MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem3 Structured version   Visualization version   GIF version

Theorem vdwlem3 17021
Description: Lemma for vdw 17032. (Contributed by Mario Carneiro, 13-Sep-2014.)
Hypotheses
Ref Expression
vdwlem3.v (𝜑𝑉 ∈ ℕ)
vdwlem3.w (𝜑𝑊 ∈ ℕ)
vdwlem3.a (𝜑𝐴 ∈ (1...𝑉))
vdwlem3.b (𝜑𝐵 ∈ (1...𝑊))
Assertion
Ref Expression
vdwlem3 (𝜑 → (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ (1...(𝑊 · (2 · 𝑉))))

Proof of Theorem vdwlem3
StepHypRef Expression
1 vdwlem3.b . . . . . 6 (𝜑𝐵 ∈ (1...𝑊))
2 elfznn 13593 . . . . . 6 (𝐵 ∈ (1...𝑊) → 𝐵 ∈ ℕ)
31, 2syl 17 . . . . 5 (𝜑𝐵 ∈ ℕ)
4 vdwlem3.w . . . . . 6 (𝜑𝑊 ∈ ℕ)
5 vdwlem3.a . . . . . . . . 9 (𝜑𝐴 ∈ (1...𝑉))
6 elfznn 13593 . . . . . . . . 9 (𝐴 ∈ (1...𝑉) → 𝐴 ∈ ℕ)
75, 6syl 17 . . . . . . . 8 (𝜑𝐴 ∈ ℕ)
8 nnm1nn0 12567 . . . . . . . 8 (𝐴 ∈ ℕ → (𝐴 − 1) ∈ ℕ0)
97, 8syl 17 . . . . . . 7 (𝜑 → (𝐴 − 1) ∈ ℕ0)
10 vdwlem3.v . . . . . . 7 (𝜑𝑉 ∈ ℕ)
11 nn0nnaddcl 12557 . . . . . . 7 (((𝐴 − 1) ∈ ℕ0𝑉 ∈ ℕ) → ((𝐴 − 1) + 𝑉) ∈ ℕ)
129, 10, 11syl2anc 584 . . . . . 6 (𝜑 → ((𝐴 − 1) + 𝑉) ∈ ℕ)
134, 12nnmulcld 12319 . . . . 5 (𝜑 → (𝑊 · ((𝐴 − 1) + 𝑉)) ∈ ℕ)
143, 13nnaddcld 12318 . . . 4 (𝜑 → (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ ℕ)
1514nnred 12281 . . 3 (𝜑 → (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ ℝ)
167, 10nnaddcld 12318 . . . . 5 (𝜑 → (𝐴 + 𝑉) ∈ ℕ)
174, 16nnmulcld 12319 . . . 4 (𝜑 → (𝑊 · (𝐴 + 𝑉)) ∈ ℕ)
1817nnred 12281 . . 3 (𝜑 → (𝑊 · (𝐴 + 𝑉)) ∈ ℝ)
19 2nn 12339 . . . . . 6 2 ∈ ℕ
20 nnmulcl 12290 . . . . . 6 ((2 ∈ ℕ ∧ 𝑉 ∈ ℕ) → (2 · 𝑉) ∈ ℕ)
2119, 10, 20sylancr 587 . . . . 5 (𝜑 → (2 · 𝑉) ∈ ℕ)
224, 21nnmulcld 12319 . . . 4 (𝜑 → (𝑊 · (2 · 𝑉)) ∈ ℕ)
2322nnred 12281 . . 3 (𝜑 → (𝑊 · (2 · 𝑉)) ∈ ℝ)
24 elfzle2 13568 . . . . . 6 (𝐵 ∈ (1...𝑊) → 𝐵𝑊)
251, 24syl 17 . . . . 5 (𝜑𝐵𝑊)
26 nnre 12273 . . . . . . 7 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
27 nnre 12273 . . . . . . 7 (𝑊 ∈ ℕ → 𝑊 ∈ ℝ)
28 nnre 12273 . . . . . . 7 ((𝑊 · ((𝐴 − 1) + 𝑉)) ∈ ℕ → (𝑊 · ((𝐴 − 1) + 𝑉)) ∈ ℝ)
29 leadd1 11731 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝑊 ∈ ℝ ∧ (𝑊 · ((𝐴 − 1) + 𝑉)) ∈ ℝ) → (𝐵𝑊 ↔ (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ≤ (𝑊 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
3026, 27, 28, 29syl3an 1161 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝑊 ∈ ℕ ∧ (𝑊 · ((𝐴 − 1) + 𝑉)) ∈ ℕ) → (𝐵𝑊 ↔ (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ≤ (𝑊 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
313, 4, 13, 30syl3anc 1373 . . . . 5 (𝜑 → (𝐵𝑊 ↔ (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ≤ (𝑊 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
3225, 31mpbid 232 . . . 4 (𝜑 → (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ≤ (𝑊 + (𝑊 · ((𝐴 − 1) + 𝑉))))
334nncnd 12282 . . . . . 6 (𝜑𝑊 ∈ ℂ)
34 1cnd 11256 . . . . . 6 (𝜑 → 1 ∈ ℂ)
3512nncnd 12282 . . . . . 6 (𝜑 → ((𝐴 − 1) + 𝑉) ∈ ℂ)
3633, 34, 35adddid 11285 . . . . 5 (𝜑 → (𝑊 · (1 + ((𝐴 − 1) + 𝑉))) = ((𝑊 · 1) + (𝑊 · ((𝐴 − 1) + 𝑉))))
