| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vdw | Structured version Visualization version GIF version | ||
| Description: Van der Waerden's theorem. For any finite coloring 𝑅 and integer 𝐾, there is an 𝑁 such that every coloring function from 1...𝑁 to 𝑅 contains a monochromatic arithmetic progression (which written out in full means that there is a color 𝑐 and base, increment values 𝑎, 𝑑 such that all the numbers 𝑎, 𝑎 + 𝑑, ..., 𝑎 + (𝑘 − 1)𝑑 lie in the preimage of {𝑐}, i.e. they are all in 1...𝑁 and 𝑓 evaluated at each one yields 𝑐). (Contributed by Mario Carneiro, 13-Sep-2014.) |
| Ref | Expression |
|---|---|
| vdw | ⊢ ((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝑓 “ {𝑐})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ ((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) → 𝑅 ∈ Fin) | |
| 2 | simpr 484 | . . 3 ⊢ ((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℕ0) | |
| 3 | 1, 2 | vdwlem13 16971 | . 2 ⊢ ((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))𝐾 MonoAP 𝑓) |
| 4 | ovex 7423 | . . . . 5 ⊢ (1...𝑛) ∈ V | |
| 5 | simpllr 775 | . . . . 5 ⊢ ((((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) ∧ 𝑓 ∈ (𝑅 ↑m (1...𝑛))) → 𝐾 ∈ ℕ0) | |
| 6 | simpll 766 | . . . . . . 7 ⊢ (((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → 𝑅 ∈ Fin) | |
| 7 | elmapg 8815 | . . . . . . 7 ⊢ ((𝑅 ∈ Fin ∧ (1...𝑛) ∈ V) → (𝑓 ∈ (𝑅 ↑m (1...𝑛)) ↔ 𝑓:(1...𝑛)⟶𝑅)) | |
| 8 | 6, 4, 7 | sylancl 586 | . . . . . 6 ⊢ (((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → (𝑓 ∈ (𝑅 ↑m (1...𝑛)) ↔ 𝑓:(1...𝑛)⟶𝑅)) |
| 9 | 8 | biimpa 476 | . . . . 5 ⊢ ((((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) ∧ 𝑓 ∈ (𝑅 ↑m (1...𝑛))) → 𝑓:(1...𝑛)⟶𝑅) |
| 10 | simplr 768 | . . . . . . 7 ⊢ ((((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) ∧ 𝑓 ∈ (𝑅 ↑m (1...𝑛))) → 𝑛 ∈ ℕ) | |
| 11 | nnuz 12843 | . . . . . . 7 ⊢ ℕ = (ℤ≥‘1) | |
| 12 | 10, 11 | eleqtrdi 2839 | . . . . . 6 ⊢ ((((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) ∧ 𝑓 ∈ (𝑅 ↑m (1...𝑛))) → 𝑛 ∈ (ℤ≥‘1)) |
| 13 | eluzfz1 13499 | . . . . . 6 ⊢ (𝑛 ∈ (ℤ≥‘1) → 1 ∈ (1...𝑛)) | |
| 14 | 12, 13 | syl 17 | . . . . 5 ⊢ ((((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) ∧ 𝑓 ∈ (𝑅 ↑m (1...𝑛))) → 1 ∈ (1...𝑛)) |
| 15 | 4, 5, 9, 14 | vdwmc2 16957 | . . . 4 ⊢ ((((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) ∧ 𝑓 ∈ (𝑅 ↑m (1...𝑛))) → (𝐾 MonoAP 𝑓 ↔ ∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝑓 “ {𝑐}))) |
| 16 | 15 | ralbidva 3155 | . . 3 ⊢ (((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → (∀𝑓 ∈ (𝑅 ↑m (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝑓 “ {𝑐}))) |
| 17 | 16 | rexbidva 3156 | . 2 ⊢ ((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝑓 “ {𝑐}))) |
| 18 | 3, 17 | mpbid 232 | 1 ⊢ ((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝑓 “ {𝑐})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 Vcvv 3450 {csn 4592 class class class wbr 5110 ◡ccnv 5640 “ cima 5644 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ↑m cmap 8802 Fincfn 8921 0cc0 11075 1c1 11076 + caddc 11078 · cmul 11080 − cmin 11412 ℕcn 12193 ℕ0cn0 12449 ℤ≥cuz 12800 ...cfz 13475 MonoAP cvdwm 16944 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-oadd 8441 df-er 8674 df-map 8804 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-dju 9861 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-n0 12450 df-xnn0 12523 df-z 12537 df-uz 12801 df-rp 12959 df-fz 13476 df-hash 14303 df-vdwap 16946 df-vdwmc 16947 df-vdwpc 16948 |
| This theorem is referenced by: vdwnnlem1 16973 |
| Copyright terms: Public domain | W3C validator |