MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem3 Structured version   Visualization version   GIF version

Theorem vdwlem3 16307
Description: Lemma for vdw 16318. (Contributed by Mario Carneiro, 13-Sep-2014.)
Hypotheses
Ref Expression
vdwlem3.v (𝜑𝑉 ∈ ℕ)
vdwlem3.w (𝜑𝑊 ∈ ℕ)
vdwlem3.a (𝜑𝐴 ∈ (1...𝑉))
vdwlem3.b (𝜑𝐵 ∈ (1...𝑊))
Assertion
Ref Expression
vdwlem3 (𝜑 → (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ (1...(𝑊 · (2 · 𝑉))))

Proof of Theorem vdwlem3
StepHypRef Expression
1 vdwlem3.b . . . . . 6 (𝜑𝐵 ∈ (1...𝑊))
2 elfznn 12924 . . . . . 6 (𝐵 ∈ (1...𝑊) → 𝐵 ∈ ℕ)
31, 2syl 17 . . . . 5 (𝜑𝐵 ∈ ℕ)
4 vdwlem3.w . . . . . 6 (𝜑𝑊 ∈ ℕ)
5 vdwlem3.a . . . . . . . . 9 (𝜑𝐴 ∈ (1...𝑉))
6 elfznn 12924 . . . . . . . . 9 (𝐴 ∈ (1...𝑉) → 𝐴 ∈ ℕ)
75, 6syl 17 . . . . . . . 8 (𝜑𝐴 ∈ ℕ)
8 nnm1nn0 11926 . . . . . . . 8 (𝐴 ∈ ℕ → (𝐴 − 1) ∈ ℕ0)
97, 8syl 17 . . . . . . 7 (𝜑 → (𝐴 − 1) ∈ ℕ0)
10 vdwlem3.v . . . . . . 7 (𝜑𝑉 ∈ ℕ)
11 nn0nnaddcl 11916 . . . . . . 7 (((𝐴 − 1) ∈ ℕ0𝑉 ∈ ℕ) → ((𝐴 − 1) + 𝑉) ∈ ℕ)
129, 10, 11syl2anc 584 . . . . . 6 (𝜑 → ((𝐴 − 1) + 𝑉) ∈ ℕ)
134, 12nnmulcld 11678 . . . . 5 (𝜑 → (𝑊 · ((𝐴 − 1) + 𝑉)) ∈ ℕ)
143, 13nnaddcld 11677 . . . 4 (𝜑 → (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ ℕ)
1514nnred 11641 . . 3 (𝜑 → (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ ℝ)
167, 10nnaddcld 11677 . . . . 5 (𝜑 → (𝐴 + 𝑉) ∈ ℕ)
174, 16nnmulcld 11678 . . . 4 (𝜑 → (𝑊 · (𝐴 + 𝑉)) ∈ ℕ)
1817nnred 11641 . . 3 (𝜑 → (𝑊 · (𝐴 + 𝑉)) ∈ ℝ)
19 2nn 11698 . . . . . 6 2 ∈ ℕ
20 nnmulcl 11649 . . . . . 6 ((2 ∈ ℕ ∧ 𝑉 ∈ ℕ) → (2 · 𝑉) ∈ ℕ)
2119, 10, 20sylancr 587 . . . . 5 (𝜑 → (2 · 𝑉) ∈ ℕ)
224, 21nnmulcld 11678 . . . 4 (𝜑 → (𝑊 · (2 · 𝑉)) ∈ ℕ)
2322nnred 11641 . . 3 (𝜑 → (𝑊 · (2 · 𝑉)) ∈ ℝ)
24 elfzle2 12899 . . . . . 6 (𝐵 ∈ (1...𝑊) → 𝐵𝑊)
251, 24syl 17 . . . . 5 (𝜑𝐵𝑊)
26 nnre 11633 . . . . . . 7 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
27 nnre 11633 . . . . . . 7 (𝑊 ∈ ℕ → 𝑊 ∈ ℝ)
28 nnre 11633 . . . . . . 7 ((𝑊 · ((𝐴 − 1) + 𝑉)) ∈ ℕ → (𝑊 · ((𝐴 − 1) + 𝑉)) ∈ ℝ)
29 leadd1 11096 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝑊 ∈ ℝ ∧ (𝑊 · ((𝐴 − 1) + 𝑉)) ∈ ℝ) → (𝐵𝑊 ↔ (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ≤ (𝑊 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
3026, 27, 28, 29syl3an 1152 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝑊 ∈ ℕ ∧ (𝑊 · ((𝐴 − 1) + 𝑉)) ∈ ℕ) → (𝐵𝑊 ↔ (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ≤ (𝑊 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
313, 4, 13, 30syl3anc 1363 . . . . 5 (𝜑 → (𝐵𝑊 ↔ (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ≤ (𝑊 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
3225, 31mpbid 233 . . . 4 (𝜑 → (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ≤ (𝑊 + (𝑊 · ((𝐴 − 1) + 𝑉))))
334nncnd 11642 . . . . . 6 (𝜑𝑊 ∈ ℂ)
34 1cnd 10624 . . . . . 6 (𝜑 → 1 ∈ ℂ)
3512nncnd 11642 . . . . . 6 (𝜑 → ((𝐴 − 1) + 𝑉) ∈ ℂ)
3633, 34, 35adddid 10653 . . . . 5 (𝜑 → (𝑊 · (1 + ((𝐴 − 1) + 𝑉))) = ((𝑊 · 1) + (𝑊 · ((𝐴 − 1) + 𝑉))))
379nn0cnd 11945 . . . . . . . 8 (𝜑 → (𝐴 − 1) ∈ ℂ)
3810nncnd 11642 . . . . . . . 8 (𝜑𝑉 ∈ ℂ)
