| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | sermono.2 | . 2
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝐾)) | 
| 2 |  | elfzuz 13561 | . . . 4
⊢ (𝑘 ∈ (𝐾...𝑁) → 𝑘 ∈ (ℤ≥‘𝐾)) | 
| 3 |  | sermono.1 | . . . 4
⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑀)) | 
| 4 |  | uztrn 12897 | . . . 4
⊢ ((𝑘 ∈
(ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑀)) → 𝑘 ∈ (ℤ≥‘𝑀)) | 
| 5 | 2, 3, 4 | syl2anr 597 | . . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...𝑁)) → 𝑘 ∈ (ℤ≥‘𝑀)) | 
| 6 |  | elfzuz3 13562 | . . . . . . 7
⊢ (𝑘 ∈ (𝐾...𝑁) → 𝑁 ∈ (ℤ≥‘𝑘)) | 
| 7 | 6 | adantl 481 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...𝑁)) → 𝑁 ∈ (ℤ≥‘𝑘)) | 
| 8 |  | fzss2 13605 | . . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘𝑘) → (𝑀...𝑘) ⊆ (𝑀...𝑁)) | 
| 9 | 7, 8 | syl 17 | . . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...𝑁)) → (𝑀...𝑘) ⊆ (𝑀...𝑁)) | 
| 10 | 9 | sselda 3982 | . . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐾...𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝑥 ∈ (𝑀...𝑁)) | 
| 11 |  | sermono.3 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) ∈ ℝ) | 
| 12 | 11 | adantlr 715 | . . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐾...𝑁)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) ∈ ℝ) | 
| 13 | 10, 12 | syldan 591 | . . 3
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐾...𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → (𝐹‘𝑥) ∈ ℝ) | 
| 14 |  | readdcl 11239 | . . . 4
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ) | 
| 15 | 14 | adantl 481 | . . 3
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐾...𝑁)) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 + 𝑦) ∈ ℝ) | 
| 16 | 5, 13, 15 | seqcl 14064 | . 2
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...𝑁)) → (seq𝑀( + , 𝐹)‘𝑘) ∈ ℝ) | 
| 17 |  | fveq2 6905 | . . . . . 6
⊢ (𝑥 = (𝑘 + 1) → (𝐹‘𝑥) = (𝐹‘(𝑘 + 1))) | 
| 18 | 17 | breq2d 5154 | . . . . 5
⊢ (𝑥 = (𝑘 + 1) → (0 ≤ (𝐹‘𝑥) ↔ 0 ≤ (𝐹‘(𝑘 + 1)))) | 
| 19 |  | sermono.4 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐾 + 1)...𝑁)) → 0 ≤ (𝐹‘𝑥)) | 
| 20 | 19 | ralrimiva 3145 | . . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ ((𝐾 + 1)...𝑁)0 ≤ (𝐹‘𝑥)) | 
| 21 | 20 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → ∀𝑥 ∈ ((𝐾 + 1)...𝑁)0 ≤ (𝐹‘𝑥)) | 
| 22 |  | simpr 484 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑘 ∈ (𝐾...(𝑁 − 1))) | 
| 23 | 3 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝐾 ∈ (ℤ≥‘𝑀)) | 
| 24 |  | eluzelz 12889 | . . . . . . . . 9
⊢ (𝐾 ∈
(ℤ≥‘𝑀) → 𝐾 ∈ ℤ) | 
| 25 | 23, 24 | syl 17 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝐾 ∈ ℤ) | 
| 26 | 1 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑁 ∈ (ℤ≥‘𝐾)) | 
| 27 |  | eluzelz 12889 | . . . . . . . . . 10
⊢ (𝑁 ∈
(ℤ≥‘𝐾) → 𝑁 ∈ ℤ) | 
| 28 | 26, 27 | syl 17 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑁 ∈ ℤ) | 
| 29 |  | peano2zm 12662 | . . . . . . . . 9
⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈
ℤ) | 
| 30 | 28, 29 | syl 17 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑁 − 1) ∈ ℤ) | 
| 31 |  | elfzelz 13565 | . . . . . . . . 9
⊢ (𝑘 ∈ (𝐾...(𝑁 − 1)) → 𝑘 ∈ ℤ) | 
| 32 | 31 | adantl 481 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑘 ∈ ℤ) | 
| 33 |  | 1zzd 12650 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → 1 ∈
ℤ) | 
| 34 |  | fzaddel 13599 | . . . . . . . 8
⊢ (((𝐾 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ)
∧ (𝑘 ∈ ℤ
∧ 1 ∈ ℤ)) → (𝑘 ∈ (𝐾...(𝑁 − 1)) ↔ (𝑘 + 1) ∈ ((𝐾 + 1)...((𝑁 − 1) + 1)))) | 
