Step | Hyp | Ref
| Expression |
1 | | sermono.2 |
. 2
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝐾)) |
2 | | elfzuz 13181 |
. . . 4
⊢ (𝑘 ∈ (𝐾...𝑁) → 𝑘 ∈ (ℤ≥‘𝐾)) |
3 | | sermono.1 |
. . . 4
⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑀)) |
4 | | uztrn 12529 |
. . . 4
⊢ ((𝑘 ∈
(ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑀)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
5 | 2, 3, 4 | syl2anr 596 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...𝑁)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
6 | | elfzuz3 13182 |
. . . . . . 7
⊢ (𝑘 ∈ (𝐾...𝑁) → 𝑁 ∈ (ℤ≥‘𝑘)) |
7 | 6 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...𝑁)) → 𝑁 ∈ (ℤ≥‘𝑘)) |
8 | | fzss2 13225 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘𝑘) → (𝑀...𝑘) ⊆ (𝑀...𝑁)) |
9 | 7, 8 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...𝑁)) → (𝑀...𝑘) ⊆ (𝑀...𝑁)) |
10 | 9 | sselda 3917 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐾...𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝑥 ∈ (𝑀...𝑁)) |
11 | | sermono.3 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) ∈ ℝ) |
12 | 11 | adantlr 711 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐾...𝑁)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) ∈ ℝ) |
13 | 10, 12 | syldan 590 |
. . 3
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐾...𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → (𝐹‘𝑥) ∈ ℝ) |
14 | | readdcl 10885 |
. . . 4
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ) |
15 | 14 | adantl 481 |
. . 3
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐾...𝑁)) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 + 𝑦) ∈ ℝ) |
16 | 5, 13, 15 | seqcl 13671 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...𝑁)) → (seq𝑀( + , 𝐹)‘𝑘) ∈ ℝ) |
17 | | fveq2 6756 |
. . . . . 6
⊢ (𝑥 = (𝑘 + 1) → (𝐹‘𝑥) = (𝐹‘(𝑘 + 1))) |
18 | 17 | breq2d 5082 |
. . . . 5
⊢ (𝑥 = (𝑘 + 1) → (0 ≤ (𝐹‘𝑥) ↔ 0 ≤ (𝐹‘(𝑘 + 1)))) |
19 | | sermono.4 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐾 + 1)...𝑁)) → 0 ≤ (𝐹‘𝑥)) |
20 | 19 | ralrimiva 3107 |
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ ((𝐾 + 1)...𝑁)0 ≤ (𝐹‘𝑥)) |
21 | 20 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → ∀𝑥 ∈ ((𝐾 + 1)...𝑁)0 ≤ (𝐹‘𝑥)) |
22 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑘 ∈ (𝐾...(𝑁 − 1))) |
23 | 3 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝐾 ∈ (ℤ≥‘𝑀)) |
24 | | eluzelz 12521 |
. . . . . . . . 9
⊢ (𝐾 ∈
(ℤ≥‘𝑀) → 𝐾 ∈ ℤ) |
25 | 23, 24 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝐾 ∈ ℤ) |
26 | 1 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑁 ∈ (ℤ≥‘𝐾)) |
27 | | eluzelz 12521 |
. . . . . . . . . 10
⊢ (𝑁 ∈
(ℤ≥‘𝐾) → 𝑁 ∈ ℤ) |
28 | 26, 27 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑁 ∈ ℤ) |
29 | | peano2zm 12293 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈
ℤ) |
30 | 28, 29 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑁 − 1) ∈ ℤ) |
31 | | elfzelz 13185 |
. . . . . . . . 9
⊢ (𝑘 ∈ (𝐾...(𝑁 − 1)) → 𝑘 ∈ ℤ) |
32 | 31 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑘 ∈ ℤ) |
33 | | 1zzd 12281 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → 1 ∈
ℤ) |
34 | | fzaddel 13219 |
. . . . . . . 8
⊢ (((𝐾 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ)
∧ (𝑘 ∈ ℤ