3934, 37, 38addassd 10651 . . . . . . 7 (𝜑 → ((1 + (𝐴 − 1)) + 𝑉) = (1 + ((𝐴 − 1) + 𝑉)))
40 ax-1cn 10583 . . . . . . . . 9 1 ∈ ℂ
417nncnd 11642 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
42 pncan3 10882 . . . . . . . . 9 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 + (𝐴 − 1)) = 𝐴)
4340, 41, 42sylancr 587 . . . . . . . 8 (𝜑 → (1 + (𝐴 − 1)) = 𝐴)
4443oveq1d 7160 . . . . . . 7 (𝜑 → ((1 + (𝐴 − 1)) + 𝑉) = (𝐴 + 𝑉))
4539, 44eqtr3d 2855 . . . . . 6 (𝜑 → (1 + ((𝐴 − 1) + 𝑉)) = (𝐴 + 𝑉))
4645oveq2d 7161 . . . . 5 (𝜑 → (𝑊 · (1 + ((𝐴 − 1) + 𝑉))) = (𝑊 · (𝐴 + 𝑉)))
4733mulid1d 10646 . . . . . 6 (𝜑 → (𝑊 · 1) = 𝑊)
4847oveq1d 7160 . . . . 5 (𝜑 → ((𝑊 · 1) + (𝑊 · ((𝐴 − 1) + 𝑉))) = (𝑊 + (𝑊 · ((𝐴 − 1) + 𝑉))))
4936, 46, 483eqtr3d 2861 . . . 4 (𝜑 → (𝑊 · (𝐴 + 𝑉)) = (𝑊 + (𝑊 · ((𝐴 − 1) + 𝑉))))
5032, 49breqtrrd 5085 . . 3 (𝜑 → (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ≤ (𝑊 · (𝐴 + 𝑉)))
517nnred 11641 . . . . . 6 (𝜑𝐴 ∈ ℝ)
5210nnred 11641 . . . . . 6 (𝜑𝑉 ∈ ℝ)
53 elfzle2 12899 . . . . . . 7 (𝐴 ∈ (1...𝑉) → 𝐴𝑉)
545, 53syl 17 . . . . . 6 (𝜑𝐴𝑉)
5551, 52, 52, 54leadd1dd 11242 . . . . 5 (𝜑 → (𝐴 + 𝑉) ≤ (𝑉 + 𝑉))
56382timesd 11868 . . . . 5 (𝜑 → (2 · 𝑉) = (𝑉 + 𝑉))
5755, 56breqtrrd 5085 . . . 4 (𝜑 → (𝐴 + 𝑉) ≤ (2 · 𝑉))
5816nnred 11641 . . . . 5 (𝜑 → (𝐴 + 𝑉) ∈ ℝ)
5921nnred 11641 . . . . 5 (𝜑 → (2 · 𝑉) ∈ ℝ)
604nnred 11641 . . . . 5 (𝜑𝑊 ∈ ℝ)
614nngt0d 11674 . . . . 5 (𝜑 → 0 < 𝑊)
62 lemul2 11481 . . . . 5 (((𝐴 + 𝑉) ∈ ℝ ∧ (2 · 𝑉) ∈ ℝ ∧ (𝑊 ∈ ℝ ∧ 0 < 𝑊)) → ((𝐴 + 𝑉) ≤ (2 · 𝑉) ↔ (𝑊 · (𝐴 + 𝑉)) ≤ (𝑊 · (2 · 𝑉))))
6358, 59, 60, 61, 62syl112anc 1366 . . . 4 (𝜑 → ((𝐴 + 𝑉) ≤ (2 · 𝑉) ↔ (𝑊 · (𝐴 + 𝑉)) ≤ (𝑊 · (2 · 𝑉))))
6457, 63mpbid 233 . . 3 (𝜑 → (𝑊 · (𝐴 + 𝑉)) ≤ (𝑊 · (2 · 𝑉)))
6515, 18, 23, 50, 64letrd 10785 . 2 (𝜑 → (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ≤ (𝑊 · (2 · 𝑉)))
66 nnuz 12269 . . . 4 ℕ = (ℤ‘1)
6714, 66eleqtrdi 2920 . . 3 (𝜑 → (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ (ℤ‘1))
6822nnzd 12074 . . 3 (𝜑 → (𝑊 · (2 · 𝑉)) ∈ ℤ)
69 elfz5 12888 . . 3 (((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ (ℤ‘1) ∧ (𝑊 · (2 · 𝑉)) ∈ ℤ) → ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ (1...(𝑊 · (2 · 𝑉))) ↔ (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ≤ (𝑊 · (2 · 𝑉))))
7067, 68, 69syl2anc 584 . 2 (𝜑 → ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ (1...(𝑊 · (2 · 𝑉))) ↔ (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ≤ (𝑊 · (2 · 𝑉))))
7165, 70mpbird 258 1 (𝜑 → (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ (1...(𝑊 · (2 · 𝑉))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207   = wceq 1528  wcel 2105   class class class wbr 5057  cfv 6348  (class class class)co 7145  cc 10523  cr 10524  0cc0 10525  1c1 10526   + caddc 10528   · cmul 10530   < clt 10663  cle 10664  cmin 10858  cn 11626  2c2 11680  0cn0 11885  cz 11969  cuz 12231  ...cfz 12880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12881
This theorem is referenced by:  vdwlem4  16308  vdwlem6  16310
  Copyright terms: Public domain W3C validator