MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem4 Structured version   Visualization version   GIF version

Theorem vdwlem4 16318
Description: Lemma for vdw 16328. (Contributed by Mario Carneiro, 12-Sep-2014.)
Hypotheses
Ref Expression
vdwlem3.v (𝜑𝑉 ∈ ℕ)
vdwlem3.w (𝜑𝑊 ∈ ℕ)
vdwlem4.r (𝜑𝑅 ∈ Fin)
vdwlem4.h (𝜑𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅)
vdwlem4.f 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))))
Assertion
Ref Expression
vdwlem4 (𝜑𝐹:(1...𝑉)⟶(𝑅m (1...𝑊)))
Distinct variable groups:   𝑥,𝑦,𝜑   𝑥,𝑅,𝑦   𝑥,𝐻,𝑦   𝑥,𝑊,𝑦   𝑥,𝑉,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem vdwlem4
StepHypRef Expression
1 vdwlem4.h . . . . . 6 (𝜑𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅)
21ad2antrr 725 . . . . 5 (((𝜑𝑥 ∈ (1...𝑉)) ∧ 𝑦 ∈ (1...𝑊)) → 𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅)
3 vdwlem3.v . . . . . . 7 (𝜑𝑉 ∈ ℕ)
43ad2antrr 725 . . . . . 6 (((𝜑𝑥 ∈ (1...𝑉)) ∧ 𝑦 ∈ (1...𝑊)) → 𝑉 ∈ ℕ)
5 vdwlem3.w . . . . . . 7 (𝜑𝑊 ∈ ℕ)
65ad2antrr 725 . . . . . 6 (((𝜑𝑥 ∈ (1...𝑉)) ∧ 𝑦 ∈ (1...𝑊)) → 𝑊 ∈ ℕ)
7 simplr 768 . . . . . 6 (((𝜑𝑥 ∈ (1...𝑉)) ∧ 𝑦 ∈ (1...𝑊)) → 𝑥 ∈ (1...𝑉))
8 simpr 488 . . . . . 6 (((𝜑𝑥 ∈ (1...𝑉)) ∧ 𝑦 ∈ (1...𝑊)) → 𝑦 ∈ (1...𝑊))
94, 6, 7, 8vdwlem3 16317 . . . . 5 (((𝜑𝑥 ∈ (1...𝑉)) ∧ 𝑦 ∈ (1...𝑊)) → (𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))) ∈ (1...(𝑊 · (2 · 𝑉))))
102, 9ffvelrnd 6843 . . . 4 (((𝜑𝑥 ∈ (1...𝑉)) ∧ 𝑦 ∈ (1...𝑊)) → (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉)))) ∈ 𝑅)
1110fmpttd 6870 . . 3 ((𝜑𝑥 ∈ (1...𝑉)) → (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))):(1...𝑊)⟶𝑅)
12 vdwlem4.r . . . . 5 (𝜑𝑅 ∈ Fin)
1312adantr 484 . . . 4 ((𝜑𝑥 ∈ (1...𝑉)) → 𝑅 ∈ Fin)
14 ovex 7182 . . . 4 (1...𝑊) ∈ V
15 elmapg 8415 . . . 4 ((𝑅 ∈ Fin ∧ (1...𝑊) ∈ V) → ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))) ∈ (𝑅m (1...𝑊)) ↔ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))):(1...𝑊)⟶𝑅))
1613, 14, 15sylancl 589 . . 3 ((𝜑𝑥 ∈ (1...𝑉)) → ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))) ∈ (𝑅m (1...𝑊)) ↔ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))):(1...𝑊)⟶𝑅))
1711, 16mpbird 260 . 2 ((𝜑𝑥 ∈ (1...𝑉)) → (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))) ∈ (𝑅m (1...𝑊)))
18 vdwlem4.f . 2 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))))
1917, 18fmptd 6869 1 (𝜑𝐹:(1...𝑉)⟶(𝑅m (1...𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  Vcvv 3480  cmpt 5132  wf 6339  cfv 6343  (class class class)co 7149  m cmap 8402  Fincfn 8505  1c1 10536   + caddc 10538   · cmul 10540  cmin 10868  cn 11634  2c2 11689  ...cfz 12894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8285  df-map 8404  df-en 8506  df-dom 8507  df-sdom 8508  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-nn 11635  df-2 11697  df-n0 11895  df-z 11979  df-uz 12241  df-fz 12895
This theorem is referenced by:  vdwlem5  16319  vdwlem6  16320  vdwlem9  16323
  Copyright terms: Public domain W3C validator