MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdw Structured version   Visualization version   GIF version

Theorem vdw 16941
Description: Van der Waerden's theorem. For any finite coloring 𝑅 and integer 𝐾, there is an 𝑁 such that every coloring function from 1...𝑁 to 𝑅 contains a monochromatic arithmetic progression (which written out in full means that there is a color 𝑐 and base, increment values 𝑎, 𝑑 such that all the numbers 𝑎, 𝑎 + 𝑑, ..., 𝑎 + (𝑘 − 1)𝑑 lie in the preimage of {𝑐}, i.e. they are all in 1...𝑁 and 𝑓 evaluated at each one yields 𝑐). (Contributed by Mario Carneiro, 13-Sep-2014.)
Assertion
Ref Expression
vdw ((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝑓 “ {𝑐}))
Distinct variable groups:   𝑎,𝑐,𝑑,𝑓,𝑚,𝑛,𝐾   𝑅,𝑎,𝑐,𝑑,𝑓,𝑛
Allowed substitution hint:   𝑅(𝑚)

Proof of Theorem vdw
StepHypRef Expression
1 simpl 482 . . 3 ((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) → 𝑅 ∈ Fin)
2 simpr 484 . . 3 ((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℕ0)
31, 2vdwlem13 16940 . 2 ((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))𝐾 MonoAP 𝑓)
4 ovex 7402 . . . . 5 (1...𝑛) ∈ V
5 simpllr 775 . . . . 5 ((((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) ∧ 𝑓 ∈ (𝑅m (1...𝑛))) → 𝐾 ∈ ℕ0)
6 simpll 766 . . . . . . 7 (((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → 𝑅 ∈ Fin)
7 elmapg 8789 . . . . . . 7 ((𝑅 ∈ Fin ∧ (1...𝑛) ∈ V) → (𝑓 ∈ (𝑅m (1...𝑛)) ↔ 𝑓:(1...𝑛)⟶𝑅))
86, 4, 7sylancl 586 . . . . . 6 (((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → (𝑓 ∈ (𝑅m (1...𝑛)) ↔ 𝑓:(1...𝑛)⟶𝑅))
98biimpa 476 . . . . 5 ((((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) ∧ 𝑓 ∈ (𝑅m (1...𝑛))) → 𝑓:(1...𝑛)⟶𝑅)
10 simplr 768 . . . . . . 7 ((((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) ∧ 𝑓 ∈ (𝑅m (1...𝑛))) → 𝑛 ∈ ℕ)
11 nnuz 12812 . . . . . . 7 ℕ = (ℤ‘1)
1210, 11eleqtrdi 2838 . . . . . 6 ((((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) ∧ 𝑓 ∈ (𝑅m (1...𝑛))) → 𝑛 ∈ (ℤ‘1))
13 eluzfz1 13468 . . . . . 6 (𝑛 ∈ (ℤ‘1) → 1 ∈ (1...𝑛))
1412, 13syl 17 . . . . 5 ((((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) ∧ 𝑓 ∈ (𝑅m (1...𝑛))) → 1 ∈ (1...𝑛))
154, 5, 9, 14vdwmc2 16926 . . . 4 ((((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) ∧ 𝑓 ∈ (𝑅m (1...𝑛))) → (𝐾 MonoAP 𝑓 ↔ ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝑓 “ {𝑐})))
1615ralbidva 3154 . . 3 (((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → (∀𝑓 ∈ (𝑅m (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑅m (1...𝑛))∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝑓 “ {𝑐})))
1716rexbidva 3155 . 2 ((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝑓 “ {𝑐})))
183, 17mpbid 232 1 ((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝑓 “ {𝑐}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wral 3044  wrex 3053  Vcvv 3444  {csn 4585   class class class wbr 5102  ccnv 5630  cima 5634  wf 6495  cfv 6499  (class class class)co 7369  m cmap 8776  Fincfn 8895  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  cmin 11381  cn 12162  0cn0 12418  cuz 12769  ...cfz 13444   MonoAP cvdwm 16913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-hash 14272  df-vdwap 16915  df-vdwmc 16916  df-vdwpc 16917
This theorem is referenced by:  vdwnnlem1  16942
  Copyright terms: Public domain W3C validator