| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vdwlem4 | Structured version Visualization version GIF version | ||
| Description: Lemma for vdw 16906. (Contributed by Mario Carneiro, 12-Sep-2014.) |
| Ref | Expression |
|---|---|
| vdwlem3.v | ⊢ (𝜑 → 𝑉 ∈ ℕ) |
| vdwlem3.w | ⊢ (𝜑 → 𝑊 ∈ ℕ) |
| vdwlem4.r | ⊢ (𝜑 → 𝑅 ∈ Fin) |
| vdwlem4.h | ⊢ (𝜑 → 𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅) |
| vdwlem4.f | ⊢ 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉)))))) |
| Ref | Expression |
|---|---|
| vdwlem4 | ⊢ (𝜑 → 𝐹:(1...𝑉)⟶(𝑅 ↑m (1...𝑊))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vdwlem4.h | . . . . . 6 ⊢ (𝜑 → 𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅) | |
| 2 | 1 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑉)) ∧ 𝑦 ∈ (1...𝑊)) → 𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅) |
| 3 | vdwlem3.v | . . . . . . 7 ⊢ (𝜑 → 𝑉 ∈ ℕ) | |
| 4 | 3 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑉)) ∧ 𝑦 ∈ (1...𝑊)) → 𝑉 ∈ ℕ) |
| 5 | vdwlem3.w | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ ℕ) | |
| 6 | 5 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑉)) ∧ 𝑦 ∈ (1...𝑊)) → 𝑊 ∈ ℕ) |
| 7 | simplr 768 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑉)) ∧ 𝑦 ∈ (1...𝑊)) → 𝑥 ∈ (1...𝑉)) | |
| 8 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑉)) ∧ 𝑦 ∈ (1...𝑊)) → 𝑦 ∈ (1...𝑊)) | |
| 9 | 4, 6, 7, 8 | vdwlem3 16895 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑉)) ∧ 𝑦 ∈ (1...𝑊)) → (𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))) ∈ (1...(𝑊 · (2 · 𝑉)))) |
| 10 | 2, 9 | ffvelcdmd 7018 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑉)) ∧ 𝑦 ∈ (1...𝑊)) → (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉)))) ∈ 𝑅) |
| 11 | 10 | fmpttd 7048 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (1...𝑉)) → (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))):(1...𝑊)⟶𝑅) |
| 12 | vdwlem4.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Fin) | |
| 13 | 12 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (1...𝑉)) → 𝑅 ∈ Fin) |
| 14 | ovex 7379 | . . . 4 ⊢ (1...𝑊) ∈ V | |
| 15 | elmapg 8763 | . . . 4 ⊢ ((𝑅 ∈ Fin ∧ (1...𝑊) ∈ V) → ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))) ∈ (𝑅 ↑m (1...𝑊)) ↔ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))):(1...𝑊)⟶𝑅)) | |
| 16 | 13, 14, 15 | sylancl 586 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (1...𝑉)) → ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))) ∈ (𝑅 ↑m (1...𝑊)) ↔ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))):(1...𝑊)⟶𝑅)) |
| 17 | 11, 16 | mpbird 257 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (1...𝑉)) → (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))) ∈ (𝑅 ↑m (1...𝑊))) |
| 18 | vdwlem4.f | . 2 ⊢ 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉)))))) | |
| 19 | 17, 18 | fmptd 7047 | 1 ⊢ (𝜑 → 𝐹:(1...𝑉)⟶(𝑅 ↑m (1...𝑊))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ↦ cmpt 5170 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 Fincfn 8869 1c1 11007 + caddc 11009 · cmul 11011 − cmin 11344 ℕcn 12125 2c2 12180 ...cfz 13407 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 |
| This theorem is referenced by: vdwlem5 16897 vdwlem6 16898 vdwlem9 16901 |
| Copyright terms: Public domain | W3C validator |