MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzsdom2 Structured version   Visualization version   GIF version

Theorem fzsdom2 13785
Description: Condition for finite ranges to have a strict dominance relation. (Contributed by Stefan O'Rear, 12-Sep-2014.) (Revised by Mario Carneiro, 15-Apr-2015.)
Assertion
Ref Expression
fzsdom2 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → (𝐴...𝐵) ≺ (𝐴...𝐶))

Proof of Theorem fzsdom2
StepHypRef Expression
1 eluzelz 12241 . . . . . . 7 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℤ)
21ad2antrr 725 . . . . . 6 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 𝐵 ∈ ℤ)
32zred 12075 . . . . 5 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 𝐵 ∈ ℝ)
4 eluzel2 12236 . . . . . . 7 (𝐵 ∈ (ℤ𝐴) → 𝐴 ∈ ℤ)
54ad2antrr 725 . . . . . 6 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 𝐴 ∈ ℤ)
65zred 12075 . . . . 5 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 𝐴 ∈ ℝ)
73, 6resubcld 11057 . . . 4 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → (𝐵𝐴) ∈ ℝ)
8 simplr 768 . . . . . 6 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 𝐶 ∈ ℤ)
98zred 12075 . . . . 5 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 𝐶 ∈ ℝ)
109, 6resubcld 11057 . . . 4 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → (𝐶𝐴) ∈ ℝ)
11 1red 10631 . . . 4 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 1 ∈ ℝ)
12 simpr 488 . . . . 5 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 𝐵 < 𝐶)
133, 9, 6, 12ltsub1dd 11241 . . . 4 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → (𝐵𝐴) < (𝐶𝐴))
147, 10, 11, 13ltadd1dd 11240 . . 3 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → ((𝐵𝐴) + 1) < ((𝐶𝐴) + 1))
15 hashfz 13784 . . . 4 (𝐵 ∈ (ℤ𝐴) → (♯‘(𝐴...𝐵)) = ((𝐵𝐴) + 1))
1615ad2antrr 725 . . 3 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → (♯‘(𝐴...𝐵)) = ((𝐵𝐴) + 1))
173, 9, 12ltled 10777 . . . . . 6 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 𝐵𝐶)
18 eluz2 12237 . . . . . 6 (𝐶 ∈ (ℤ𝐵) ↔ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵𝐶))
192, 8, 17, 18syl3anbrc 1340 . . . . 5 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 𝐶 ∈ (ℤ𝐵))
20 simpll 766 . . . . 5 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 𝐵 ∈ (ℤ𝐴))
21 uztrn 12249 . . . . 5 ((𝐶 ∈ (ℤ𝐵) ∧ 𝐵 ∈ (ℤ𝐴)) → 𝐶 ∈ (ℤ𝐴))
2219, 20, 21syl2anc 587 . . . 4 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 𝐶 ∈ (ℤ𝐴))
23 hashfz 13784 . . . 4 (𝐶 ∈ (ℤ𝐴) → (♯‘(𝐴...𝐶)) = ((𝐶𝐴) + 1))
2422, 23syl 17 . . 3 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → (♯‘(𝐴...𝐶)) = ((𝐶𝐴) + 1))
2514, 16, 243brtr4d 5062 . 2 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → (♯‘(𝐴...𝐵)) < (♯‘(𝐴...𝐶)))
26 fzfi 13335 . . 3 (𝐴...𝐵) ∈ Fin
27 fzfi 13335 . . 3 (𝐴...𝐶) ∈ Fin
28 hashsdom 13738 . . 3 (((𝐴...𝐵) ∈ Fin ∧ (𝐴...𝐶) ∈ Fin) → ((♯‘(𝐴...𝐵)) < (♯‘(𝐴...𝐶)) ↔ (𝐴...𝐵) ≺ (𝐴...𝐶)))
2926, 27, 28mp2an 691 . 2 ((♯‘(𝐴...𝐵)) < (♯‘(𝐴...𝐶)) ↔ (𝐴...𝐵) ≺ (𝐴...𝐶))
3025, 29sylib 221 1 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → (𝐴...𝐵) ≺ (𝐴...𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111   class class class wbr 5030  cfv 6324  (class class class)co 7135  csdm 8491  Fincfn 8492  1c1 10527   + caddc 10529   < clt 10664  cle 10665  cmin 10859  cz 11969  cuz 12231  ...cfz 12885  chash 13686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12886  df-hash 13687
This theorem is referenced by:  irrapxlem1  39763
  Copyright terms: Public domain W3C validator