MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sermono Structured version   Visualization version   GIF version

Theorem sermono 14057
Description: The partial sums in an infinite series of positive terms form a monotonic sequence. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 30-Jun-2013.)
Hypotheses
Ref Expression
sermono.1 (𝜑𝐾 ∈ (ℤ𝑀))
sermono.2 (𝜑𝑁 ∈ (ℤ𝐾))
sermono.3 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ ℝ)
sermono.4 ((𝜑𝑥 ∈ ((𝐾 + 1)...𝑁)) → 0 ≤ (𝐹𝑥))
Assertion
Ref Expression
sermono (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) ≤ (seq𝑀( + , 𝐹)‘𝑁))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐾   𝑥,𝑀   𝑥,𝑁   𝜑,𝑥

Proof of Theorem sermono
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sermono.2 . 2 (𝜑𝑁 ∈ (ℤ𝐾))
2 elfzuz 13542 . . . 4 (𝑘 ∈ (𝐾...𝑁) → 𝑘 ∈ (ℤ𝐾))
3 sermono.1 . . . 4 (𝜑𝐾 ∈ (ℤ𝑀))
4 uztrn 12878 . . . 4 ((𝑘 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑀)) → 𝑘 ∈ (ℤ𝑀))
52, 3, 4syl2anr 597 . . 3 ((𝜑𝑘 ∈ (𝐾...𝑁)) → 𝑘 ∈ (ℤ𝑀))
6 elfzuz3 13543 . . . . . . 7 (𝑘 ∈ (𝐾...𝑁) → 𝑁 ∈ (ℤ𝑘))
76adantl 481 . . . . . 6 ((𝜑𝑘 ∈ (𝐾...𝑁)) → 𝑁 ∈ (ℤ𝑘))
8 fzss2 13586 . . . . . 6 (𝑁 ∈ (ℤ𝑘) → (𝑀...𝑘) ⊆ (𝑀...𝑁))
97, 8syl 17 . . . . 5 ((𝜑𝑘 ∈ (𝐾...𝑁)) → (𝑀...𝑘) ⊆ (𝑀...𝑁))
109sselda 3963 . . . 4 (((𝜑𝑘 ∈ (𝐾...𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝑥 ∈ (𝑀...𝑁))
11 sermono.3 . . . . 5 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ ℝ)
1211adantlr 715 . . . 4 (((𝜑𝑘 ∈ (𝐾...𝑁)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ ℝ)
1310, 12syldan 591 . . 3 (((𝜑𝑘 ∈ (𝐾...𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → (𝐹𝑥) ∈ ℝ)
14 readdcl 11220 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ)
1514adantl 481 . . 3 (((𝜑𝑘 ∈ (𝐾...𝑁)) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 + 𝑦) ∈ ℝ)
165, 13, 15seqcl 14045 . 2 ((𝜑𝑘 ∈ (𝐾...𝑁)) → (seq𝑀( + , 𝐹)‘𝑘) ∈ ℝ)
17 fveq2 6886 . . . . . 6 (𝑥 = (𝑘 + 1) → (𝐹𝑥) = (𝐹‘(𝑘 + 1)))
1817breq2d 5135 . . . . 5 (𝑥 = (𝑘 + 1) → (0 ≤ (𝐹𝑥) ↔ 0 ≤ (𝐹‘(𝑘 + 1))))
19 sermono.4 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐾 + 1)...𝑁)) → 0 ≤ (𝐹𝑥))
2019ralrimiva 3133 . . . . . 6 (𝜑 → ∀𝑥 ∈ ((𝐾 + 1)...𝑁)0 ≤ (𝐹𝑥))
2120adantr 480 . . . . 5 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → ∀𝑥 ∈ ((𝐾 + 1)...𝑁)0 ≤ (𝐹𝑥))
22 simpr 484 . . . . . . 7 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑘 ∈ (𝐾...(𝑁 − 1)))
233adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝐾 ∈ (ℤ𝑀))
24 eluzelz 12870 . . . . . . . . 9 (𝐾 ∈ (ℤ𝑀) → 𝐾 ∈ ℤ)
2523, 24syl 17 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝐾 ∈ ℤ)
261adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑁 ∈ (ℤ𝐾))
27 eluzelz 12870 . . . . . . . . . 10 (𝑁 ∈ (ℤ𝐾) → 𝑁 ∈ ℤ)
2826, 27syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑁 ∈ ℤ)
29 peano2zm 12643 . . . . . . . . 9 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
3028, 29syl 17 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑁 − 1) ∈ ℤ)
31 elfzelz 13546 . . . . . . . . 9 (𝑘 ∈ (𝐾...(𝑁 − 1)) → 𝑘 ∈ ℤ)
3231adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑘 ∈ ℤ)
33 1zzd 12631 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → 1 ∈ ℤ)
34 fzaddel 13580 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝑘 ∈ (𝐾...(𝑁 − 1)) ↔ (𝑘 + 1) ∈ ((𝐾 + 1)...((𝑁 − 1) + 1))))
3525, 30, 32, 33, 34syl22anc 838 . . . . . . 7 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 ∈ (𝐾...(𝑁 − 1)) ↔ (𝑘 + 1) ∈ ((𝐾 + 1)...((𝑁 − 1) + 1))))
3622, 35mpbid 232 . . . . . 6 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 + 1) ∈ ((𝐾 + 1)...((𝑁 − 1) + 1)))
