| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzsdom2 | Structured version Visualization version GIF version | ||
| Description: Condition for finite ranges to have a strict dominance relation. (Contributed by Stefan O'Rear, 12-Sep-2014.) (Revised by Mario Carneiro, 15-Apr-2015.) |
| Ref | Expression |
|---|---|
| fzsdom2 | ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → (𝐴...𝐵) ≺ (𝐴...𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelz 12742 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ ℤ) | |
| 2 | 1 | ad2antrr 726 | . . . . . 6 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 𝐵 ∈ ℤ) |
| 3 | 2 | zred 12577 | . . . . 5 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 𝐵 ∈ ℝ) |
| 4 | eluzel2 12737 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐴 ∈ ℤ) | |
| 5 | 4 | ad2antrr 726 | . . . . . 6 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 𝐴 ∈ ℤ) |
| 6 | 5 | zred 12577 | . . . . 5 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 𝐴 ∈ ℝ) |
| 7 | 3, 6 | resubcld 11545 | . . . 4 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → (𝐵 − 𝐴) ∈ ℝ) |
| 8 | simplr 768 | . . . . . 6 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 𝐶 ∈ ℤ) | |
| 9 | 8 | zred 12577 | . . . . 5 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 𝐶 ∈ ℝ) |
| 10 | 9, 6 | resubcld 11545 | . . . 4 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → (𝐶 − 𝐴) ∈ ℝ) |
| 11 | 1red 11113 | . . . 4 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 1 ∈ ℝ) | |
| 12 | simpr 484 | . . . . 5 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 𝐵 < 𝐶) | |
| 13 | 3, 9, 6, 12 | ltsub1dd 11729 | . . . 4 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → (𝐵 − 𝐴) < (𝐶 − 𝐴)) |
| 14 | 7, 10, 11, 13 | ltadd1dd 11728 | . . 3 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → ((𝐵 − 𝐴) + 1) < ((𝐶 − 𝐴) + 1)) |
| 15 | hashfz 14334 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘(𝐴...𝐵)) = ((𝐵 − 𝐴) + 1)) | |
| 16 | 15 | ad2antrr 726 | . . 3 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → (♯‘(𝐴...𝐵)) = ((𝐵 − 𝐴) + 1)) |
| 17 | 3, 9, 12 | ltled 11261 | . . . . . 6 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 𝐵 ≤ 𝐶) |
| 18 | eluz2 12738 | . . . . . 6 ⊢ (𝐶 ∈ (ℤ≥‘𝐵) ↔ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵 ≤ 𝐶)) | |
| 19 | 2, 8, 17, 18 | syl3anbrc 1344 | . . . . 5 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 𝐶 ∈ (ℤ≥‘𝐵)) |
| 20 | simpll 766 | . . . . 5 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 𝐵 ∈ (ℤ≥‘𝐴)) | |
| 21 | uztrn 12750 | . . . . 5 ⊢ ((𝐶 ∈ (ℤ≥‘𝐵) ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → 𝐶 ∈ (ℤ≥‘𝐴)) | |
| 22 | 19, 20, 21 | syl2anc 584 | . . . 4 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 𝐶 ∈ (ℤ≥‘𝐴)) |
| 23 | hashfz 14334 | . . . 4 ⊢ (𝐶 ∈ (ℤ≥‘𝐴) → (♯‘(𝐴...𝐶)) = ((𝐶 − 𝐴) + 1)) | |
| 24 | 22, 23 | syl 17 | . . 3 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → (♯‘(𝐴...𝐶)) = ((𝐶 − 𝐴) + 1)) |
| 25 | 14, 16, 24 | 3brtr4d 5121 | . 2 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → (♯‘(𝐴...𝐵)) < (♯‘(𝐴...𝐶))) |
| 26 | fzfi 13879 | . . 3 ⊢ (𝐴...𝐵) ∈ Fin | |
| 27 | fzfi 13879 | . . 3 ⊢ (𝐴...𝐶) ∈ Fin | |
| 28 | hashsdom 14288 | . . 3 ⊢ (((𝐴...𝐵) ∈ Fin ∧ (𝐴...𝐶) ∈ Fin) → ((♯‘(𝐴...𝐵)) < (♯‘(𝐴...𝐶)) ↔ (𝐴...𝐵) ≺ (𝐴...𝐶))) | |
| 29 | 26, 27, 28 | mp2an 692 | . 2 ⊢ ((♯‘(𝐴...𝐵)) < (♯‘(𝐴...𝐶)) ↔ (𝐴...𝐵) ≺ (𝐴...𝐶)) |
| 30 | 25, 29 | sylib 218 | 1 ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → (𝐴...𝐵) ≺ (𝐴...𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 ≺ csdm 8868 Fincfn 8869 1c1 11007 + caddc 11009 < clt 11146 ≤ cle 11147 − cmin 11344 ℤcz 12468 ℤ≥cuz 12732 ...cfz 13407 ♯chash 14237 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-xnn0 12455 df-z 12469 df-uz 12733 df-fz 13408 df-hash 14238 |
| This theorem is referenced by: irrapxlem1 42914 |
| Copyright terms: Public domain | W3C validator |