MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzsdom2 Structured version   Visualization version   GIF version

Theorem fzsdom2 13794
Description: Condition for finite ranges to have a strict dominance relation. (Contributed by Stefan O'Rear, 12-Sep-2014.) (Revised by Mario Carneiro, 15-Apr-2015.)
Assertion
Ref Expression
fzsdom2 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → (𝐴...𝐵) ≺ (𝐴...𝐶))

Proof of Theorem fzsdom2
StepHypRef Expression
1 eluzelz 12250 . . . . . . 7 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℤ)
21ad2antrr 725 . . . . . 6 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 𝐵 ∈ ℤ)
32zred 12084 . . . . 5 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 𝐵 ∈ ℝ)
4 eluzel2 12245 . . . . . . 7 (𝐵 ∈ (ℤ𝐴) → 𝐴 ∈ ℤ)
54ad2antrr 725 . . . . . 6 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 𝐴 ∈ ℤ)
65zred 12084 . . . . 5 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 𝐴 ∈ ℝ)
73, 6resubcld 11066 . . . 4 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → (𝐵𝐴) ∈ ℝ)
8 simplr 768 . . . . . 6 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 𝐶 ∈ ℤ)
98zred 12084 . . . . 5 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 𝐶 ∈ ℝ)
109, 6resubcld 11066 . . . 4 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → (𝐶𝐴) ∈ ℝ)
11 1red 10640 . . . 4 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 1 ∈ ℝ)
12 simpr 488 . . . . 5 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 𝐵 < 𝐶)
133, 9, 6, 12ltsub1dd 11250 . . . 4 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → (𝐵𝐴) < (𝐶𝐴))
147, 10, 11, 13ltadd1dd 11249 . . 3 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → ((𝐵𝐴) + 1) < ((𝐶𝐴) + 1))
15 hashfz 13793 . . . 4 (𝐵 ∈ (ℤ𝐴) → (♯‘(𝐴...𝐵)) = ((𝐵𝐴) + 1))
1615ad2antrr 725 . . 3 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → (♯‘(𝐴...𝐵)) = ((𝐵𝐴) + 1))
173, 9, 12ltled 10786 . . . . . 6 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 𝐵𝐶)
18 eluz2 12246 . . . . . 6 (𝐶 ∈ (ℤ𝐵) ↔ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵𝐶))
192, 8, 17, 18syl3anbrc 1340 . . . . 5 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 𝐶 ∈ (ℤ𝐵))
20 simpll 766 . . . . 5 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 𝐵 ∈ (ℤ𝐴))
21 uztrn 12258 . . . . 5 ((𝐶 ∈ (ℤ𝐵) ∧ 𝐵 ∈ (ℤ𝐴)) → 𝐶 ∈ (ℤ𝐴))
2219, 20, 21syl2anc 587 . . . 4 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → 𝐶 ∈ (ℤ𝐴))
23 hashfz 13793 . . . 4 (𝐶 ∈ (ℤ𝐴) → (♯‘(𝐴...𝐶)) = ((𝐶𝐴) + 1))
2422, 23syl 17 . . 3 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → (♯‘(𝐴...𝐶)) = ((𝐶𝐴) + 1))
2514, 16, 243brtr4d 5084 . 2 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → (♯‘(𝐴...𝐵)) < (♯‘(𝐴...𝐶)))
26 fzfi 13344 . . 3 (𝐴...𝐵) ∈ Fin
27 fzfi 13344 . . 3 (𝐴...𝐶) ∈ Fin
28 hashsdom 13747 . . 3 (((𝐴...𝐵) ∈ Fin ∧ (𝐴...𝐶) ∈ Fin) → ((♯‘(𝐴...𝐵)) < (♯‘(𝐴...𝐶)) ↔ (𝐴...𝐵) ≺ (𝐴...𝐶)))
2926, 27, 28mp2an 691 . 2 ((♯‘(𝐴...𝐵)) < (♯‘(𝐴...𝐶)) ↔ (𝐴...𝐵) ≺ (𝐴...𝐶))
3025, 29sylib 221 1 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → (𝐴...𝐵) ≺ (𝐴...𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115   class class class wbr 5052  cfv 6343  (class class class)co 7149  csdm 8504  Fincfn 8505  1c1 10536   + caddc 10538   < clt 10673  cle 10674  cmin 10868  cz 11978  cuz 12240  ...cfz 12894  chash 13695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-card 9365  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-nn 11635  df-n0 11895  df-xnn0 11965  df-z 11979  df-uz 12241  df-fz 12895  df-hash 13696
This theorem is referenced by:  irrapxlem1  39679
  Copyright terms: Public domain W3C validator