Proof of Theorem vdwlem5
Step | Hyp | Ref
| Expression |
1 | | vdwlem6.t |
. 2
⊢ 𝑇 = (𝐵 + (𝑊 · ((𝐴 + (𝑉 − 𝐷)) − 1))) |
2 | | vdwlem6.b |
. . 3
⊢ (𝜑 → 𝐵 ∈ ℕ) |
3 | | vdwlem3.w |
. . . . 5
⊢ (𝜑 → 𝑊 ∈ ℕ) |
4 | 3 | nnnn0d 12008 |
. . . 4
⊢ (𝜑 → 𝑊 ∈
ℕ0) |
5 | | vdwlem7.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ ℕ) |
6 | | vdwlem3.v |
. . . . . . . . . 10
⊢ (𝜑 → 𝑉 ∈ ℕ) |
7 | 6 | nncnd 11704 |
. . . . . . . . 9
⊢ (𝜑 → 𝑉 ∈ ℂ) |
8 | | vdwlem7.d |
. . . . . . . . . 10
⊢ (𝜑 → 𝐷 ∈ ℕ) |
9 | 8 | nncnd 11704 |
. . . . . . . . 9
⊢ (𝜑 → 𝐷 ∈ ℂ) |
10 | 7, 9 | subcld 11049 |
. . . . . . . 8
⊢ (𝜑 → (𝑉 − 𝐷) ∈ ℂ) |
11 | 5 | nncnd 11704 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ ℂ) |
12 | 10, 11 | npcand 11053 |
. . . . . . 7
⊢ (𝜑 → (((𝑉 − 𝐷) − 𝐴) + 𝐴) = (𝑉 − 𝐷)) |
13 | 7, 9, 11 | subsub4d 11080 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑉 − 𝐷) − 𝐴) = (𝑉 − (𝐷 + 𝐴))) |
14 | 9, 11 | addcomd 10894 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐷 + 𝐴) = (𝐴 + 𝐷)) |
15 | 14 | oveq2d 7173 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑉 − (𝐷 + 𝐴)) = (𝑉 − (𝐴 + 𝐷))) |
16 | 13, 15 | eqtrd 2794 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑉 − 𝐷) − 𝐴) = (𝑉 − (𝐴 + 𝐷))) |
17 | | cnvimass 5927 |
. . . . . . . . . . . . 13
⊢ (◡𝐹 “ {𝐺}) ⊆ dom 𝐹 |
18 | | vdwlem4.r |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑅 ∈ Fin) |
19 | | vdwlem4.h |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅) |
20 | | vdwlem4.f |
. . . . . . . . . . . . . 14
⊢ 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉)))))) |
21 | 6, 3, 18, 19, 20 | vdwlem4 16390 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹:(1...𝑉)⟶(𝑅 ↑m (1...𝑊))) |
22 | 17, 21 | fssdm 6521 |
. . . . . . . . . . . 12
⊢ (𝜑 → (◡𝐹 “ {𝐺}) ⊆ (1...𝑉)) |
23 | | vdwlem7.s |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐴(AP‘𝐾)𝐷) ⊆ (◡𝐹 “ {𝐺})) |
24 | | ssun2 4081 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷) ⊆ ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷)) |
25 | | vdwlem7.k |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐾 ∈
(ℤ≥‘2)) |
26 | | uz2m1nn 12377 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐾 ∈
(ℤ≥‘2) → (𝐾 − 1) ∈ ℕ) |
27 | 25, 26 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐾 − 1) ∈ ℕ) |
28 | 5, 8 | nnaddcld 11740 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐴 + 𝐷) ∈ ℕ) |
29 | | vdwapid1 16381 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐾 − 1) ∈ ℕ ∧
(𝐴 + 𝐷) ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴 + 𝐷) ∈ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷)) |
30 | 27, 28, 8, 29 | syl3anc 1369 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐴 + 𝐷) ∈ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷)) |
31 | 24, 30 | sseldi 3893 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐴 + 𝐷) ∈ ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷))) |
32 | | eluz2nn 12338 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐾 ∈
