MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sermono Structured version   Visualization version   GIF version

Theorem sermono 14037
Description: The partial sums in an infinite series of positive terms form a monotonic sequence. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 30-Jun-2013.)
Hypotheses
Ref Expression
sermono.1 (𝜑𝐾 ∈ (ℤ𝑀))
sermono.2 (𝜑𝑁 ∈ (ℤ𝐾))
sermono.3 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ ℝ)
sermono.4 ((𝜑𝑥 ∈ ((𝐾 + 1)...𝑁)) → 0 ≤ (𝐹𝑥))
Assertion
Ref Expression
sermono (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) ≤ (seq𝑀( + , 𝐹)‘𝑁))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐾   𝑥,𝑀   𝑥,𝑁   𝜑,𝑥

Proof of Theorem sermono
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sermono.2 . 2 (𝜑𝑁 ∈ (ℤ𝐾))
2 elfzuz 13535 . . . 4 (𝑘 ∈ (𝐾...𝑁) → 𝑘 ∈ (ℤ𝐾))
3 sermono.1 . . . 4 (𝜑𝐾 ∈ (ℤ𝑀))
4 uztrn 12876 . . . 4 ((𝑘 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑀)) → 𝑘 ∈ (ℤ𝑀))
52, 3, 4syl2anr 595 . . 3 ((𝜑𝑘 ∈ (𝐾...𝑁)) → 𝑘 ∈ (ℤ𝑀))
6 elfzuz3 13536 . . . . . . 7 (𝑘 ∈ (𝐾...𝑁) → 𝑁 ∈ (ℤ𝑘))
76adantl 480 . . . . . 6 ((𝜑𝑘 ∈ (𝐾...𝑁)) → 𝑁 ∈ (ℤ𝑘))
8 fzss2 13579 . . . . . 6 (𝑁 ∈ (ℤ𝑘) → (𝑀...𝑘) ⊆ (𝑀...𝑁))
97, 8syl 17 . . . . 5 ((𝜑𝑘 ∈ (𝐾...𝑁)) → (𝑀...𝑘) ⊆ (𝑀...𝑁))
109sselda 3980 . . . 4 (((𝜑𝑘 ∈ (𝐾...𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝑥 ∈ (𝑀...𝑁))
11 sermono.3 . . . . 5 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ ℝ)
1211adantlr 713 . . . 4 (((𝜑𝑘 ∈ (𝐾...𝑁)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ ℝ)
1310, 12syldan 589 . . 3 (((𝜑𝑘 ∈ (𝐾...𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → (𝐹𝑥) ∈ ℝ)
14 readdcl 11227 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ)
1514adantl 480 . . 3 (((𝜑𝑘 ∈ (𝐾...𝑁)) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 + 𝑦) ∈ ℝ)
165, 13, 15seqcl 14025 . 2 ((𝜑𝑘 ∈ (𝐾...𝑁)) → (seq𝑀( + , 𝐹)‘𝑘) ∈ ℝ)
17 fveq2 6900 . . . . . 6 (𝑥 = (𝑘 + 1) → (𝐹𝑥) = (𝐹‘(𝑘 + 1)))
1817breq2d 5162 . . . . 5 (𝑥 = (𝑘 + 1) → (0 ≤ (𝐹𝑥) ↔ 0 ≤ (𝐹‘(𝑘 + 1))))
19 sermono.4 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐾 + 1)...𝑁)) → 0 ≤ (𝐹𝑥))
2019ralrimiva 3142 . . . . . 6 (𝜑 → ∀𝑥 ∈ ((𝐾 + 1)...𝑁)0 ≤ (𝐹𝑥))
2120adantr 479 . . . . 5 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → ∀𝑥 ∈ ((𝐾 + 1)...𝑁)0 ≤ (𝐹𝑥))
22 simpr 483 . . . . . . 7 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑘 ∈ (𝐾...(𝑁 − 1)))
233adantr 479 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝐾 ∈ (ℤ𝑀))
24 eluzelz 12868 . . . . . . . . 9 (𝐾 ∈ (ℤ𝑀) → 𝐾 ∈ ℤ)
2523, 24syl 17 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝐾 ∈ ℤ)
261adantr 479 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑁 ∈ (ℤ𝐾))
27 eluzelz 12868 . . . . . . . . . 10 (𝑁 ∈ (ℤ𝐾) → 𝑁 ∈ ℤ)
2826, 27syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑁 ∈ ℤ)
29 peano2zm 12641 . . . . . . . . 9 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
3028, 29syl 17 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑁 − 1) ∈ ℤ)
31 elfzelz 13539 . . . . . . . . 9 (𝑘 ∈ (𝐾...(𝑁 − 1)) → 𝑘 ∈ ℤ)
3231adantl 480 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑘 ∈ ℤ)
33 1zzd 12629 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → 1 ∈ ℤ)
34 fzaddel 13573 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝑘 ∈ (𝐾...(𝑁 − 1)) ↔ (𝑘 + 1) ∈ ((𝐾 + 1)...((𝑁 − 1) + 1))))
3525, 30, 32, 33, 34syl22anc 837 . . . . . . 7 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 ∈ (𝐾...(𝑁 − 1)) ↔ (𝑘 + 1) ∈ ((𝐾 + 1)...((𝑁 − 1) + 1))))
3622, 35mpbid 231 . . . . . 6 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 + 1) ∈ ((𝐾 + 1)...((𝑁 − 1) + 1)))
37 zcn 12599 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