37 zcn 12601 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
38 ax-1cn 11195 . . . . . . . . 9 1 ∈ ℂ
39 npcan 11499 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
4037, 38, 39sylancl 586 . . . . . . . 8 (𝑁 ∈ ℤ → ((𝑁 − 1) + 1) = 𝑁)
4128, 40syl 17 . . . . . . 7 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → ((𝑁 − 1) + 1) = 𝑁)
4241oveq2d 7429 . . . . . 6 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → ((𝐾 + 1)...((𝑁 − 1) + 1)) = ((𝐾 + 1)...𝑁))
4336, 42eleqtrd 2835 . . . . 5 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 + 1) ∈ ((𝐾 + 1)...𝑁))
4418, 21, 43rspcdva 3606 . . . 4 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → 0 ≤ (𝐹‘(𝑘 + 1)))
45 fzelp1 13598 . . . . . . . 8 (𝑘 ∈ (𝐾...(𝑁 − 1)) → 𝑘 ∈ (𝐾...((𝑁 − 1) + 1)))
4645adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑘 ∈ (𝐾...((𝑁 − 1) + 1)))
4741oveq2d 7429 . . . . . . 7 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝐾...((𝑁 − 1) + 1)) = (𝐾...𝑁))
4846, 47eleqtrd 2835 . . . . . 6 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑘 ∈ (𝐾...𝑁))
4948, 16syldan 591 . . . . 5 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (seq𝑀( + , 𝐹)‘𝑘) ∈ ℝ)
5017eleq1d 2818 . . . . . 6 (𝑥 = (𝑘 + 1) → ((𝐹𝑥) ∈ ℝ ↔ (𝐹‘(𝑘 + 1)) ∈ ℝ))
5111ralrimiva 3133 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (𝑀...𝑁)(𝐹𝑥) ∈ ℝ)
5251adantr 480 . . . . . 6 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → ∀𝑥 ∈ (𝑀...𝑁)(𝐹𝑥) ∈ ℝ)
53 fzss1 13585 . . . . . . . 8 (𝐾 ∈ (ℤ𝑀) → (𝐾...𝑁) ⊆ (𝑀...𝑁))
5423, 53syl 17 . . . . . . 7 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝐾...𝑁) ⊆ (𝑀...𝑁))
55 fzp1elp1 13599 . . . . . . . . 9 (𝑘 ∈ (𝐾...(𝑁 − 1)) → (𝑘 + 1) ∈ (𝐾...((𝑁 − 1) + 1)))
5655adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 + 1) ∈ (𝐾...((𝑁 − 1) + 1)))
5756, 47eleqtrd 2835 . . . . . . 7 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 + 1) ∈ (𝐾...𝑁))
5854, 57sseldd 3964 . . . . . 6 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 + 1) ∈ (𝑀...𝑁))
5950, 52, 58rspcdva 3606 . . . . 5 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ∈ ℝ)
6049, 59addge01d 11833 . . . 4 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (0 ≤ (𝐹‘(𝑘 + 1)) ↔ (seq𝑀( + , 𝐹)‘𝑘) ≤ ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1)))))
6144, 60mpbid 232 . . 3 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (seq𝑀( + , 𝐹)‘𝑘) ≤ ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1))))
6248, 5syldan 591 . . . 4 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑘 ∈ (ℤ𝑀))
63 seqp1 14039 . . . 4 (𝑘 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1))))
6462, 63syl 17 . . 3 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1))))
6561, 64breqtrrd 5151 . 2 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (seq𝑀( + , 𝐹)‘𝑘) ≤ (seq𝑀( + , 𝐹)‘(𝑘 + 1)))
661, 16, 65monoord 14055 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) ≤ (seq𝑀( + , 𝐹)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wral 3050  wss 3931   class class class wbr 5123  cfv 6541  (class class class)co 7413  cc 11135  cr 11136  0cc0 11137  1c1 11138   + caddc 11140  cle 11278  cmin 11474  cz 12596  cuz 12860  ...cfz 13529  seqcseq 14024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-n0 12510  df-z 12597  df-uz 12861  df-fz 13530  df-seq 14025
This theorem is referenced by:  cvgcmp  15834  isumsup2  15864  climcnds  15869  ovolunlem1a  25467  mblfinlem2  37624
  Copyright terms: Public domain W3C validator