∧ 1 ∈ ℤ)) → (𝑘 ∈ (𝐾...(𝑁 − 1)) ↔ (𝑘 + 1) ∈ ((𝐾 + 1)...((𝑁 − 1) + 1)))) |
35 | 25, 30, 32, 33, 34 | syl22anc 835 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 ∈ (𝐾...(𝑁 − 1)) ↔ (𝑘 + 1) ∈ ((𝐾 + 1)...((𝑁 − 1) + 1)))) |
36 | 22, 35 | mpbid 231 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 + 1) ∈ ((𝐾 + 1)...((𝑁 − 1) + 1))) |
37 | | zcn 12254 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℂ) |
38 | | ax-1cn 10860 |
. . . . . . . . 9
⊢ 1 ∈
ℂ |
39 | | npcan 11160 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑁 −
1) + 1) = 𝑁) |
40 | 37, 38, 39 | sylancl 585 |
. . . . . . . 8
⊢ (𝑁 ∈ ℤ → ((𝑁 − 1) + 1) = 𝑁) |
41 | 28, 40 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → ((𝑁 − 1) + 1) = 𝑁) |
42 | 41 | oveq2d 7271 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → ((𝐾 + 1)...((𝑁 − 1) + 1)) = ((𝐾 + 1)...𝑁)) |
43 | 36, 42 | eleqtrd 2841 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 + 1) ∈ ((𝐾 + 1)...𝑁)) |
44 | 18, 21, 43 | rspcdva 3554 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → 0 ≤ (𝐹‘(𝑘 + 1))) |
45 | | fzelp1 13237 |
. . . . . . . 8
⊢ (𝑘 ∈ (𝐾...(𝑁 − 1)) → 𝑘 ∈ (𝐾...((𝑁 − 1) + 1))) |
46 | 45 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑘 ∈ (𝐾...((𝑁 − 1) + 1))) |
47 | 41 | oveq2d 7271 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝐾...((𝑁 − 1) + 1)) = (𝐾...𝑁)) |
48 | 46, 47 | eleqtrd 2841 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑘 ∈ (𝐾...𝑁)) |
49 | 48, 16 | syldan 590 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (seq𝑀( + , 𝐹)‘𝑘) ∈ ℝ) |
50 | 17 | eleq1d 2823 |
. . . . . 6
⊢ (𝑥 = (𝑘 + 1) → ((𝐹‘𝑥) ∈ ℝ ↔ (𝐹‘(𝑘 + 1)) ∈ ℝ)) |
51 | 11 | ralrimiva 3107 |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ (𝑀...𝑁)(𝐹‘𝑥) ∈ ℝ) |
52 | 51 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → ∀𝑥 ∈ (𝑀...𝑁)(𝐹‘𝑥) ∈ ℝ) |
53 | | fzss1 13224 |
. . . . . . . 8
⊢ (𝐾 ∈
(ℤ≥‘𝑀) → (𝐾...𝑁) ⊆ (𝑀...𝑁)) |
54 | 23, 53 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝐾...𝑁) ⊆ (𝑀...𝑁)) |
55 | | fzp1elp1 13238 |
. . . . . . . . 9
⊢ (𝑘 ∈ (𝐾...(𝑁 − 1)) → (𝑘 + 1) ∈ (𝐾...((𝑁 − 1) + 1))) |
56 | 55 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 + 1) ∈ (𝐾...((𝑁 − 1) + 1))) |
57 | 56, 47 | eleqtrd 2841 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 + 1) ∈ (𝐾...𝑁)) |
58 | 54, 57 | sseldd 3918 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 + 1) ∈ (𝑀...𝑁)) |
59 | 50, 52, 58 | rspcdva 3554 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ∈ ℝ) |
60 | 49, 59 | addge01d 11493 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (0 ≤ (𝐹‘(𝑘 + 1)) ↔ (seq𝑀( + , 𝐹)‘𝑘) ≤ ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1))))) |
61 | 44, 60 | mpbid 231 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (seq𝑀( + , 𝐹)‘𝑘) ≤ ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1)))) |
62 | 48, 5 | syldan 590 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑘 ∈ (ℤ≥‘𝑀)) |
63 | | seqp1 13664 |
. . . 4
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1)))) |
64 | 62, 63 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1)))) |
65 | 61, 64 | breqtrrd 5098 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (seq𝑀( + , 𝐹)‘𝑘) ≤ (seq𝑀( + , 𝐹)‘(𝑘 + 1))) |
66 | 1, 16, 65 | monoord 13681 |
1
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) ≤ (seq𝑀( + , 𝐹)‘𝑁)) |