MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem3 Structured version   Visualization version   GIF version

Theorem vdwlem3 17030
Description: Lemma for vdw 17041. (Contributed by Mario Carneiro, 13-Sep-2014.)
Hypotheses
Ref Expression
vdwlem3.v (𝜑𝑉 ∈ ℕ)
vdwlem3.w (𝜑𝑊 ∈ ℕ)
vdwlem3.a (𝜑𝐴 ∈ (1...𝑉))
vdwlem3.b (𝜑𝐵 ∈ (1...𝑊))
Assertion
Ref Expression
vdwlem3 (𝜑 → (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ (1...(𝑊 · (2 · 𝑉))))

Proof of Theorem vdwlem3
StepHypRef Expression
1 vdwlem3.b . . . . . 6 (𝜑𝐵 ∈ (1...𝑊))
2 elfznn 13613 . . . . . 6 (𝐵 ∈ (1...𝑊) → 𝐵 ∈ ℕ)
31, 2syl 17 . . . . 5 (𝜑𝐵 ∈ ℕ)
4 vdwlem3.w . . . . . 6 (𝜑𝑊 ∈ ℕ)
5 vdwlem3.a . . . . . . . . 9 (𝜑𝐴 ∈ (1...𝑉))
6 elfznn 13613 . . . . . . . . 9 (𝐴 ∈ (1...𝑉) → 𝐴 ∈ ℕ)
75, 6syl 17 . . . . . . . 8 (𝜑𝐴 ∈ ℕ)
8 nnm1nn0 12594 . . . . . . . 8 (𝐴 ∈ ℕ → (𝐴 − 1) ∈ ℕ0)
97, 8syl 17 . . . . . . 7 (𝜑 → (𝐴 − 1) ∈ ℕ0)
10 vdwlem3.v . . . . . . 7 (𝜑𝑉 ∈ ℕ)
11 nn0nnaddcl 12584 . . . . . . 7 (((𝐴 − 1) ∈ ℕ0𝑉 ∈ ℕ) → ((𝐴 − 1) + 𝑉) ∈ ℕ)
129, 10, 11syl2anc 583 . . . . . 6 (𝜑 → ((𝐴 − 1) + 𝑉) ∈ ℕ)
134, 12nnmulcld 12346 . . . . 5 (𝜑 → (𝑊 · ((𝐴 − 1) + 𝑉)) ∈ ℕ)
143, 13nnaddcld 12345 . . . 4 (𝜑 → (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ ℕ)
1514nnred 12308 . . 3 (𝜑 → (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ ℝ)
167, 10nnaddcld 12345 . . . . 5 (𝜑 → (𝐴 + 𝑉) ∈ ℕ)
174, 16nnmulcld 12346 . . . 4 (𝜑 → (𝑊 · (𝐴 + 𝑉)) ∈ ℕ)
1817nnred 12308 . . 3 (𝜑 → (𝑊 · (𝐴 + 𝑉)) ∈ ℝ)
19 2nn 12366 . . . . . 6 2 ∈ ℕ
20 nnmulcl 12317 . . . . . 6 ((2 ∈ ℕ ∧ 𝑉 ∈ ℕ) → (2 · 𝑉) ∈ ℕ)
2119, 10, 20sylancr 586 . . . . 5 (𝜑 → (2 · 𝑉) ∈ ℕ)
224, 21nnmulcld 12346 . . . 4 (𝜑 → (𝑊 · (2 · 𝑉)) ∈ ℕ)
2322nnred 12308 . . 3 (𝜑 → (𝑊 · (2 · 𝑉)) ∈ ℝ)
24 elfzle2 13588 . . . . . 6 (𝐵 ∈ (1...𝑊) → 𝐵𝑊)
251, 24syl 17 . . . . 5 (𝜑𝐵𝑊)
26 nnre 12300 . . . . . . 7 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
27 nnre 12300 . . . . . . 7 (𝑊 ∈ ℕ → 𝑊 ∈ ℝ)
28 nnre 12300 . . . . . . 7 ((𝑊 · ((𝐴 − 1) + 𝑉)) ∈ ℕ → (𝑊 · ((𝐴 − 1) + 𝑉)) ∈ ℝ)
29 leadd1 11758 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝑊 ∈ ℝ ∧ (𝑊 · ((𝐴 − 1) + 𝑉)) ∈ ℝ) → (𝐵𝑊 ↔ (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ≤ (𝑊 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
3026, 27, 28, 29syl3an 1160 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝑊 ∈ ℕ ∧ (𝑊 · ((𝐴 − 1) + 𝑉)) ∈ ℕ) → (𝐵𝑊 ↔ (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ≤ (𝑊 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
313, 4, 13, 30syl3anc 1371 . . . . 5 (𝜑 → (𝐵𝑊 ↔ (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ≤ (𝑊 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
3225, 31mpbid 232 . . . 4 (𝜑 → (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ≤ (𝑊 + (𝑊 · ((𝐴 − 1) + 𝑉))))
334nncnd 12309 . . . . . 6 (𝜑𝑊 ∈ ℂ)
34 1cnd 11285 . . . . . 6 (𝜑 → 1 ∈ ℂ)
3512nncnd 12309 . . . . . 6 (𝜑 → ((𝐴 − 1) + 𝑉) ∈ ℂ)
3633, 34, 35adddid 11314 . . . . 5 (𝜑 → (𝑊 · (1 + ((𝐴 − 1) + 𝑉))) = ((𝑊 · 1) + (𝑊 · ((𝐴 − 1) + 𝑉))))