379nn0cnd 12589 . . . . . . . 8 (𝜑 → (𝐴 − 1) ∈ ℂ)
3810nncnd 12282 . . . . . . . 8 (𝜑𝑉 ∈ ℂ)
3934, 37, 38addassd 11283 . . . . . . 7 (𝜑 → ((1 + (𝐴 − 1)) + 𝑉) = (1 + ((𝐴 − 1) + 𝑉)))
40 ax-1cn 11213 . . . . . . . . 9 1 ∈ ℂ
417nncnd 12282 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
42 pncan3 11516 . . . . . . . . 9 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 + (𝐴 − 1)) = 𝐴)
4340, 41, 42sylancr 587 . . . . . . . 8 (𝜑 → (1 + (𝐴 − 1)) = 𝐴)
4443oveq1d 7446 . . . . . . 7 (𝜑 → ((1 + (𝐴 − 1)) + 𝑉) = (𝐴 + 𝑉))
4539, 44eqtr3d 2779 . . . . . 6 (𝜑 → (1 + ((𝐴 − 1) + 𝑉)) = (𝐴 + 𝑉))
4645oveq2d 7447 . . . . 5 (𝜑 → (𝑊 · (1 + ((𝐴 − 1) + 𝑉))) = (𝑊 · (𝐴 + 𝑉)))
4733mulridd 11278 . . . . . 6 (𝜑 → (𝑊 · 1) = 𝑊)
4847oveq1d 7446 . . . . 5 (𝜑 → ((𝑊 · 1) + (𝑊 · ((𝐴 − 1) + 𝑉))) = (𝑊 + (𝑊 · ((𝐴 − 1) + 𝑉))))
4936, 46, 483eqtr3d 2785 . . . 4 (𝜑 → (𝑊 · (𝐴 + 𝑉)) = (𝑊 + (𝑊 · ((𝐴 − 1) + 𝑉))))
5032, 49breqtrrd 5171 . . 3 (𝜑 → (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ≤ (𝑊 · (𝐴 + 𝑉)))
517nnred 12281 . . . . . 6 (𝜑𝐴 ∈ ℝ)
5210nnred 12281 . . . . . 6 (𝜑𝑉 ∈ ℝ)
53 elfzle2 13568 . . . . . . 7 (𝐴 ∈ (1...𝑉) → 𝐴𝑉)
545, 53syl 17 . . . . . 6 (𝜑𝐴𝑉)
5551, 52, 52, 54leadd1dd 11877 . . . . 5 (𝜑 → (𝐴 + 𝑉) ≤ (𝑉 + 𝑉))
56382timesd 12509 . . . . 5 (𝜑 → (2 · 𝑉) = (𝑉 + 𝑉))
5755, 56breqtrrd 5171 . . . 4 (𝜑 → (𝐴 + 𝑉) ≤ (2 · 𝑉))
5816nnred 12281 . . . . 5 (𝜑 → (𝐴 + 𝑉) ∈ ℝ)
5921nnred 12281 . . . . 5 (𝜑 → (2 · 𝑉) ∈ ℝ)
604nnred 12281 . . . . 5 (𝜑𝑊 ∈ ℝ)
614nngt0d 12315 . . . . 5 (𝜑 → 0 < 𝑊)
62 lemul2 12120 . . . . 5 (((𝐴 + 𝑉) ∈ ℝ ∧ (2 · 𝑉) ∈ ℝ ∧ (𝑊 ∈ ℝ ∧ 0 < 𝑊)) → ((𝐴 + 𝑉) ≤ (2 · 𝑉) ↔ (𝑊 · (𝐴 + 𝑉)) ≤ (𝑊 · (2 · 𝑉))))
6358, 59, 60, 61, 62syl112anc 1376 . . . 4 (𝜑 → ((𝐴 + 𝑉) ≤ (2 · 𝑉) ↔ (𝑊 · (𝐴 + 𝑉)) ≤ (𝑊 · (2 · 𝑉))))
6457, 63mpbid 232 . . 3 (𝜑 → (𝑊 · (𝐴 + 𝑉)) ≤ (𝑊 · (2 · 𝑉)))
6515, 18, 23, 50, 64letrd 11418 . 2 (𝜑 → (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ≤ (𝑊 · (2 · 𝑉)))
66 nnuz 12921 . . . 4 ℕ = (ℤ‘1)
6714, 66eleqtrdi 2851 . . 3 (𝜑 → (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ (ℤ‘1))
6822nnzd 12640 . . 3 (𝜑 → (𝑊 · (2 · 𝑉)) ∈ ℤ)
69 elfz5 13556 . . 3 (((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ (ℤ‘1) ∧ (𝑊 · (2 · 𝑉)) ∈ ℤ) → ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ (1...(𝑊 · (2 · 𝑉))) ↔ (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ≤ (𝑊 · (2 · 𝑉))))
7067, 68, 69syl2anc 584 . 2 (𝜑 → ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ (1...(𝑊 · (2 · 𝑉))) ↔ (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ≤ (𝑊 · (2 · 𝑉))))
7165, 70mpbird 257 1 (𝜑 → (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ (1...(𝑊 · (2 · 𝑉))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108   class class class wbr 5143  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cle 11296  cmin 11492  cn 12266  2c2 12321  0cn0 12526  cz 12613  cuz 12878  ...cfz 13547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548
This theorem is referenced by:  vdwlem4  17022  vdwlem6  17024
  Copyright terms: Public domain W3C validator