Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vdwlem4 | Structured version Visualization version GIF version |
Description: Lemma for vdw 16623. (Contributed by Mario Carneiro, 12-Sep-2014.) |
Ref | Expression |
---|---|
vdwlem3.v | ⊢ (𝜑 → 𝑉 ∈ ℕ) |
vdwlem3.w | ⊢ (𝜑 → 𝑊 ∈ ℕ) |
vdwlem4.r | ⊢ (𝜑 → 𝑅 ∈ Fin) |
vdwlem4.h | ⊢ (𝜑 → 𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅) |
vdwlem4.f | ⊢ 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉)))))) |
Ref | Expression |
---|---|
vdwlem4 | ⊢ (𝜑 → 𝐹:(1...𝑉)⟶(𝑅 ↑m (1...𝑊))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vdwlem4.h | . . . . . 6 ⊢ (𝜑 → 𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅) | |
2 | 1 | ad2antrr 722 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑉)) ∧ 𝑦 ∈ (1...𝑊)) → 𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅) |
3 | vdwlem3.v | . . . . . . 7 ⊢ (𝜑 → 𝑉 ∈ ℕ) | |
4 | 3 | ad2antrr 722 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑉)) ∧ 𝑦 ∈ (1...𝑊)) → 𝑉 ∈ ℕ) |
5 | vdwlem3.w | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ ℕ) | |
6 | 5 | ad2antrr 722 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑉)) ∧ 𝑦 ∈ (1...𝑊)) → 𝑊 ∈ ℕ) |
7 | simplr 765 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑉)) ∧ 𝑦 ∈ (1...𝑊)) → 𝑥 ∈ (1...𝑉)) | |
8 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑉)) ∧ 𝑦 ∈ (1...𝑊)) → 𝑦 ∈ (1...𝑊)) | |
9 | 4, 6, 7, 8 | vdwlem3 16612 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑉)) ∧ 𝑦 ∈ (1...𝑊)) → (𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))) ∈ (1...(𝑊 · (2 · 𝑉)))) |
10 | 2, 9 | ffvelrnd 6944 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑉)) ∧ 𝑦 ∈ (1...𝑊)) → (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉)))) ∈ 𝑅) |
11 | 10 | fmpttd 6971 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (1...𝑉)) → (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))):(1...𝑊)⟶𝑅) |
12 | vdwlem4.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Fin) | |
13 | 12 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (1...𝑉)) → 𝑅 ∈ Fin) |
14 | ovex 7288 | . . . 4 ⊢ (1...𝑊) ∈ V | |
15 | elmapg 8586 | . . . 4 ⊢ ((𝑅 ∈ Fin ∧ (1...𝑊) ∈ V) → ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))) ∈ (𝑅 ↑m (1...𝑊)) ↔ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))):(1...𝑊)⟶𝑅)) | |
16 | 13, 14, 15 | sylancl 585 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (1...𝑉)) → ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))) ∈ (𝑅 ↑m (1...𝑊)) ↔ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))):(1...𝑊)⟶𝑅)) |
17 | 11, 16 | mpbird 256 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (1...𝑉)) → (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))) ∈ (𝑅 ↑m (1...𝑊))) |
18 | vdwlem4.f | . 2 ⊢ 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉)))))) | |
19 | 17, 18 | fmptd 6970 | 1 ⊢ (𝜑 → 𝐹:(1...𝑉)⟶(𝑅 ↑m (1...𝑊))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ↦ cmpt 5153 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 Fincfn 8691 1c1 10803 + caddc 10805 · cmul 10807 − cmin 11135 ℕcn 11903 2c2 11958 ...cfz 13168 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 |
This theorem is referenced by: vdwlem5 16614 vdwlem6 16615 vdwlem9 16618 |
Copyright terms: Public domain | W3C validator |