MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem3 Structured version   Visualization version   GIF version

Theorem vdwlem3 16317
Description: Lemma for vdw 16328. (Contributed by Mario Carneiro, 13-Sep-2014.)
Hypotheses
Ref Expression
vdwlem3.v (𝜑𝑉 ∈ ℕ)
vdwlem3.w (𝜑𝑊 ∈ ℕ)
vdwlem3.a (𝜑𝐴 ∈ (1...𝑉))
vdwlem3.b (𝜑𝐵 ∈ (1...𝑊))
Assertion
Ref Expression
vdwlem3 (𝜑 → (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ (1...(𝑊 · (2 · 𝑉))))

Proof of Theorem vdwlem3
StepHypRef Expression
1 vdwlem3.b . . . . . 6 (𝜑𝐵 ∈ (1...𝑊))
2 elfznn 12940 . . . . . 6 (𝐵 ∈ (1...𝑊) → 𝐵 ∈ ℕ)
31, 2syl 17 . . . . 5 (𝜑𝐵 ∈ ℕ)
4 vdwlem3.w . . . . . 6 (𝜑𝑊 ∈ ℕ)
5 vdwlem3.a . . . . . . . . 9 (𝜑𝐴 ∈ (1...𝑉))
6 elfznn 12940 . . . . . . . . 9 (𝐴 ∈ (1...𝑉) → 𝐴 ∈ ℕ)
75, 6syl 17 . . . . . . . 8 (𝜑𝐴 ∈ ℕ)
8 nnm1nn0 11935 . . . . . . . 8 (𝐴 ∈ ℕ → (𝐴 − 1) ∈ ℕ0)
97, 8syl 17 . . . . . . 7 (𝜑 → (𝐴 − 1) ∈ ℕ0)
10 vdwlem3.v . . . . . . 7 (𝜑𝑉 ∈ ℕ)
11 nn0nnaddcl 11925 . . . . . . 7 (((𝐴 − 1) ∈ ℕ0𝑉 ∈ ℕ) → ((𝐴 − 1) + 𝑉) ∈ ℕ)
129, 10, 11syl2anc 587 . . . . . 6 (𝜑 → ((𝐴 − 1) + 𝑉) ∈ ℕ)
134, 12nnmulcld 11687 . . . . 5 (𝜑 → (𝑊 · ((𝐴 − 1) + 𝑉)) ∈ ℕ)
143, 13nnaddcld 11686 . . . 4 (𝜑 → (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ ℕ)
1514nnred 11649 . . 3 (𝜑 → (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ ℝ)
167, 10nnaddcld 11686 . . . . 5 (𝜑 → (𝐴 + 𝑉) ∈ ℕ)
174, 16nnmulcld 11687 . . . 4 (𝜑 → (𝑊 · (𝐴 + 𝑉)) ∈ ℕ)
1817nnred 11649 . . 3 (𝜑 → (𝑊 · (𝐴 + 𝑉)) ∈ ℝ)
19 2nn 11707 . . . . . 6 2 ∈ ℕ
20 nnmulcl 11658 . . . . . 6 ((2 ∈ ℕ ∧ 𝑉 ∈ ℕ) → (2 · 𝑉) ∈ ℕ)
2119, 10, 20sylancr 590 . . . . 5 (𝜑 → (2 · 𝑉) ∈ ℕ)
224, 21nnmulcld 11687 . . . 4 (𝜑 → (𝑊 · (2 · 𝑉)) ∈ ℕ)
2322nnred 11649 . . 3 (𝜑 → (𝑊 · (2 · 𝑉)) ∈ ℝ)
24 elfzle2 12915 . . . . . 6 (𝐵 ∈ (1...𝑊) → 𝐵𝑊)
251, 24syl 17 . . . . 5 (𝜑𝐵𝑊)
26 nnre 11641 . . . . . . 7 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
27 nnre 11641 . . . . . . 7 (𝑊 ∈ ℕ → 𝑊 ∈ ℝ)
28 nnre 11641 . . . . . . 7 ((𝑊 · ((𝐴 − 1) + 𝑉)) ∈ ℕ → (𝑊 · ((𝐴 − 1) + 𝑉)) ∈ ℝ)
29 leadd1 11106 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝑊 ∈ ℝ ∧ (𝑊 · ((𝐴 − 1) + 𝑉)) ∈ ℝ) → (𝐵𝑊 ↔ (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ≤ (𝑊 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
3026, 27, 28, 29syl3an 1157 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝑊 ∈ ℕ ∧ (𝑊 · ((𝐴 − 1) + 𝑉)) ∈ ℕ) → (𝐵𝑊 ↔ (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ≤ (𝑊 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
313, 4, 13, 30syl3anc 1368 . . . . 5 (𝜑 → (𝐵𝑊 ↔ (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ≤ (𝑊 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
3225, 31mpbid 235 . . . 4 (𝜑 → (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ≤ (𝑊 + (𝑊 · ((𝐴 − 1) + 𝑉))))
334nncnd 11650 . . . . . 6 (𝜑𝑊 ∈ ℂ)
34 1cnd 10634 . . . . . 6 (𝜑 → 1 ∈ ℂ)
3512nncnd 11650 . . . . . 6 (𝜑 → ((𝐴 − 1) + 𝑉) ∈ ℂ)
3633, 34, 35adddid 10663 . . . . 5 (𝜑 → (𝑊 · (1 + ((𝐴 − 1) + 𝑉))) = ((𝑊 · 1) + (𝑊 · ((𝐴 − 1) + 𝑉))))
379nn0cnd 11954 . . . . . . . 8 (𝜑 → (𝐴 − 1) ∈ ℂ)
3810nncnd 11650 . . . . . . . 8 (𝜑𝑉 ∈ ℂ)
