![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vdwlem4 | Structured version Visualization version GIF version |
Description: Lemma for vdw 16113. (Contributed by Mario Carneiro, 12-Sep-2014.) |
Ref | Expression |
---|---|
vdwlem3.v | ⊢ (𝜑 → 𝑉 ∈ ℕ) |
vdwlem3.w | ⊢ (𝜑 → 𝑊 ∈ ℕ) |
vdwlem4.r | ⊢ (𝜑 → 𝑅 ∈ Fin) |
vdwlem4.h | ⊢ (𝜑 → 𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅) |
vdwlem4.f | ⊢ 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉)))))) |
Ref | Expression |
---|---|
vdwlem4 | ⊢ (𝜑 → 𝐹:(1...𝑉)⟶(𝑅 ↑𝑚 (1...𝑊))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vdwlem4.h | . . . . . 6 ⊢ (𝜑 → 𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅) | |
2 | 1 | ad2antrr 716 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑉)) ∧ 𝑦 ∈ (1...𝑊)) → 𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅) |
3 | vdwlem3.v | . . . . . . 7 ⊢ (𝜑 → 𝑉 ∈ ℕ) | |
4 | 3 | ad2antrr 716 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑉)) ∧ 𝑦 ∈ (1...𝑊)) → 𝑉 ∈ ℕ) |
5 | vdwlem3.w | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ ℕ) | |
6 | 5 | ad2antrr 716 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑉)) ∧ 𝑦 ∈ (1...𝑊)) → 𝑊 ∈ ℕ) |
7 | simplr 759 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑉)) ∧ 𝑦 ∈ (1...𝑊)) → 𝑥 ∈ (1...𝑉)) | |
8 | simpr 479 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑉)) ∧ 𝑦 ∈ (1...𝑊)) → 𝑦 ∈ (1...𝑊)) | |
9 | 4, 6, 7, 8 | vdwlem3 16102 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑉)) ∧ 𝑦 ∈ (1...𝑊)) → (𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))) ∈ (1...(𝑊 · (2 · 𝑉)))) |
10 | 2, 9 | ffvelrnd 6626 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑉)) ∧ 𝑦 ∈ (1...𝑊)) → (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉)))) ∈ 𝑅) |
11 | 10 | fmpttd 6651 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (1...𝑉)) → (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))):(1...𝑊)⟶𝑅) |
12 | vdwlem4.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Fin) | |
13 | 12 | adantr 474 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (1...𝑉)) → 𝑅 ∈ Fin) |
14 | ovex 6956 | . . . 4 ⊢ (1...𝑊) ∈ V | |
15 | elmapg 8155 | . . . 4 ⊢ ((𝑅 ∈ Fin ∧ (1...𝑊) ∈ V) → ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))) ∈ (𝑅 ↑𝑚 (1...𝑊)) ↔ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))):(1...𝑊)⟶𝑅)) | |
16 | 13, 14, 15 | sylancl 580 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (1...𝑉)) → ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))) ∈ (𝑅 ↑𝑚 (1...𝑊)) ↔ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))):(1...𝑊)⟶𝑅)) |
17 | 11, 16 | mpbird 249 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (1...𝑉)) → (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))) ∈ (𝑅 ↑𝑚 (1...𝑊))) |
18 | vdwlem4.f | . 2 ⊢ 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉)))))) | |
19 | 17, 18 | fmptd 6650 | 1 ⊢ (𝜑 → 𝐹:(1...𝑉)⟶(𝑅 ↑𝑚 (1...𝑊))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 Vcvv 3398 ↦ cmpt 4967 ⟶wf 6133 ‘cfv 6137 (class class class)co 6924 ↑𝑚 cmap 8142 Fincfn 8243 1c1 10275 + caddc 10277 · cmul 10279 − cmin 10608 ℕcn 11379 2c2 11435 ...cfz 12648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-1st 7447 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-er 8028 df-map 8144 df-en 8244 df-dom 8245 df-sdom 8246 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-nn 11380 df-2 11443 df-n0 11648 df-z 11734 df-uz 11998 df-fz 12649 |
This theorem is referenced by: vdwlem5 16104 vdwlem6 16105 vdwlem9 16108 |
Copyright terms: Public domain | W3C validator |