(ℤ≥‘2) → 𝐾 ∈ ℕ) |
33 | 25, 32 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐾 ∈ ℕ) |
34 | 33 | nncnd 11704 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐾 ∈ ℂ) |
35 | | ax-1cn 10647 |
. . . . . . . . . . . . . . . . . 18
⊢ 1 ∈
ℂ |
36 | | npcan 10947 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐾 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝐾 −
1) + 1) = 𝐾) |
37 | 34, 35, 36 | sylancl 589 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝐾 − 1) + 1) = 𝐾) |
38 | 37 | fveq2d 6668 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (AP‘((𝐾 − 1) + 1)) =
(AP‘𝐾)) |
39 | 38 | oveqd 7174 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐴(AP‘((𝐾 − 1) + 1))𝐷) = (𝐴(AP‘𝐾)𝐷)) |
40 | | nnm1nn0 11989 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐾 ∈ ℕ → (𝐾 − 1) ∈
ℕ0) |
41 | 33, 40 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐾 − 1) ∈
ℕ0) |
42 | | vdwapun 16380 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐾 − 1) ∈
ℕ0 ∧ 𝐴
∈ ℕ ∧ 𝐷
∈ ℕ) → (𝐴(AP‘((𝐾 − 1) + 1))𝐷) = ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷))) |
43 | 41, 5, 8, 42 | syl3anc 1369 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐴(AP‘((𝐾 − 1) + 1))𝐷) = ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷))) |
44 | 39, 43 | eqtr3d 2796 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐴(AP‘𝐾)𝐷) = ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷))) |
45 | 31, 44 | eleqtrrd 2856 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐴 + 𝐷) ∈ (𝐴(AP‘𝐾)𝐷)) |
46 | 23, 45 | sseldd 3896 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴 + 𝐷) ∈ (◡𝐹 “ {𝐺})) |
47 | 22, 46 | sseldd 3896 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴 + 𝐷) ∈ (1...𝑉)) |
48 | | elfzuz3 12967 |
. . . . . . . . . . 11
⊢ ((𝐴 + 𝐷) ∈ (1...𝑉) → 𝑉 ∈ (ℤ≥‘(𝐴 + 𝐷))) |
49 | 47, 48 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑉 ∈ (ℤ≥‘(𝐴 + 𝐷))) |
50 | | uznn0sub 12331 |
. . . . . . . . . 10
⊢ (𝑉 ∈
(ℤ≥‘(𝐴 + 𝐷)) → (𝑉 − (𝐴 + 𝐷)) ∈
ℕ0) |
51 | 49, 50 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑉 − (𝐴 + 𝐷)) ∈
ℕ0) |
52 | 16, 51 | eqeltrd 2853 |
. . . . . . . 8
⊢ (𝜑 → ((𝑉 − 𝐷) − 𝐴) ∈
ℕ0) |
53 | | nn0nnaddcl 11979 |
. . . . . . . 8
⊢ ((((𝑉 − 𝐷) − 𝐴) ∈ ℕ0 ∧ 𝐴 ∈ ℕ) → (((𝑉 − 𝐷) − 𝐴) + 𝐴) ∈ ℕ) |
54 | 52, 5, 53 | syl2anc 587 |
. . . . . . 7
⊢ (𝜑 → (((𝑉 − 𝐷) − 𝐴) + 𝐴) ∈ ℕ) |
55 | 12, 54 | eqeltrrd 2854 |
. . . . . 6
⊢ (𝜑 → (𝑉 − 𝐷) ∈ ℕ) |
56 | 5, 55 | nnaddcld 11740 |
. . . . 5
⊢ (𝜑 → (𝐴 + (𝑉 − 𝐷)) ∈ ℕ) |
57 | | nnm1nn0 11989 |
. . . . 5
⊢ ((𝐴 + (𝑉 − 𝐷)) ∈ ℕ → ((𝐴 + (𝑉 − 𝐷)) − 1) ∈
ℕ0) |
58 | 56, 57 | syl 17 |
. . . 4
⊢ (𝜑 → ((𝐴 + (𝑉 − 𝐷)) − 1) ∈
ℕ0) |
59 | 4, 58 | nn0mulcld 12013 |
. . 3
⊢ (𝜑 → (𝑊 · ((𝐴 + (𝑉 − 𝐷)) − 1)) ∈
ℕ0) |
60 | | nnnn0addcl 11978 |
. . 3
⊢ ((𝐵 ∈ ℕ ∧ (𝑊 · ((𝐴 + (𝑉 − 𝐷)) − 1)) ∈ ℕ0)
→ (𝐵 + (𝑊 · ((𝐴 + (𝑉 − 𝐷)) − 1))) ∈
ℕ) |
61 | 2, 59, 60 | syl2anc 587 |
. 2
⊢ (𝜑 → (𝐵 + (𝑊 · ((𝐴 + (𝑉 − 𝐷)) − 1))) ∈
ℕ) |
62 | 1, 61 | eqeltrid 2857 |
1
⊢ (𝜑 → 𝑇 ∈ ℕ) |