴...𝐵) ≺ (𝐴...𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 ≺ csdm 8963 Fincfn 8964 1c1 11135 + caddc 11137 < clt 11274 ≤ cle 11275 − cmin 11471 ℤcz 12593 ℤ≥cuz 12857 ...cfz 13529 ♯chash 14353 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-oadd 8489 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-n0 12507 df-xnn0 12580 df-z 12594 df-uz 12858 df-fz 13530 df-hash 14354 |
| This theorem is referenced by: irrapxlem1 42820 |
| Copyright terms: Public domain | W3C validator |