MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sermono Structured version   Visualization version   GIF version

Theorem sermono 14006
Description: The partial sums in an infinite series of positive terms form a monotonic sequence. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 30-Jun-2013.)
Hypotheses
Ref Expression
sermono.1 (𝜑𝐾 ∈ (ℤ𝑀))
sermono.2 (𝜑𝑁 ∈ (ℤ𝐾))
sermono.3 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ ℝ)
sermono.4 ((𝜑𝑥 ∈ ((𝐾 + 1)...𝑁)) → 0 ≤ (𝐹𝑥))
Assertion
Ref Expression
sermono (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) ≤ (seq𝑀( + , 𝐹)‘𝑁))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐾   𝑥,𝑀   𝑥,𝑁   𝜑,𝑥

Proof of Theorem sermono
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sermono.2 . 2 (𝜑𝑁 ∈ (ℤ𝐾))
2 elfzuz 13488 . . . 4 (𝑘 ∈ (𝐾...𝑁) → 𝑘 ∈ (ℤ𝐾))
3 sermono.1 . . . 4 (𝜑𝐾 ∈ (ℤ𝑀))
4 uztrn 12818 . . . 4 ((𝑘 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑀)) → 𝑘 ∈ (ℤ𝑀))
52, 3, 4syl2anr 597 . . 3 ((𝜑𝑘 ∈ (𝐾...𝑁)) → 𝑘 ∈ (ℤ𝑀))
6 elfzuz3 13489 . . . . . . 7 (𝑘 ∈ (𝐾...𝑁) → 𝑁 ∈ (ℤ𝑘))
76adantl 481 . . . . . 6 ((𝜑𝑘 ∈ (𝐾...𝑁)) → 𝑁 ∈ (ℤ𝑘))
8 fzss2 13532 . . . . . 6 (𝑁 ∈ (ℤ𝑘) → (𝑀...𝑘) ⊆ (𝑀...𝑁))
97, 8syl 17 . . . . 5 ((𝜑𝑘 ∈ (𝐾...𝑁)) → (𝑀...𝑘) ⊆ (𝑀...𝑁))
109sselda 3949 . . . 4 (((𝜑𝑘 ∈ (𝐾...𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝑥 ∈ (𝑀...𝑁))
11 sermono.3 . . . . 5 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ ℝ)
1211adantlr 715 . . . 4 (((𝜑𝑘 ∈ (𝐾...𝑁)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ ℝ)
1310, 12syldan 591 . . 3 (((𝜑𝑘 ∈ (𝐾...𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → (𝐹𝑥) ∈ ℝ)
14 readdcl 11158 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ)
1514adantl 481 . . 3 (((𝜑𝑘 ∈ (𝐾...𝑁)) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 + 𝑦) ∈ ℝ)
165, 13, 15seqcl 13994 . 2 ((𝜑𝑘 ∈ (𝐾...𝑁)) → (seq𝑀( + , 𝐹)‘𝑘) ∈ ℝ)
17 fveq2 6861 . . . . . 6 (𝑥 = (𝑘 + 1) → (𝐹𝑥) = (𝐹‘(𝑘 + 1)))
1817breq2d 5122 . . . . 5 (𝑥 = (𝑘 + 1) → (0 ≤ (𝐹𝑥) ↔ 0 ≤ (𝐹‘(𝑘 + 1))))
19 sermono.4 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐾 + 1)...𝑁)) → 0 ≤ (𝐹𝑥))
2019ralrimiva 3126 . . . . . 6 (𝜑 → ∀𝑥 ∈ ((𝐾 + 1)...𝑁)0 ≤ (𝐹𝑥))
2120adantr 480 . . . . 5 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → ∀𝑥 ∈ ((𝐾 + 1)...𝑁)0 ≤ (𝐹𝑥))
22 simpr 484 . . . . . . 7 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑘 ∈ (𝐾...(𝑁 − 1)))
233adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝐾 ∈ (ℤ𝑀))
24 eluzelz 12810 . . . . . . . . 9 (𝐾 ∈ (ℤ𝑀) → 𝐾 ∈ ℤ)
2523, 24syl 17 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝐾 ∈ ℤ)
261adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑁 ∈ (ℤ𝐾))
27 eluzelz 12810 . . . . . . . . . 10 (𝑁 ∈ (ℤ𝐾) → 𝑁 ∈ ℤ)
2826, 27syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑁 ∈ ℤ)
29 peano2zm 12583 . . . . . . . . 9 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
3028, 29syl 17 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑁 − 1) ∈ ℤ)
31 elfzelz 13492 . . . . . . . . 9 (𝑘 ∈ (𝐾...(𝑁 − 1)) → 𝑘 ∈ ℤ)
3231adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑘 ∈ ℤ)
33 1zzd 12571 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → 1 ∈ ℤ)
34 fzaddel 13526 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝑘 ∈ (𝐾...(𝑁 − 1)) ↔ (𝑘 + 1) ∈ ((𝐾 + 1)...((𝑁 − 1) + 1))))
3525, 30, 32, 33, 34syl22anc 838 . . . . . . 7 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 ∈ (𝐾...(𝑁 − 1)) ↔ (𝑘 + 1) ∈ ((𝐾 + 1)...((𝑁 − 1) + 1))))
