Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vdw | Structured version Visualization version GIF version |
Description: Van der Waerden's theorem. For any finite coloring 𝑅 and integer 𝐾, there is an 𝑁 such that every coloring function from 1...𝑁 to 𝑅 contains a monochromatic arithmetic progression (which written out in full means that there is a color 𝑐 and base, increment values 𝑎, 𝑑 such that all the numbers 𝑎, 𝑎 + 𝑑, ..., 𝑎 + (𝑘 − 1)𝑑 lie in the preimage of {𝑐}, i.e. they are all in 1...𝑁 and 𝑓 evaluated at each one yields 𝑐). (Contributed by Mario Carneiro, 13-Sep-2014.) |
Ref | Expression |
---|---|
vdw | ⊢ ((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝑓 “ {𝑐})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . 3 ⊢ ((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) → 𝑅 ∈ Fin) | |
2 | simpr 485 | . . 3 ⊢ ((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℕ0) | |
3 | 1, 2 | vdwlem13 16768 | . 2 ⊢ ((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))𝐾 MonoAP 𝑓) |
4 | ovex 7349 | . . . . 5 ⊢ (1...𝑛) ∈ V | |
5 | simpllr 773 | . . . . 5 ⊢ ((((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) ∧ 𝑓 ∈ (𝑅 ↑m (1...𝑛))) → 𝐾 ∈ ℕ0) | |
6 | simpll 764 | . . . . . . 7 ⊢ (((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → 𝑅 ∈ Fin) | |
7 | elmapg 8677 | . . . . . . 7 ⊢ ((𝑅 ∈ Fin ∧ (1...𝑛) ∈ V) → (𝑓 ∈ (𝑅 ↑m (1...𝑛)) ↔ 𝑓:(1...𝑛)⟶𝑅)) | |
8 | 6, 4, 7 | sylancl 586 | . . . . . 6 ⊢ (((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → (𝑓 ∈ (𝑅 ↑m (1...𝑛)) ↔ 𝑓:(1...𝑛)⟶𝑅)) |
9 | 8 | biimpa 477 | . . . . 5 ⊢ ((((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) ∧ 𝑓 ∈ (𝑅 ↑m (1...𝑛))) → 𝑓:(1...𝑛)⟶𝑅) |
10 | simplr 766 | . . . . . . 7 ⊢ ((((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) ∧ 𝑓 ∈ (𝑅 ↑m (1...𝑛))) → 𝑛 ∈ ℕ) | |
11 | nnuz 12700 | . . . . . . 7 ⊢ ℕ = (ℤ≥‘1) | |
12 | 10, 11 | eleqtrdi 2847 | . . . . . 6 ⊢ ((((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) ∧ 𝑓 ∈ (𝑅 ↑m (1...𝑛))) → 𝑛 ∈ (ℤ≥‘1)) |
13 | eluzfz1 13342 | . . . . . 6 ⊢ (𝑛 ∈ (ℤ≥‘1) → 1 ∈ (1...𝑛)) | |
14 | 12, 13 | syl 17 | . . . . 5 ⊢ ((((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) ∧ 𝑓 ∈ (𝑅 ↑m (1...𝑛))) → 1 ∈ (1...𝑛)) |
15 | 4, 5, 9, 14 | vdwmc2 16754 | . . . 4 ⊢ ((((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) ∧ 𝑓 ∈ (𝑅 ↑m (1...𝑛))) → (𝐾 MonoAP 𝑓 ↔ ∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝑓 “ {𝑐}))) |
16 | 15 | ralbidva 3168 | . . 3 ⊢ (((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → (∀𝑓 ∈ (𝑅 ↑m (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝑓 “ {𝑐}))) |
17 | 16 | rexbidva 3169 | . 2 ⊢ ((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝑓 “ {𝑐}))) |
18 | 3, 17 | mpbid 231 | 1 ⊢ ((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝑓 “ {𝑐})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2105 ∀wral 3061 ∃wrex 3070 Vcvv 3440 {csn 4570 class class class wbr 5086 ◡ccnv 5606 “ cima 5610 ⟶wf 6461 ‘cfv 6465 (class class class)co 7316 ↑m cmap 8664 Fincfn 8782 0cc0 10950 1c1 10951 + caddc 10953 · cmul 10955 − cmin 11284 ℕcn 12052 ℕ0cn0 12312 ℤ≥cuz 12661 ...cfz 13318 MonoAP cvdwm 16741 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-cnex 11006 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 ax-pre-mulgt0 11027 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-int 4892 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-om 7759 df-1st 7877 df-2nd 7878 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-1o 8345 df-oadd 8349 df-er 8547 df-map 8666 df-pm 8667 df-en 8783 df-dom 8784 df-sdom 8785 df-fin 8786 df-dju 9736 df-card 9774 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-sub 11286 df-neg 11287 df-nn 12053 df-2 12115 df-n0 12313 df-xnn0 12385 df-z 12399 df-uz 12662 df-rp 12810 df-fz 13319 df-hash 14124 df-vdwap 16743 df-vdwmc 16744 df-vdwpc 16745 |
This theorem is referenced by: vdwnnlem1 16770 |
Copyright terms: Public domain | W3C validator |