38 ax-1cn 11202 . . . . . . . . 9 1 ∈ ℂ
39 npcan 11505 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
4037, 38, 39sylancl 584 . . . . . . . 8 (𝑁 ∈ ℤ → ((𝑁 − 1) + 1) = 𝑁)
4128, 40syl 17 . . . . . . 7 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → ((𝑁 − 1) + 1) = 𝑁)
4241oveq2d 7440 . . . . . 6 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → ((𝐾 + 1)...((𝑁 − 1) + 1)) = ((𝐾 + 1)...𝑁))
4336, 42eleqtrd 2830 . . . . 5 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 + 1) ∈ ((𝐾 + 1)...𝑁))
4418, 21, 43rspcdva 3610 . . . 4 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → 0 ≤ (𝐹‘(𝑘 + 1)))
45 fzelp1 13591 . . . . . . . 8 (𝑘 ∈ (𝐾...(𝑁 − 1)) → 𝑘 ∈ (𝐾...((𝑁 − 1) + 1)))
4645adantl 480 . . . . . . 7 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑘 ∈ (𝐾...((𝑁 − 1) + 1)))
4741oveq2d 7440 . . . . . . 7 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝐾...((𝑁 − 1) + 1)) = (𝐾...𝑁))
4846, 47eleqtrd 2830 . . . . . 6 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑘 ∈ (𝐾...𝑁))
4948, 16syldan 589 . . . . 5 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (seq𝑀( + , 𝐹)‘𝑘) ∈ ℝ)
5017eleq1d 2813 . . . . . 6 (𝑥 = (𝑘 + 1) → ((𝐹𝑥) ∈ ℝ ↔ (𝐹‘(𝑘 + 1)) ∈ ℝ))
5111ralrimiva 3142 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (𝑀...𝑁)(𝐹𝑥) ∈ ℝ)
5251adantr 479 . . . . . 6 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → ∀𝑥 ∈ (𝑀...𝑁)(𝐹𝑥) ∈ ℝ)
53 fzss1 13578 . . . . . . . 8 (𝐾 ∈ (ℤ𝑀) → (𝐾...𝑁) ⊆ (𝑀...𝑁))
5423, 53syl 17 . . . . . . 7 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝐾...𝑁) ⊆ (𝑀...𝑁))
55 fzp1elp1 13592 . . . . . . . . 9 (𝑘 ∈ (𝐾...(𝑁 − 1)) → (𝑘 + 1) ∈ (𝐾...((𝑁 − 1) + 1)))
5655adantl 480 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 + 1) ∈ (𝐾...((𝑁 − 1) + 1)))
5756, 47eleqtrd 2830 . . . . . . 7 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 + 1) ∈ (𝐾...𝑁))
5854, 57sseldd 3981 . . . . . 6 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 + 1) ∈ (𝑀...𝑁))
5950, 52, 58rspcdva 3610 . . . . 5 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ∈ ℝ)
6049, 59addge01d 11838 . . . 4 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (0 ≤ (𝐹‘(𝑘 + 1)) ↔ (seq𝑀( + , 𝐹)‘𝑘) ≤ ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1)))))
6144, 60mpbid 231 . . 3 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (seq𝑀( + , 𝐹)‘𝑘) ≤ ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1))))
6248, 5syldan 589 . . . 4 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑘 ∈ (ℤ𝑀))
63 seqp1 14019 . . . 4 (𝑘 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1))))
6462, 63syl 17 . . 3 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1))))
6561, 64breqtrrd 5178 . 2 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (seq𝑀( + , 𝐹)‘𝑘) ≤ (seq𝑀( + , 𝐹)‘(𝑘 + 1)))
661, 16, 65monoord 14035 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) ≤ (seq𝑀( + , 𝐹)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wral 3057  wss 3947   class class class wbr 5150  cfv 6551  (class class class)co 7424  cc 11142  cr 11143  0cc0 11144  1c1 11145   + caddc 11147  cle 11285  cmin 11480  cz 12594  cuz 12858  ...cfz 13522  seqcseq 14004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7875  df-1st 7997  df-2nd 7998  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-er 8729  df-en 8969  df-dom 8970  df-sdom 8971  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-nn 12249  df-n0 12509  df-z 12595  df-uz 12859  df-fz 13523  df-seq 14005
This theorem is referenced by:  cvgcmp  15800  isumsup2  15830  climcnds  15835  ovolunlem1a  25443  mblfinlem2  37136
  Copyright terms: Public domain W3C validator