3622, 35mpbid 232 . . . . . 6 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 + 1) ∈ ((𝐾 + 1)...((𝑁 − 1) + 1)))
37 zcn 12541 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
38 ax-1cn 11133 . . . . . . . . 9 1 ∈ ℂ
39 npcan 11437 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
4037, 38, 39sylancl 586 . . . . . . . 8 (𝑁 ∈ ℤ → ((𝑁 − 1) + 1) = 𝑁)
4128, 40syl 17 . . . . . . 7 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → ((𝑁 − 1) + 1) = 𝑁)
4241oveq2d 7406 . . . . . 6 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → ((𝐾 + 1)...((𝑁 − 1) + 1)) = ((𝐾 + 1)...𝑁))
4336, 42eleqtrd 2831 . . . . 5 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 + 1) ∈ ((𝐾 + 1)...𝑁))
4418, 21, 43rspcdva 3592 . . . 4 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → 0 ≤ (𝐹‘(𝑘 + 1)))
45 fzelp1 13544 . . . . . . . 8 (𝑘 ∈ (𝐾...(𝑁 − 1)) → 𝑘 ∈ (𝐾...((𝑁 − 1) + 1)))
4645adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑘 ∈ (𝐾...((𝑁 − 1) + 1)))
4741oveq2d 7406 . . . . . . 7 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝐾...((𝑁 − 1) + 1)) = (𝐾...𝑁))
4846, 47eleqtrd 2831 . . . . . 6 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑘 ∈ (𝐾...𝑁))
4948, 16syldan 591 . . . . 5 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (seq𝑀( + , 𝐹)‘𝑘) ∈ ℝ)
5017eleq1d 2814 . . . . . 6 (𝑥 = (𝑘 + 1) → ((𝐹𝑥) ∈ ℝ ↔ (𝐹‘(𝑘 + 1)) ∈ ℝ))
5111ralrimiva 3126 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (𝑀...𝑁)(𝐹𝑥) ∈ ℝ)
5251adantr 480 . . . . . 6 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → ∀𝑥 ∈ (𝑀...𝑁)(𝐹𝑥) ∈ ℝ)
53 fzss1 13531 . . . . . . . 8 (𝐾 ∈ (ℤ𝑀) → (𝐾...𝑁) ⊆ (𝑀...𝑁))
5423, 53syl 17 . . . . . . 7 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝐾...𝑁) ⊆ (𝑀...𝑁))
55 fzp1elp1 13545 . . . . . . . . 9 (𝑘 ∈ (𝐾...(𝑁 − 1)) → (𝑘 + 1) ∈ (𝐾...((𝑁 − 1) + 1)))
5655adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 + 1) ∈ (𝐾...((𝑁 − 1) + 1)))
5756, 47eleqtrd 2831 . . . . . . 7 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 + 1) ∈ (𝐾...𝑁))
5854, 57sseldd 3950 . . . . . 6 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 + 1) ∈ (𝑀...𝑁))
5950, 52, 58rspcdva 3592 . . . . 5 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ∈ ℝ)
6049, 59addge01d 11773 . . . 4 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (0 ≤ (𝐹‘(𝑘 + 1)) ↔ (seq𝑀( + , 𝐹)‘𝑘) ≤ ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1)))))
6144, 60mpbid 232 . . 3 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (seq𝑀( + , 𝐹)‘𝑘) ≤ ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1))))
6248, 5syldan 591 . . . 4 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑘 ∈ (ℤ𝑀))
63 seqp1 13988 . . . 4 (𝑘 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1))))
6462, 63syl 17 . . 3 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1))))
6561, 64breqtrrd 5138 . 2 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (seq𝑀( + , 𝐹)‘𝑘) ≤ (seq𝑀( + , 𝐹)‘(𝑘 + 1)))
661, 16, 65monoord 14004 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) ≤ (seq𝑀( + , 𝐹)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wss 3917   class class class wbr 5110  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078  cle 11216  cmin 11412  cz 12536  cuz 12800  ...cfz 13475  seqcseq 13973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-seq 13974
This theorem is referenced by:  cvgcmp  15789  isumsup2  15819  climcnds  15824  ovolunlem1a  25404  mblfinlem2  37659
  Copyright terms: Public domain W3C validator