| 35 | 25, 30, 32, 33, 34 | syl22anc 838 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 ∈ (𝐾...(𝑁 − 1)) ↔ (𝑘 + 1) ∈ ((𝐾 + 1)...((𝑁 − 1) + 1)))) | 
| 36 | 22, 35 | mpbid 232 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 + 1) ∈ ((𝐾 + 1)...((𝑁 − 1) + 1))) | 
| 37 |  | zcn 12620 | . . . . . . . . 9
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℂ) | 
| 38 |  | ax-1cn 11214 | . . . . . . . . 9
⊢ 1 ∈
ℂ | 
| 39 |  | npcan 11518 | . . . . . . . . 9
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑁 −
1) + 1) = 𝑁) | 
| 40 | 37, 38, 39 | sylancl 586 | . . . . . . . 8
⊢ (𝑁 ∈ ℤ → ((𝑁 − 1) + 1) = 𝑁) | 
| 41 | 28, 40 | syl 17 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → ((𝑁 − 1) + 1) = 𝑁) | 
| 42 | 41 | oveq2d 7448 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → ((𝐾 + 1)...((𝑁 − 1) + 1)) = ((𝐾 + 1)...𝑁)) | 
| 43 | 36, 42 | eleqtrd 2842 | . . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 + 1) ∈ ((𝐾 + 1)...𝑁)) | 
| 44 | 18, 21, 43 | rspcdva 3622 | . . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → 0 ≤ (𝐹‘(𝑘 + 1))) | 
| 45 |  | fzelp1 13617 | . . . . . . . 8
⊢ (𝑘 ∈ (𝐾...(𝑁 − 1)) → 𝑘 ∈ (𝐾...((𝑁 − 1) + 1))) | 
| 46 | 45 | adantl 481 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑘 ∈ (𝐾...((𝑁 − 1) + 1))) | 
| 47 | 41 | oveq2d 7448 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝐾...((𝑁 − 1) + 1)) = (𝐾...𝑁)) | 
| 48 | 46, 47 | eleqtrd 2842 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑘 ∈ (𝐾...𝑁)) | 
| 49 | 48, 16 | syldan 591 | . . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (seq𝑀( + , 𝐹)‘𝑘) ∈ ℝ) | 
| 50 | 17 | eleq1d 2825 | . . . . . 6
⊢ (𝑥 = (𝑘 + 1) → ((𝐹‘𝑥) ∈ ℝ ↔ (𝐹‘(𝑘 + 1)) ∈ ℝ)) | 
| 51 | 11 | ralrimiva 3145 | . . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ (𝑀...𝑁)(𝐹‘𝑥) ∈ ℝ) | 
| 52 | 51 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → ∀𝑥 ∈ (𝑀...𝑁)(𝐹‘𝑥) ∈ ℝ) | 
| 53 |  | fzss1 13604 | . . . . . . . 8
⊢ (𝐾 ∈
(ℤ≥‘𝑀) → (𝐾...𝑁) ⊆ (𝑀...𝑁)) | 
| 54 | 23, 53 | syl 17 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝐾...𝑁) ⊆ (𝑀...𝑁)) | 
| 55 |  | fzp1elp1 13618 | . . . . . . . . 9
⊢ (𝑘 ∈ (𝐾...(𝑁 − 1)) → (𝑘 + 1) ∈ (𝐾...((𝑁 − 1) + 1))) | 
| 56 | 55 | adantl 481 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 + 1) ∈ (𝐾...((𝑁 − 1) + 1))) | 
| 57 | 56, 47 | eleqtrd 2842 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 + 1) ∈ (𝐾...𝑁)) | 
| 58 | 54, 57 | sseldd 3983 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 + 1) ∈ (𝑀...𝑁)) | 
| 59 | 50, 52, 58 | rspcdva 3622 | . . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ∈ ℝ) | 
| 60 | 49, 59 | addge01d 11852 | . . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (0 ≤ (𝐹‘(𝑘 + 1)) ↔ (seq𝑀( + , 𝐹)‘𝑘) ≤ ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1))))) | 
| 61 | 44, 60 | mpbid 232 | . . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (seq𝑀( + , 𝐹)‘𝑘) ≤ ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1)))) | 
| 62 | 48, 5 | syldan 591 | . . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑘 ∈ (ℤ≥‘𝑀)) | 
| 63 |  | seqp1 14058 | . . . 4
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1)))) | 
| 64 | 62, 63 | syl 17 | . . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1)))) | 
| 65 | 61, 64 | breqtrrd 5170 | . 2
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (seq𝑀( + , 𝐹)‘𝑘) ≤ (seq𝑀( + , 𝐹)‘(𝑘 + 1))) | 
| 66 | 1, 16, 65 | monoord 14074 | 1
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) ≤ (seq𝑀( + , 𝐹)‘𝑁)) |