379nn0cnd 12615 . . . . . . . 8 (𝜑 → (𝐴 − 1) ∈ ℂ)
3810nncnd 12309 . . . . . . . 8 (𝜑𝑉 ∈ ℂ)
3934, 37, 38addassd 11312 . . . . . . 7 (𝜑 → ((1 + (𝐴 − 1)) + 𝑉) = (1 + ((𝐴 − 1) + 𝑉)))
40 ax-1cn 11242 . . . . . . . . 9 1 ∈ ℂ
417nncnd 12309 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
42 pncan3 11544 . . . . . . . . 9 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 + (𝐴 − 1)) = 𝐴)
4340, 41, 42sylancr 586 . . . . . . . 8 (𝜑 → (1 + (𝐴 − 1)) = 𝐴)
4443oveq1d 7463 . . . . . . 7 (𝜑 → ((1 + (𝐴 − 1)) + 𝑉) = (𝐴 + 𝑉))
4539, 44eqtr3d 2782 . . . . . 6 (𝜑 → (1 + ((𝐴 − 1) + 𝑉)) = (𝐴 + 𝑉))
4645oveq2d 7464 . . . . 5 (𝜑 → (𝑊 · (1 + ((𝐴 − 1) + 𝑉))) = (𝑊 · (𝐴 + 𝑉)))
4733mulridd 11307 . . . . . 6 (𝜑 → (𝑊 · 1) = 𝑊)
4847oveq1d 7463 . . . . 5 (𝜑 → ((𝑊 · 1) + (𝑊 · ((𝐴 − 1) + 𝑉))) = (𝑊 + (𝑊 · ((𝐴 − 1) + 𝑉))))
4936, 46, 483eqtr3d 2788 . . . 4 (𝜑 → (𝑊 · (𝐴 + 𝑉)) = (𝑊 + (𝑊 · ((𝐴 − 1) + 𝑉))))
5032, 49breqtrrd 5194 . . 3 (𝜑 → (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ≤ (𝑊 · (𝐴 + 𝑉)))
517nnred 12308 . . . . . 6 (𝜑𝐴 ∈ ℝ)
5210nnred 12308 . . . . . 6 (𝜑𝑉 ∈ ℝ)
53 elfzle2 13588 . . . . . . 7 (𝐴 ∈ (1...𝑉) → 𝐴𝑉)
545, 53syl 17 . . . . . 6 (𝜑𝐴𝑉)
5551, 52, 52, 54leadd1dd 11904 . . . . 5 (𝜑 → (𝐴 + 𝑉) ≤ (𝑉 + 𝑉))
56382timesd 12536 . . . . 5 (𝜑 → (2 · 𝑉) = (𝑉 + 𝑉))
5755, 56breqtrrd 5194 . . . 4 (𝜑 → (𝐴 + 𝑉) ≤ (2 · 𝑉))
5816nnred 12308 . . . . 5 (𝜑 → (𝐴 + 𝑉) ∈ ℝ)
5921nnred 12308 . . . . 5 (𝜑 → (2 · 𝑉) ∈ ℝ)
604nnred 12308 . . . . 5 (𝜑𝑊 ∈ ℝ)
614nngt0d 12342 . . . . 5 (𝜑 → 0 < 𝑊)
62 lemul2 12147 . . . . 5 (((𝐴 + 𝑉) ∈ ℝ ∧ (2 · 𝑉) ∈ ℝ ∧ (𝑊 ∈ ℝ ∧ 0 < 𝑊)) → ((𝐴 + 𝑉) ≤ (2 · 𝑉) ↔ (𝑊 · (𝐴 + 𝑉)) ≤ (𝑊 · (2 · 𝑉))))
6358, 59, 60, 61, 62syl112anc 1374 . . . 4 (𝜑 → ((𝐴 + 𝑉) ≤ (2 · 𝑉) ↔ (𝑊 · (𝐴 + 𝑉)) ≤ (𝑊 · (2 · 𝑉))))
6457, 63mpbid 232 . . 3 (𝜑 → (𝑊 · (𝐴 + 𝑉)) ≤ (𝑊 · (2 · 𝑉)))
6515, 18, 23, 50, 64letrd 11447 . 2 (𝜑 → (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ≤ (𝑊 · (2 · 𝑉)))
66 nnuz 12946 . . . 4 ℕ = (ℤ‘1)
6714, 66eleqtrdi 2854 . . 3 (𝜑 → (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ (ℤ‘1))
6822nnzd 12666 . . 3 (𝜑 → (𝑊 · (2 · 𝑉)) ∈ ℤ)
69 elfz5 13576 . . 3 (((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ (ℤ‘1) ∧ (𝑊 · (2 · 𝑉)) ∈ ℤ) → ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ (1...(𝑊 · (2 · 𝑉))) ↔ (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ≤ (𝑊 · (2 · 𝑉))))
7067, 68, 69syl2anc 583 . 2 (𝜑 → ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ (1...(𝑊 · (2 · 𝑉))) ↔ (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ≤ (𝑊 · (2 · 𝑉))))
7165, 70mpbird 257 1 (𝜑 → (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ (1...(𝑊 · (2 · 𝑉))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cle 11325  cmin 11520  cn 12293  2c2 12348  0cn0 12553  cz 12639  cuz 12903  ...cfz 13567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568
This theorem is referenced by:  vdwlem4  17031  vdwlem6  17033
  Copyright terms: Public domain W3C validator