3934, 37, 38addassd 10661 . . . . . . 7 (𝜑 → ((1 + (𝐴 − 1)) + 𝑉) = (1 + ((𝐴 − 1) + 𝑉)))
40 ax-1cn 10593 . . . . . . . . 9 1 ∈ ℂ
417nncnd 11650 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
42 pncan3 10892 . . . . . . . . 9 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 + (𝐴 − 1)) = 𝐴)
4340, 41, 42sylancr 590 . . . . . . . 8 (𝜑 → (1 + (𝐴 − 1)) = 𝐴)
4443oveq1d 7164 . . . . . . 7 (𝜑 → ((1 + (𝐴 − 1)) + 𝑉) = (𝐴 + 𝑉))
4539, 44eqtr3d 2861 . . . . . 6 (𝜑 → (1 + ((𝐴 − 1) + 𝑉)) = (𝐴 + 𝑉))
4645oveq2d 7165 . . . . 5 (𝜑 → (𝑊 · (1 + ((𝐴 − 1) + 𝑉))) = (𝑊 · (𝐴 + 𝑉)))
4733mulid1d 10656 . . . . . 6 (𝜑 → (𝑊 · 1) = 𝑊)
4847oveq1d 7164 . . . . 5 (𝜑 → ((𝑊 · 1) + (𝑊 · ((𝐴 − 1) + 𝑉))) = (𝑊 + (𝑊 · ((𝐴 − 1) + 𝑉))))
4936, 46, 483eqtr3d 2867 . . . 4 (𝜑 → (𝑊 · (𝐴 + 𝑉)) = (𝑊 + (𝑊 · ((𝐴 − 1) + 𝑉))))
5032, 49breqtrrd 5080 . . 3 (𝜑 → (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ≤ (𝑊 · (𝐴 + 𝑉)))
517nnred 11649 . . . . . 6 (𝜑𝐴 ∈ ℝ)
5210nnred 11649 . . . . . 6 (𝜑𝑉 ∈ ℝ)
53 elfzle2 12915 . . . . . . 7 (𝐴 ∈ (1...𝑉) → 𝐴𝑉)
545, 53syl 17 . . . . . 6 (𝜑𝐴𝑉)
5551, 52, 52, 54leadd1dd 11252 . . . . 5 (𝜑 → (𝐴 + 𝑉) ≤ (𝑉 + 𝑉))
56382timesd 11877 . . . . 5 (𝜑 → (2 · 𝑉) = (𝑉 + 𝑉))
5755, 56breqtrrd 5080 . . . 4 (𝜑 → (𝐴 + 𝑉) ≤ (2 · 𝑉))
5816nnred 11649 . . . . 5 (𝜑 → (𝐴 + 𝑉) ∈ ℝ)
5921nnred 11649 . . . . 5 (𝜑 → (2 · 𝑉) ∈ ℝ)
604nnred 11649 . . . . 5 (𝜑𝑊 ∈ ℝ)
614nngt0d 11683 . . . . 5 (𝜑 → 0 < 𝑊)
62 lemul2 11491 . . . . 5 (((𝐴 + 𝑉) ∈ ℝ ∧ (2 · 𝑉) ∈ ℝ ∧ (𝑊 ∈ ℝ ∧ 0 < 𝑊)) → ((𝐴 + 𝑉) ≤ (2 · 𝑉) ↔ (𝑊 · (𝐴 + 𝑉)) ≤ (𝑊 · (2 · 𝑉))))
6358, 59, 60, 61, 62syl112anc 1371 . . . 4 (𝜑 → ((𝐴 + 𝑉) ≤ (2 · 𝑉) ↔ (𝑊 · (𝐴 + 𝑉)) ≤ (𝑊 · (2 · 𝑉))))
6457, 63mpbid 235 . . 3 (𝜑 → (𝑊 · (𝐴 + 𝑉)) ≤ (𝑊 · (2 · 𝑉)))
6515, 18, 23, 50, 64letrd 10795 . 2 (𝜑 → (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ≤ (𝑊 · (2 · 𝑉)))
66 nnuz 12278 . . . 4 ℕ = (ℤ‘1)
6714, 66eleqtrdi 2926 . . 3 (𝜑 → (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ (ℤ‘1))
6822nnzd 12083 . . 3 (𝜑 → (𝑊 · (2 · 𝑉)) ∈ ℤ)
69 elfz5 12903 . . 3 (((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ (ℤ‘1) ∧ (𝑊 · (2 · 𝑉)) ∈ ℤ) → ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ (1...(𝑊 · (2 · 𝑉))) ↔ (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ≤ (𝑊 · (2 · 𝑉))))
7067, 68, 69syl2anc 587 . 2 (𝜑 → ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ (1...(𝑊 · (2 · 𝑉))) ↔ (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ≤ (𝑊 · (2 · 𝑉))))
7165, 70mpbird 260 1 (𝜑 → (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ (1...(𝑊 · (2 · 𝑉))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1538  wcel 2115   class class class wbr 5052  cfv 6343  (class class class)co 7149  cc 10533  cr 10534  0cc0 10535  1c1 10536   + caddc 10538   · cmul 10540   < clt 10673  cle 10674  cmin 10868  cn 11634  2c2 11689  0cn0 11894  cz 11978  cuz 12240  ...cfz 12894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-nn 11635  df-2 11697  df-n0 11895  df-z 11979  df-uz 12241  df-fz 12895
This theorem is referenced by:  vdwlem4  16318  vdwlem6  16320
  Copyright terms: Public domain W3C validator