MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem4 Structured version   Visualization version   GIF version

Theorem vdwlem4 17018
Description: Lemma for vdw 17028. (Contributed by Mario Carneiro, 12-Sep-2014.)
Hypotheses
Ref Expression
vdwlem3.v (𝜑𝑉 ∈ ℕ)
vdwlem3.w (𝜑𝑊 ∈ ℕ)
vdwlem4.r (𝜑𝑅 ∈ Fin)
vdwlem4.h (𝜑𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅)
vdwlem4.f 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))))
Assertion
Ref Expression
vdwlem4 (𝜑𝐹:(1...𝑉)⟶(𝑅m (1...𝑊)))
Distinct variable groups:   𝑥,𝑦,𝜑   𝑥,𝑅,𝑦   𝑥,𝐻,𝑦   𝑥,𝑊,𝑦   𝑥,𝑉,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem vdwlem4
StepHypRef Expression
1 vdwlem4.h . . . . . 6 (𝜑𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅)
21ad2antrr 726 . . . . 5 (((𝜑𝑥 ∈ (1...𝑉)) ∧ 𝑦 ∈ (1...𝑊)) → 𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅)
3 vdwlem3.v . . . . . . 7 (𝜑𝑉 ∈ ℕ)
43ad2antrr 726 . . . . . 6 (((𝜑𝑥 ∈ (1...𝑉)) ∧ 𝑦 ∈ (1...𝑊)) → 𝑉 ∈ ℕ)
5 vdwlem3.w . . . . . . 7 (𝜑𝑊 ∈ ℕ)
65ad2antrr 726 . . . . . 6 (((𝜑𝑥 ∈ (1...𝑉)) ∧ 𝑦 ∈ (1...𝑊)) → 𝑊 ∈ ℕ)
7 simplr 769 . . . . . 6 (((𝜑𝑥 ∈ (1...𝑉)) ∧ 𝑦 ∈ (1...𝑊)) → 𝑥 ∈ (1...𝑉))
8 simpr 484 . . . . . 6 (((𝜑𝑥 ∈ (1...𝑉)) ∧ 𝑦 ∈ (1...𝑊)) → 𝑦 ∈ (1...𝑊))
94, 6, 7, 8vdwlem3 17017 . . . . 5 (((𝜑𝑥 ∈ (1...𝑉)) ∧ 𝑦 ∈ (1...𝑊)) → (𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))) ∈ (1...(𝑊 · (2 · 𝑉))))
102, 9ffvelcdmd 7105 . . . 4 (((𝜑𝑥 ∈ (1...𝑉)) ∧ 𝑦 ∈ (1...𝑊)) → (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉)))) ∈ 𝑅)
1110fmpttd 7135 . . 3 ((𝜑𝑥 ∈ (1...𝑉)) → (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))):(1...𝑊)⟶𝑅)
12 vdwlem4.r . . . . 5 (𝜑𝑅 ∈ Fin)
1312adantr 480 . . . 4 ((𝜑𝑥 ∈ (1...𝑉)) → 𝑅 ∈ Fin)
14 ovex 7464 . . . 4 (1...𝑊) ∈ V
15 elmapg 8878 . . . 4 ((𝑅 ∈ Fin ∧ (1...𝑊) ∈ V) → ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))) ∈ (𝑅m (1...𝑊)) ↔ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))):(1...𝑊)⟶𝑅))
1613, 14, 15sylancl 586 . . 3 ((𝜑𝑥 ∈ (1...𝑉)) → ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))) ∈ (𝑅m (1...𝑊)) ↔ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))):(1...𝑊)⟶𝑅))
1711, 16mpbird 257 . 2 ((𝜑𝑥 ∈ (1...𝑉)) → (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))) ∈ (𝑅m (1...𝑊)))
18 vdwlem4.f . 2 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))))
1917, 18fmptd 7134 1 (𝜑𝐹:(1...𝑉)⟶(𝑅m (1...𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  cmpt 5231  wf 6559  cfv 6563  (class class class)co 7431  m cmap 8865  Fincfn 8984  1c1 11154   + caddc 11156   · cmul 11158  cmin 11490  cn 12264  2c2 12319  ...cfz 13544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545
This theorem is referenced by:  vdwlem5  17019  vdwlem6  17020  vdwlem9  17023
  Copyright terms: Public domain W3C validator