MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdw Structured version   Visualization version   GIF version

Theorem vdw 16028
Description: Van der Waerden's theorem. For any finite coloring 𝑅 and integer 𝐾, there is an 𝑁 such that every coloring function from 1...𝑁 to 𝑅 contains a monochromatic arithmetic progression (which written out in full means that there is a color 𝑐 and base, increment values 𝑎, 𝑑 such that all the numbers 𝑎, 𝑎 + 𝑑, ..., 𝑎 + (𝑘 − 1)𝑑 lie in the preimage of {𝑐}, i.e. they are all in 1...𝑁 and 𝑓 evaluated at each one yields 𝑐). (Contributed by Mario Carneiro, 13-Sep-2014.)
Assertion
Ref Expression
vdw ((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝑓 “ {𝑐}))
Distinct variable groups:   𝑎,𝑐,𝑑,𝑓,𝑚,𝑛,𝐾   𝑅,𝑎,𝑐,𝑑,𝑓,𝑛
Allowed substitution hint:   𝑅(𝑚)

Proof of Theorem vdw
StepHypRef Expression
1 simpl 475 . . 3 ((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) → 𝑅 ∈ Fin)
2 simpr 478 . . 3 ((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℕ0)
31, 2vdwlem13 16027 . 2 ((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))𝐾 MonoAP 𝑓)
4 ovex 6909 . . . . 5 (1...𝑛) ∈ V
5 simpllr 794 . . . . 5 ((((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) ∧ 𝑓 ∈ (𝑅𝑚 (1...𝑛))) → 𝐾 ∈ ℕ0)
6 simpll 784 . . . . . . 7 (((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → 𝑅 ∈ Fin)
7 elmapg 8107 . . . . . . 7 ((𝑅 ∈ Fin ∧ (1...𝑛) ∈ V) → (𝑓 ∈ (𝑅𝑚 (1...𝑛)) ↔ 𝑓:(1...𝑛)⟶𝑅))
86, 4, 7sylancl 581 . . . . . 6 (((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → (𝑓 ∈ (𝑅𝑚 (1...𝑛)) ↔ 𝑓:(1...𝑛)⟶𝑅))
98biimpa 469 . . . . 5 ((((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) ∧ 𝑓 ∈ (𝑅𝑚 (1...𝑛))) → 𝑓:(1...𝑛)⟶𝑅)
10 simplr 786 . . . . . . 7 ((((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) ∧ 𝑓 ∈ (𝑅𝑚 (1...𝑛))) → 𝑛 ∈ ℕ)
11 nnuz 11964 . . . . . . 7 ℕ = (ℤ‘1)
1210, 11syl6eleq 2887 . . . . . 6 ((((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) ∧ 𝑓 ∈ (𝑅𝑚 (1...𝑛))) → 𝑛 ∈ (ℤ‘1))
13 eluzfz1 12599 . . . . . 6 (𝑛 ∈ (ℤ‘1) → 1 ∈ (1...𝑛))
1412, 13syl 17 . . . . 5 ((((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) ∧ 𝑓 ∈ (𝑅𝑚 (1...𝑛))) → 1 ∈ (1...𝑛))
154, 5, 9, 14vdwmc2 16013 . . . 4 ((((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) ∧ 𝑓 ∈ (𝑅𝑚 (1...𝑛))) → (𝐾 MonoAP 𝑓 ↔ ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝑓 “ {𝑐})))
1615ralbidva 3165 . . 3 (((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → (∀𝑓 ∈ (𝑅𝑚 (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝑓 “ {𝑐})))
1716rexbidva 3229 . 2 ((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝑓 “ {𝑐})))
183, 17mpbid 224 1 ((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝑓 “ {𝑐}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385  wcel 2157  wral 3088  wrex 3089  Vcvv 3384  {csn 4367   class class class wbr 4842  ccnv 5310  cima 5314  wf 6096  cfv 6100  (class class class)co 6877  𝑚 cmap 8094  Fincfn 8194  0cc0 10223  1c1 10224   + caddc 10226   · cmul 10228  cmin 10555  cn 11311  0cn0 11577  cuz 11927  ...cfz 12577   MonoAP cvdwm 16000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2776  ax-rep 4963  ax-sep 4974  ax-nul 4982  ax-pow 5034  ax-pr 5096  ax-un 7182  ax-cnex 10279  ax-resscn 10280  ax-1cn 10281  ax-icn 10282  ax-addcl 10283  ax-addrcl 10284  ax-mulcl 10285  ax-mulrcl 10286  ax-mulcom 10287  ax-addass 10288  ax-mulass 10289  ax-distr 10290  ax-i2m1 10291  ax-1ne0 10292  ax-1rid 10293  ax-rnegex 10294  ax-rrecex 10295  ax-cnre 10296  ax-pre-lttri 10297  ax-pre-lttrn 10298  ax-pre-ltadd 10299  ax-pre-mulgt0 10300
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2785  df-cleq 2791  df-clel 2794  df-nfc 2929  df-ne 2971  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3386  df-sbc 3633  df-csb 3728  df-dif 3771  df-un 3773  df-in 3775  df-ss 3782  df-pss 3784  df-nul 4115  df-if 4277  df-pw 4350  df-sn 4368  df-pr 4370  df-tp 4372  df-op 4374  df-uni 4628  df-int 4667  df-iun 4711  df-br 4843  df-opab 4905  df-mpt 4922  df-tr 4945  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5897  df-ord 5943  df-on 5944  df-lim 5945  df-suc 5946  df-iota 6063  df-fun 6102  df-fn 6103  df-f 6104  df-f1 6105  df-fo 6106  df-f1o 6107  df-fv 6108  df-riota 6838  df-ov 6880  df-oprab 6881  df-mpt2 6882  df-om 7299  df-1st 7400  df-2nd 7401  df-wrecs 7644  df-recs 7706  df-rdg 7744  df-1o 7798  df-2o 7799  df-oadd 7802  df-er 7981  df-map 8096  df-pm 8097  df-en 8195  df-dom 8196  df-sdom 8197  df-fin 8198  df-card 9050  df-cda 9277  df-pnf 10364  df-mnf 10365  df-xr 10366  df-ltxr 10367  df-le 10368  df-sub 10557  df-neg 10558  df-nn 11312  df-2 11373  df-n0 11578  df-xnn0 11650  df-z 11664  df-uz 11928  df-rp 12072  df-fz 12578  df-hash 13368  df-vdwap 16002  df-vdwmc 16003  df-vdwpc 16004
This theorem is referenced by:  vdwnnlem1  16029
  Copyright terms: Public domain W3C validator